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Abstract

Let E be a real Banach space. We show that either E admits a positive defi-
nite 2-homogeneous polynomial or every 2-homogeneous polynomial on E has an
infinite dimensional subspace on which it is identically zero. Under addition as-
sumptions, we show that such subspaces are non-separable. We examine analogous
results for nuclear and absolutely (1, 2)-summing 2-homogeneous polynomials and
give necessary and sufficient conditions on a compact set K so that C(K) ad-
mits a positive definite 2-homogeneous polynomial or a positive definite nuclear
2-homogeneous polynomial.

1 Introduction

The study of the zeros of a complex polynomial has a long history, with results coming
via complex analysis, algebraic geometry, and functional analysis (see, e.g., [8], [9], [12]).
On the other hand, although similar studies for real polynomials exist ([4], [1]), they
seem somewhat less common. The case of the polynomial P : Rn → R, P (x) =

∑n
j=1 x

2
j

notwithstanding, it is exactly the zeros of real valued 2−homogeneous polynomials which
will be of interest here, in the case when the domain Rn is replaced by an infinite
dimensional real Banach space E. There are many ‘large’ Banach spaces E for which
there is no positive definite 2−homogeneous polynomial P. As we will see, for a real
Banach space E, either E admits a positive definite 2−homogeneous polynomial or every
2−homogeneous polynomial on E is identically zero on an infinite dimensional subspace
of E.
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The plan of this article is as follows. In Section 2, we give several characterizations
of positive definite polynomials. We prove several dichotomy results in Section 3 of the
type indicated at the end of the preceding paragraph. A natural question of interest
which arises is if, in the event that E does not admit a positive definite 2-homogeneous
polynomial, what is the dimension of the subspace on which a 2−homogeneous polyno-
mial will vanish. This question will be only partially resolved here. Finally, in Section
4, we consider the special cases of C(K) and absolutely (1,2)-summing polynomials, and
we also present several examples and open questions.

We recall that an n−homogeneous polynomial P : E → K = R or C is, by definition,
the restriction to the diagonal of a necessarily unique symmetric continuous n−linear
form P̌ : E × ...×E → K; that is, P (x) = P̌ (x, . . . , x) for every x ∈ E. The polynomial
P is said to be positive definite if P (x) ≥ 0 for every x and P (x) = 0 implies that x = 0.

An n-homogeneous polynomial P on E is nuclear if there is bounded sequence
(φj)

∞
j=1 ⊂ E ′ and a point (λj)

∞
j=1 in `1 such that

P (x) =

∞∑

j=1

λjφj(x)
n

for every x in E. The space of all nuclear n-homogeneous polynomials on E is denoted
by PN (nE). A sequence (xj)j in E is said to be weakly 2-summing if

sup
φ∈BE′

∞∑

j=1

φ(xj)
2 <∞.

An n-homogeneous polynomial P on E is said to be (absolutely) (1,2)-summing if
P maps weakly 2-summing sequences into absolutely summable sequences; that is if∑∞

j=1 ||P (xj)|| <∞ for every weakly 2−summing sequence (xj)j. It is shown in [11] (cf
[7]) that P is (1,2)-summing if and only if there is C > 0 so that for every positive integer
m and every x1, . . . , xm in E we have

m∑

j=1

|P (xj)| ≤ C

(
sup

φ∈BE′

m∑

j=1

φ(xj)
2

)n
2

.

For background on polynomials, the reader is referred to [5].

2 Characterizations of positive definite polynomials

In this section we will give a number of conditions which are equivalent to the existence
of a positive definite 2−homogeneous polynomial. A fundamental result which we will
constantly use is the easily verified fact that if P is a 2−homogeneous polynomial on
the Banach space E, then P satisfies the parallelogram law: P (x + y) + P (x − y) =
2(P (x) + P (y)). Consequently, if P is also positive definite and we give E the norm
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x→
√
P (x), then E is a pre-Hilbert space with the associated symmetric bilinear form

P̌ as inner product.
We begin with a very elementary necessary condition for the existence of positive def-

inite 2−homogeneous polynomials, in terms of the symmetric bilinear form P̌ associated
to a 2−homogeneous polynomial P.

Proposition 1 A polynomial P ∈ P(2E) is positive definite if and only if for every
x, y ∈ E such that x 6= ±y,

|P̌ (x, y)| < 1/2(P (x) + P (y)).

Consequently, if P is a positive definite 2−homogeneous polynomial on E, then ||P || =
||P̌ ||.

Proof. Assume that P is positive definite, and so P̌ is an inner product. Hence we
may apply the Cauchy-Schwarz inequality: |P̌ (x, y)| ≤ |P (x)P (y)|1/2, with equality
if and only if x = ±y. Next, by the arithmetic-geometric inequality, |P (x)P (y)|1/2 ≤
1
2
(P (x) + P (y)). The converse follows by taking an arbitrary x 6= 0 and y = 0 in the

inequality.

Although parts of the following proposition may well be ‘folklore,’ we include a com-
plete proof (cf [6]).

Proposition 2 The following conditions on a Banach space E are equivalent:

(i) E admits a positive definite 2−homogeneous polynomial.

(ii) There is a continuous linear injection from E into a Hilbert space.

(iii) The point 0 is an exposed point of the convex cone of the subset {δx

⊗
δx : x ∈ SE}

of the symmetric tensor product E
⊗

π,sE, where SE is the unit sphere of E.

(iv) There is a 2−homogeneous polynomial P on E whose set of zeros is contained in
a finite dimensional subspace of E.

Proof. (i) ⇒ (ii): Let P̌ be the symmetric positive definite bilinear form associated to
the positive definite polynomial P , so that (E, P̌ ) is a pre-Hilbert space with completion,
say, H with the induced pre-Hilbert norm. Then the injection j : E → H is continuous
since ‖j(x)‖ = |P̌ (x, x)|

1

2 = |P (x)|
1

2 ≤ ‖P‖
1

2‖x‖.
(ii) ⇒ (iii): Note that the space of 2−homogeneous polynomials on E is the dual

of E
⊗̂

π,sE. Also, recall that the convex cone of the set {δx

⊗
δx : x ∈ SE} consists

of all points of the form {
∑n

i=1 aiδxi

⊗
δxi
, where xi ∈ SE and ai ≥ 0}. Now, the

polynomial P (x) ≡< j(x), j(x) > is positive definite on E. If we regard P as an element

of (E
⊗̂

π,sE)′, we see that P (0) = 0 while P (δx

⊗
δx) = P (x) > 0 for all x ∈ SE.

Consequently, for any point
∑n

i=1 aiδxi

⊗
δxi

in the convex cone, P (
∑n

i=1 aiδxi

⊗
δxi

) =∑n
i=1 aiP (xi) ≥ 0, with equality if and only if all ai = 0.
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(iii) ⇒ (iv): Let T ∈ (E
⊗̂

π,sE)′ be such that T (0) = 0 and T (b) > 0 for all b in the

convex cone. In particular, for all x ∈ SE, P (x) ≡ T (δx
⊗

δx) > 0, so that P−1(0) = 0.
(iv)⇒ (i): We only consider the non-trivial situation, when dimE = ∞. Suppose that

P is a 2−homogeneous polynomial whose zero set is contained in the finite dimensional
subspace V with basis, say, {v1, ..., vn}. We first observe that P (x) is always positive or
always negative, for all x ∈ E\V. Otherwise, there would exist x, y ∈ SE\V such that
P (x) < 0 < P (y). Let γ : [0, 1] → E\V be a curve linking x and y. Then P ◦γ(t) = 0 for
some t ∈ [0, 1], which is a contradiction. So, without loss of generality, we assume that
P (x) ≥ 0 for all x ∈ E. Let Π : E → V be a projection, with Π(x) =

∑n
i=1 ai(Π(x))vi.

Then, the 2−homogeneous polynomial Q defined by Q(x) ≡ P (x) +
∑n

i=1 ai(Π(x))2 is
positive definite. �

Remark 3 Suppose that there is a normalized sequence (φj)j ∈ E ′ such that if x ∈
E, φj(x) = 0 for all j, then x = 0. Then the mapping x ∈ E 7→ ( 1

j
φj(x)) defines an

injection into `2, and so Proposition 2 applies. In particular, any separable space and
C(K) spaces, when K is compact and separable, admit a positive definite 2−homogeneous
polynomial. On the other hand, E = c0(Γ) and E = `p(Γ), where Γ is an uncountable
index set and p > 2, do not admit positive definite 2−homogeneous polynomials.

We also note that if there is a continuous linear injection j : E → `2, j(x) = (jn(x)),

then the mapping x 7→ ( jn(x)
2n ) is a nuclear injection between these spaces. We have

proved (ii) ⇒ (iii) of the following separable version of Proposition 2.

Proposition 4 Let E be a real Banach space. The following conditions are equivalent:

(i) E admits a positive definite 2−homogeneous nuclear polynomial.

(ii) E admits a continuous injection j : E → `2.

(iii) There is a nuclear injection j : E → `2 of the form j(x) =
∑∞

n=1 χn(x)en with
(||χn||) ∈ `1.

Proof. (i) ⇒ (ii): If P (x) =
∑∞

n=1 φn(x)2 is a positive definite nuclear polynomial on
E, then j(x) ≡

∑∞
n=1 φn(x)en will satisfy (ii).

(iii) ⇒ (i): Let j : E → `2 be a nuclear injection, j(x) =
∑∞

n=1 χn(x)en, where
(||χn||)n ∈ `1. Since

⋂∞
n=1 kerχn = {0}, it follows that the 2−homogeneous polyno-

mial P : E → R, P (x) ≡
∑∞

n=1 χ
2
n(x) is positive definite. Finally, P is nuclear since∑∞

n=1 ‖χn‖
2 ≤ (

∑∞
n=1 ‖χn‖)

2 <∞. �
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3 Dichotomy results

As we observed in Remark 3, any ‘small,’ i.e. separable, Banach space admits a positive
definite 2−homogeneous polynomial. So, the following result is of interest only for non-
separable spaces. As we will see in Section 4, we can improve our results if we restrict
our attention to (1, 2)−summing polynomials or to C(K) spaces.

Roughly speaking, our goal in this and the next section will be to show that if E does
not admit a positive definite 2−homogeneous polynomial, then every P ∈ P (2E) vanishes
on an infinite dimensional subspace of E. In certain situations, we will be able to discuss
how ‘large’ this subspace is. Our general technique, however, is non-constructive, in that
we will make repeated use of an argument by contradiction involving Zorn’s Lemma. To
avoid repetition, we now present a ‘meta-argument’ to which we will frequently appeal.

Theorem 5 Let E be a real Banach space which does not admit a positive definite
2−homogeneous polynomial. Then, for every P ∈ P (2E), there is an infinite dimensional
subspace of E on which it is identically zero.

Proof. Suppose E does not admit a positive definite 2−homogeneous polynomial and
that P ∈ P (2E). Let S = {S : S is a subspace of E and P |S ≡ 0}. Order S by inclusion
and use Zorn’s Lemma to deduce the existence of a maximal element S of S. Suppose
that S is finite dimensional. Let v1, . . . , vn be a basis for S and let T =

⋂
x∈S kerAx =⋂n

i=1 kerAvi
where Ax : E → R is the linear map which sends y in E to P̌ (x, y). We note

that S ⊂ T. To see this suppose that y ∈ S. Then for every s ∈ S, s + y is also in S.
Since

0 = P (s+ y) = P (s) + 2As(y) + P (y) = 2As(y)

for every s ∈ S we see that y ∈ T .
Since S is finite dimensional we can write T as T = S

⊕
Y for some subspace Y of T .

It is easy to see that all the zeros of P |T are contained in S. Therefore, either P |T or −P |T
is positive definite on Y . Let us suppose, without loss of generality, that P |T is positive
definite on Y . As S is n-dimensional we can find φ1, . . . , φn so that P+

∑n
i=1 φ

2
i is positive

definite on T . Note that T has finite codimension in E and hence is complemented. Let
πT be the (continuous) projection of E onto T . Then (P +

∑n
i=1 φ

2
i ) ◦ πT +

∑n
i=1A

2
vi

is
a positive definite polynomial on E, contradicting the fact that E does not admit such
a polynomial. �

Remark 6 The argument given in the first paragraph of the above proof will be used in
several places in the sequel. Note that the containment S ⊂ T is independent of the fact
that S is finite dimensional. This argument can also be applied to yield a non-constructive
argument of the fact that every C−valued polynomial P on an infinite dimensional com-
plex Banach space E such that P (0) = 0 is identically 0 on an infinite dimensional
subspace (cf [2], [12]).

It is also worth noting that the arguments used to show the complex version of these
results are purely algebraic, whereas continuity is needed in the real situation.

5



In light of Remark 3, the following result is not surprising.

Theorem 7 Let E be a real Banach space of type 2. Then either E admits a positive
definite 2-homogeneous polynomial or every P ∈ P (2E) has an non-separable subspace
on which it is identically zero.

Proof: Assume that E does not admit a positive definite 2−homogeneous polynomial
and let P ∈ P (2E). Let S ⊂ E be a maximal subspace such that P |S ≡ 0. If S is
separable, the argument in the first paragraph of Theorem 5 shows that the subspace
T ⊂ E can be written T = S

⊕
a Y, where Y is an algebraic complement of S in T and

where, without loss of generality, P |T is positive definite on Y. Then for every s ∈ S and
t ∈ T,

P (s+ t) = P (s) + 2P̌s(t) + P (t) = P (t) ≥ 0.

Since S is separable, we can find a sequence {φi}
∞
i=1 in E ′ so that

∑∞
i=1 φ

2
i is positive

definite on S, and hence P+
∑∞

i=1 φ
2
i is positive definite on T . Hence we have a continuous

linear injection i of T into some Hilbert space L2(I). Since E is type 2, Maurey’s
Extension Theorem ([3], Theorem 12.22) allows us to extend i to a (not necessarily
injective) linear map ĩ from E into L2(I). Finally, define a map j from E into L2(I)

⊕
`2
`2

by

j(x) =

(
ĩ(x),

∞∑

i=1

Avi
(x)

i2‖Avi
‖
ei

)
,

where ei is the ith basis vector in `2. Since j is a continuous injection, E admits a positive
definite polynomial, which is a contradiction. �

Remark 8 Although it is natural to conjecture that the conclusion of Theorem 7 above
holds for any Banach space E, the authors have been unable to prove this. However, we
can obtain strengthened results if we allow a different hypothesis on E :

Theorem 9 Let E be a real Banach space which does not admit a positive definite 4-
homogeneous polynomial. Then for every 2−homogeneous polynomial P on E, there is a
non-separable subspace of E on which P is identically zero.

In fact, we prove somewhat more in Theorem 10, below, which we will need later.

Theorem 10 Let E be a real Banach space which does not admit a positive definite
4-homogeneous polynomial, and let (ψk)

∞
k=1 be a sequence in E ′. Then for any countable

family (Pj)
∞
j=1 ⊂ P (2E), there is a non-separable subspace of

⋂∞
k=1 kerψk on which each

Pj is identically zero.
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Note that if E does not admit a positive definite 4−homogeneous polynomial, then
it cannot admit a positive definite 2−homogeneous one either. An example of an E
satisfying the hypotheses of Theorems 9 and 10 is E = `p(I), where I is an uncountable
index set and p > 4.

Proof of Theorem 10: The argument begins in a similar way to our earlier proofs.
As before, let S be a maximal element of S = {S : S is a subspace of

⋂∞
k=1 kerψk and

Pj|S ≡ 0, all j}. Suppose that S is separable, with countable dense set (vi)
∞
i=1. Let

T =
⋂∞

k=1 kerψk∩
⋂∞

i=1

⋂∞
j=1 ker(Aj)vi

. As before, S ⊂ T . We can write T as T = S
⊕

a Y
for some subspace Y of T . Since all the common zeros of Pj|T , j ∈ N, are contained in

S,
∑∞

j=1

P 2

j

j2‖Pj‖2
is positive definite on Y . As S is separable we can find (φi)

∞
i=1 so that

∑∞
j=1

P 2

j

j2‖Pj‖2
+
∑∞

i=1 φ
4
i is positive definite on T . Then

∞∑

j=1

P 2
j

j2‖Pj‖2
+

∞∑

i=1

φ4
i +

∞∑

i=1

∞∑

j=1

(Aj)
4
vi

i2j2‖(Aj)vi
‖4

+
∞∑

k=1

ψ4
k

k2‖ψk‖4

is a positive definite polynomial on E, contradicting the fact that E does not admit such
a polynomial. �

Corollary 11 Let E be a real Banach space which does not admit a positive definite 4-
homogeneous polynomial. Then every P ∈ P (3E) is identically zero on a non-separable
subspace of E.

Proof: Consider P ∈ P (3E) and let S be a maximal element of S = {S : S is a
subspace of E and P |S ≡ 0}. Suppose that (vi)

∞
i=1 is a countable dense subset of S. Let

Avi,vj
: E → R be the linear map which sends x in E to P̌ (vi, vj, x) and Qvi

: E → R be

the continuous 2-homogeneous polynomial which sends x in E to P̌ (vi, x
2). By Theorem

10,
∞⋂

i,j=1

kerAvi,vj
∩

∞⋂

i=1

kerQvi

contains a non-separable subspace which we denote by T . Suppose that y ∈ T is such
that P (y) = 0. Then for every x =

∑
i αivi ∈ span S and λ ∈ R we have

P (x+ λy) = P (x) + 3λAx,x(y) + 3λ2P̌ (x, y, y) + λ3P (y)

= P (x) + 3λ
∑

i,j

αiαjAvi,vj
(y) + 3λ2

∑

i

αiQvi
(y) + λ3P (y) = 0.

Hence, by continuity of P, P (x+ λy) = 0 for every x ∈ S. By maximality of S it follows
that all the zeros of P |T are contained in S. Since S is separable, we can write T as
T = (S ∩ T )

⊕
a Y for some non-separable subspace Y of T . Since all the zeros of P |T

are contained in S, P |Y is a 3-homogeneous polynomial on an infinite dimensional space
which has its only zero at the origin, an impossibility. �

The final theorem in this section is a natural extension of the two preceding results.
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Theorem 12 Let E be a real Banach space which does not admit a positive definite
homogeneous polynomial. Then, for every polynomial P on E such that P (0) = 0, there
is a non-separable subspace of E on which P is identically zero.

As in the case of Theorem 10, the proof of Theorem 12, which we omit, can be easily
adapted to show that any countable family of polynomials (not necessarily homogeneous),
having uniformly bounded degrees, on a real Banach space which does not admit a
positive definite homogeneous polynomial will have a non-separable subspace on which
they are all zero. An example to which Theorem 12 applies is E = c0(I), where I is an
uncountable set.

4 Special cases: C(K) spaces, and nuclear and (1, 2)-

summing polynomials

In our context, there are four possible properties which a real Banach space E might
have:
(1). There is no positive definite 2−homogeneous polynomial on E. In this case, every
2−homogeneous polynomial on E is zero on an infinite dimensional subspace. Examples
of this were given in Remark 3.
(2). E admits a positive definite, non (1,2)-summing, 2−homogeneous polynomial on
E, which corresponds to a non-2−summing injection of E into some Hilbert space. One
example of this situation is when E is a non-separable Hilbert space.
(3). E admits a positive definite (1,2)-summing, non-nuclear 2−homogeneous polynomial
on E. As we will show in Corollary 14, one instance of this occurs when E is a sufficiently
large L∞(µ).
(4). E admits a positive definite nuclear 2−homogeneous polynomial, in which case
Proposition 4 applies. Examples include all separable spaces and `∞.

In this section, we restrict to cases (3) and (4) above. Not surprisingly, perhaps, we
can prove much stronger results concerning the size of subspaces of zeros of polynomials.
We begin with the following lemma, which shows the connection between positive definite
(1,2)-summing polynomials and embeddings into Hilbert space and which should be
compared with Propositions 2 and 4.

Lemma 13 A real Banach space E admits a positive definite 2-homogeneous (1,2)-
summing polynomial if and only if there is a continuous 2-summing injection from E
into a Hilbert space.

Proof: Given a 2-homogeneous polynomial P on E we define a semi-norm ‖ . ‖H on E by
‖x‖H =

√
|P (x)|. We know that E admits a positive definite 2-homogeneous polynomial

P if and only if H, the completion of (E, ‖ . ‖H), is a Hilbert space. When this occurs,
j : E → H, j(x) = x, is a continuous injection. The map j is 2-summing if and only if
there is C > 0 such that for any finite sequence of vectors, (xi)

m
i=1, in E we have

m∑

i=1

‖j(xi)‖
2
H ≤ C sup

φ∈BE′

m∑

i=1

φ(xi)
2.
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This is equivalent to saying that there is C > 0 such that for any finite sequence of
vectors, (xi)

m
i=1, in E we have

m∑

i=1

P (xi) ≤ C sup
φ∈BE′

m∑

i=1

φ(xi)
2,

which occurs if and only if P is a (1,2)-summing polynomial. �

Corollary 14 Let E be an L∞,λ-space for some real λ ([3]). Then every positive definite
polynomial on E is (1,2)-summing.

Proof: By Theorem 3.7 of [3] every linear map from E into a Hilbert space is 2-summing.
�

Note, though, that there may well not exist any positive definite polynomials on an
L∞,λ space.

We next consider the question of the existence of positive definite 2−homogeneous
polynomials in case E is a C(K) space. We recall that a (Borel) measure µ on a compact
set K is said to be strictly positive if µ(B) > 0 for every non-empty open subset B ⊂ K.

Corollary 15 Let E = C(K) where K is a compact Hausdorff space. Then

(i) C(K) admits a positive definite 2-homogeneous polynomial if and only if K admits
a strictly positive measure.

(ii) C(K) admits a positive definite 2-homogeneous nuclear polynomial if and only if

there is a sequence of finite Borel measures (µn)∞n=1 on K such that

∫

K

f(x) dµn(x)

= 0 for all n implies f ≡ 0.

Proof: (i). By Proposition 2, C(K) admits a positive definite 2-homogeneous polyno-
mial if and only if there is a continuous injection j from C(K) to a Hilbert space. By
Theorem 3.5 of [3] any such injection must be 2-summing and hence by an application
of the Pietsch Factorization Theorem (see, e.g., Corollary 2.15 of [3]), the mapping j
factors through the canonical inclusion j2 of C(K) into L2(µ) for some finite regular
Borel measure µ on K. Since j is injective, j2 is injective. It is easily seen that j2 being
injective is equivalent to µ being a positive definite measure (see, e.g., [3], p. 42). The
converse is straightforward, from Proposition 2.

(ii). As we observed in Proposition 4, a Banach space E admits a positive definite
nuclear polynomial if and only if there is a sequence {φn}

∞
n=1 in E ′ with the property

that
⋂∞

n=1 ker φn = {0}. As the dual of a C(K) space is the set of all regular finite Borel
measures on K the result follows. �
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Lemma 13 also allows us to prove nuclear and (1, 2)−summing polynomial versions
of Theorems 5 and 7.

Theorem 16 Let E be a real Banach space.

(i) Either E admits a positive definite 2-homogeneous nuclear polynomial or every
P ∈ PN(2E) has a non-separable subspace on which it is identically zero.

(ii) Either E admits a positive definite 2-homogeneous (1,2)-summing polynomial or

every (1,2)-summing has an non-separable subspace on which it is identically zero.

Proof: (i) We reason as before, supposing that E does not admit a positive 2-homogen-
eous nuclear polynomial and that P ∈ PN(2E). Let S be a maximal subspace of E on
which P is identically 0, assume that S = {vi : i ∈ N}, let T = ∩∞i=1 kerAvi

, and write
T = S

⊕
a Y. Without loss of generality, we may assume that P |T is positive definite on

Y, so that P |T ≥ 0.
Since S is separable, we can find a sequence {φi}

∞
i=1 in E ′ so that

∑∞
i=1 φ

2
i is positive

definite on S and nuclear on E. Hence P +
∑∞

i=1 φ
2
i is positive definite and nuclear on

T . We therefore have a continuous linear nuclear injection i of T into `2. We can extend
i to a nuclear linear map ĩ from E into `2 (see, e.g., [10]).

Define a map j : E → `2
⊕

2 `2 by

j(x) =

(
ĩ(x),

∞∑

i=1

Avi
(x)

i2‖Avi
‖
ei

)
.

Since j is a nuclear injection, E admits a positive definite nuclear polynomial, which is
a contradiction.

(ii) The argument given above works in the (1,2)-summing case, the only significant
change being an appeal to the Π2 Extension Theorem (Theorem 4.15, [3]) to prove the
existence of a 2−summing extension mapping ĩ : E → L2(I)

⊕
2 `2, for a sufficiently

large index set I. �

Even if we know that an L∞,λ-space admits a positive definite (1,2)-summing polyno-
mial, it is nevertheless possible to conclude something about the zeros of those 2−homoge-
neous polynomials which are not (1,2)-summing.

Theorem 17 Let E be a real L∞,λ-space. Then every P ∈ P (2E) which is not (1,2)-
summing has an infinite dimensional subspace on which it is identically zero.

Proof: Suppose P ∈ P (2E) is not (1,2)-summing. Suppose that a maximal subspace
S on which P vanishes is only finite dimensional, with basis {v1, . . . , vn}. Let T =
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⋂n
i=1 kerAvi

, and write T = S
⊕

Y, for some complemented subspace Y ⊂ T. Without
loss of generality, P |T is positive definite on Y and, since S is finite dimensional, we can
find φ1, . . . , φn so that P +

∑n
i=1 φ

2
i is positive definite on T . Let πT be the (continuous)

projection of E onto T . Then (P +
∑n

i=1 φ
2
i ) ◦ πT +

∑n
i=1A

2
vi

is positive definite on
E. But E is an L∞,λ-space and so by Corollary 14, (P +

∑n
i=1 φ

2
i ) ◦ πT +

∑n
i=1A

2
vi

is
(1,2)-summing implying that P |T and hence P itself is (1,2)-summing, a contradiction.

�
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