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Abstract

This paper studies the problem of how much space is saved, on average, when a TRIE
is pruned back to a minimal discriminating prefix. Exact figures (on average, half the
space is saved) are given for binary trees. All trees with n nodes and m leaves are assumed
equally likely. The calculations are based on an unusual form of recurrence relation.

1 Introduction

Consider a set S of strings over a fixed alphabet, none of which is a prefix of another in the
set. The set can be represented in a TRIE in the usual way, so a given input string x can be
matched with a string in S by traversing the trie downwards from the root (see, for instance,
[1]). If the string is known to be in S then the search is significant only at those nodes of the
TRIE which have more than one child. In particular, nodes of the tree which have exactly one
leaf descendant are redundant. How much space is saved by discarding these redundant nodes?

We frame this as a question about tries, and for the case of binary tries compute the average
saving is as follows:

(1.1) Theorem If all binary trees with n nodes of which m are leaves are equally probable,
then the average ratio of ' |T”|/|T|, where T ranges over all such binary trees and 7" is obtained
by discarding redundant nodes from 7, is

m—1 m

om—1 n’

Most of this paper is aimed at a proof of the above theorem. The result is in strong contrast
with known estimates for compressing tries formed from random strings, since the distribution
of such tries is non-uniform (different strings are unlikely to have long prefixes in common [1]).
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YT denotes the number of nodes in T



Figure 1: 3 new branches, total 7 nodes

2 Enumerating ‘trim’ binary trees

For brevity, a tree with n nodes of which m are leaves will be said to have size (n,m). A
tree is trim if every leaf has a sibling. Equivalently, every internal node has two or more leaf
descendants. The trim prefiz T' of a tree T is obtained by deleting all nodes in 7" which have
exactly one leaf descendant. Let B, ,, denote the number of binary trees of size (n, m), and let
Py m denote the number of trim binary trees of size (k, m).

We first calculate, given such a fixed trim tree 7" the number of extensions T of size (n,m)
which it possesses. There are m leaves in 7" and each leaf can be extended by a branch, as
long as the total length of added branches is n — k. One can distribute branch lengths as a
tuple (71, .. .4m), consisting of nonnegative integers adding up to n — k. For each such m-tuple
there are a total of 2" * branch configurations (see Figure 1), and there are

n—k+m-—1
m—1

such arrangements of branches, by the well-known ‘stars and bars’ counting trick.? Therefore

(2'1) Bn,m = Zkﬁn (n_fntT_l)Qn_kPk,m
This can be inverted directly using an inverse pair of relations [2]: yielding
(2.2) Py = Cnbn1 (=2 () Bum
As we shall see later (equation 3.2) By, = Kp, (27;:_12) 2nt1=2m where K, = %(2::_*11) is the

number of full binary trees with m leaves. This can be substituted into equation (2.2). It is,
of course, not easy to convert this to closed form. However, it can be done directly for small
values of m? and we can quickly reach the following conjecture:

(2.3) Pin = Kp2kti-2m (k*lfm)

m—2

2Imagine any such tuple written as a list of unary numbers with m — 1 comma separators. This is a list of
ones and commas mixed, of length n — k + m — 1. Therefore the number of tuples is the number of choices of
m — 1 (commas) out of n — k +m — 1 locations.

3Some of these calculations used Reduce and Maple computer algebra systems.



We need only verify that equation (2.3) satisfies equation (2.1): ignoring the factors K,, we
need to verify that

n—1 gn1-2m _ i on—k n—k+m-—1 ok+1-2m k—m—1
2m — 2 m—1 m— 2

k=2m-—1
or, equivalently,
-1) _ k—m—1Y (n—k+m—1
(2.4) (27:”,2) - EZ:mel ( m’f2 )(n mjrll )
This last identity is easily verified: think of £ — m as indexing the m — 1st element in a
choice of 2m — 2 items from n — 1.

3 Calculating B, ,,

The standard way to calculate the quantities B,, ,, is to embed them in a bivariate generating
function B(zx,y), and consider a generic tree in terms of its root and left and right subtrees,
leading to a convolution formula applying to the B, ,,, which translates into the following
equation in B = B(z,y):

tB*—B4+1—z+a2y=0.

This does not lead to easy solutions*. The standard recursive descriptions consider the forma-
tion of trees from the root, a top-down recurrence. An alternative bottom-up recurrence can
be obtained as follows.

Let us imagine building up a tree by repeatedly adding leaves. In how many ways can you
add a leaf to a tree of size (n, m)? You can either make it a child of a leaf of the tree, or you
can make it a child of a defective internal node (one with only one child currently). It is clear
that for any fixed leaf you can add a new child in two possible ways, yielding a tree of size
(n+1,m).

Clearly, if an internal node is defective (having just one child), a new leaf can be added as
its other child in just one way: the resulting tree has size (n 4+ 1,m + 1). Moreover, a tree of
size (n,m) possesses exactly n+ 1 — 2m defective nodes. Thus by adding a single leaf, 2m trees
of size (n + 1, m) can be formed and n + 1 — 2m of type (n+ 1,m + 1).

Viewing this from another standpoint, a tree of size (n + 1,m + 1) can be reduced to one
of size (n,m + 1) or (n,m) by deleting any one of its m + 1 leaves. How many of each type
depends on the tree, but we conclude that the tree can be constructed in exactly m+1 different
ways by adding just one leaf to a tree of n nodes. (The situation is summarised in Figure 2.)
Hence

(3.1) (m+1)Bpiim1 = 2(m~+1)Bymi1 + (n+ 1= 2m) By .

Experiments with computer algebra, for small values of m, suggest a solution

Bn,m:Am(n_l)(n_2)(n_2m+2)2n’n22m_1’

4At the Patras meeting where this material was presented, P. Flajolet (private communication) set up and
solved this recurrence (modified slightly) using Lagrange’s inversion formula. The authors had not known
of solution techniques beyond using the Binomial series. In another private communication, J-M. Steyaert
calculated both By, ,, and P, ,, using generating function methods.
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where A,, is independent of n. The figure is zero if n < 2m — 1. Let us therefore assume a
solution of this form, and recast it to bring in binomial coefficients (this adjustment is made
so that By, ,, = K, when n =m —1).

(3.2) By = K (y,) 20172

If we substitute this into equation (3.1) and factor out 2"~2™ we obtain the form
n n—1 n—2m+1({n-1
m+1{<2m> <2m>} m+1 <2m—2> "

n—1 n—2m+1({n-1 2m -1 n—-1
Kpi1 = 2Kp—m "= = 2K, ——
<2m—1> m " om+1 <2m—2) mm+1<2m—1>’
2(2m — 1)
m+1

If we introduce a factor m in the numerator and denominator of the above factor of K,,,
and note that Ky = 1, it follows easily that

1 (2m —2
A7)
m\m—1
serves to make formula (3.2) satisfy the recurrence (3.1). It does, of course, furnish the known
estimate (Catalan numbers) for the number of full binary trees with m leaves.

or

SO

Km—|—1 = m-

4 The average ratio.

We want to calculate the average value of |P|/|T| where T is a random tree with size (n,m)
and P is its trimmed version. The probability of P having size £ < n is Py,,/Bnm, so the
quantity we seek is

(4_1) n k Pe.m

k=2m—1 70 B, m "

Let p denote this quantity. Substituting the known expressions for Py ,,, and B,, ,,, (equations
2.3 and 3.2), we obtain



(4.2) () = Shon k(03 (TR

We can make the following substitution, justified by simple algebra:

() = () ()

and break the right-hand side of equation (4.2) into two sums. The first is

(s [ I )

this identity can be justified by thinking of £ —m+1 as indexing the mth item in a subsequence
of 2m — 1 from n items. The second is

] | B A |

2m—2) from each part of

This identity we have seen already (2.4). Finally, we can factorise (

equation (4.2), and obtain
m—1 m

'0:2m—1 n

concluding the proof of Theorem 1.1.

5 Further remarks

It is tempting to generalise these results to ¢g-ary trees for arbitrary ¢q. For the case, for instance,
of ternary trees, one can easily formulate the following recurrence analogous to equation (3.1):
the number T}, ,,, of ternary trees with n nodes of which m are leaves satisfies

(5.1) (m+1)Tht1me1 =3m+ DTy mi + (2n+1—3m)T,, .

(and indeed the formula easily generalises to g-ary trees.) However, experimentation with
small values of m reveals a divergence from the binomial coefficients:

(n—=1)(n —2)(n— 3)(3n — 10)

3",
4

Tn,3 =

While patterns may still be found here, it seems that an exact solution similar to that of
Theorem 1.1 would be elusive, or at least difficult to calculate.
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