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Abstract. We study the algebra of uniformly continuous holomorphic symmetric functions
on the ball of `p, investigating in particular the spectrum of such algebras. To do so, we
examine the algebra of symmetric polynomials on `p− spaces as well as finitely generated
symmetric algebras of holomorphic functions. Such symmetric polynomials determine the
points in `p up to a permutation.

In recent years, algebras of holomorphic functions on the unit ball of standard complex
Banach spaces have been considered by a number of authors and the spectrum of such alge-
bras was studied in [1],[2], [7]. For example, properties of Au(BX), the algebra of uniformly
continuous holomorphic functions on the ball of a complex Banach space X have been stud-
ied by Gamelin, et al. Unfortunately, this analogue of the classical disc algebra A(D) has a
very complicated, not well understood, spectrum. If X∗ has the approximation property, the
spectrum of Au(BX) coincides with the closed unit ball of the bidual if, and only if, X∗ gen-
erates a dense subalgebra in Au(BX) [5]. In a very real sense, however, the problem is that
Au(B`p) is usually too large, admitting far too many functions. For instance, `∞ ⊂ Au(B`2)
isometrically via the mapping a = (aj) ; Pa, where Pa(x) ≡

∑
∞

j=1 ajx
2
j .

This paper addresses this problem, by severely restricting the functions which we admit.
Specifically, we limit our attention here to uniformly continuous symmetric holomorphic
functions on B`p. By a symmetric function on `p we mean a function which is invariant
under any reordering of the sequence in `p. Symmetric polynomials in finite dimensional
spaces can be studied in [9] or [12]; in the infinite dimensional Hilbert space they already
appear in [11]. Throughout this note Ps(`p) is the space of symmetric polynomials on a
complex space `p, 1 ≤ p <∞. Such polynomials determine, as we prove, the points in `p up
to a permutation. We will use the notation Aus(B`p) for the uniform algebra of symmetric
holomorphic functions which are uniformly continuous on the open unit ball B`p of `p and
we also study some particular finitely generated subalgebras. The purpose of this paper is
to describe such algebras and their spectra, which we identify with certain subsets of `∞
and C

m, respectively, and as a result of this we show that Aus(B`p) is algebraically and
topologically isomorphic to a uniform Banach algebra generated by coordinate projections
in `∞. This is done in Section 3, following algebraic preliminaries and a brief examination of
the finite dimensional situation in Sections 1 and 2.
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We denote by τpw the topology of pointwise convergence in `∞. We follow the usual con-
ventions, denoting by Hb(X) the Fréchet algebra of C−valued holomorphic functions on a
complex Banach space X which are bounded on bounded subsets of X, endowed with the
topology of uniform convergence on bounded sets. The subalgebra of symmetric functions
will be denoted Hbs(X). For any Banach or Fréchet algebra A, we put M(A) for its spec-
trum, that is the set of all continuous scalar valued homomorphisms. For background on
analytic functions on infinite dimensional Banach spaces we refer the reader to [3].

1. The algebra of symmetric polynomials

Let X be a Banach space and let P(X) be the algebra of all continuous polynomials
defined on X. Let P0(X) be a subalgebra of P(X). A sequence (Gi)i of polynomials is called
an algebraic basis of P0(X) if for every P ∈ P0(X) there is q ∈ P(Cn) for some n such
that P (x) = q(G1(x), . . . , Gn(x)), in other words, if G is the mapping x ∈ X ; G(x) :=
(G1(x), . . . , Gn(x)) ∈ C

n, P = q ◦G.
Let < p > be smallest integer number that is greater than or equal to p. In [8] is proved

that the polynomials Fk(
∑
aiei) =

∑
ak

i for k =< p >, < p > +1, . . . form an algebraic
basis in Ps(`p). So there are no symmetric polynomials of degree less than < p > in Ps(`p)
and if < p1 >=< p2 > then Ps(`p1) = Ps(`p2). Thus, without loss of generality we can
consider Ps(`p) only for integer p. Throughout we will assume that p is an integer number,
1 ≤ p <∞.

It is well known ([9] XI §52) that for n < ∞ any polynomial in Ps(C
n) is uniquely

representable as a polynomial in the elementary symmetric polynomials (Ri)
n
i=1, Ri(x) =∑

k1<···<ki
xk1 . . . xki

Lemma 1.1 Let {G1, . . . , Gn} be an algebraic basis of Ps(C
n). For any ξ = (ξ1, . . . , ξn) ∈ C

n,
there is x = (x1, . . . , xn) ∈ C

n such that Gi(x) = ξi, i = 1, . . . , n. If for some y = (y1, . . . , yn),
Gi(y) = ξi, i = 1, . . . , n , then x = y up to a permutation.

Proof. First we suppose that Gi = Ri. Then according to the Vieta formulae [9], the solutions
of the equation

xn − ξ1x
n−1 + . . . (−1)nξn = 0

satisfy the conditions Ri(x) = ξi and so x = (x1, . . . , xn) as required. Let now Gi be an
arbitrary algebraic basis of Ps(C

n). Then Ri(x) = vi(G1(x), . . . , Gn(x)) for some polynomials
vi on C

n. Setting v as the polynomial mapping x ∈ C
n

; v(x) := (v1(x), . . . , vn(x)) ∈ C
n,

we have R = v ◦G.
As the elementary symmetric polynomials also form a basis, there is a polynomial mapping

w : C
n → C

n such that G = w ◦ R, hence R = (v ◦ w) ◦ R, so v ◦ w = id. Then v and w
are inverse each other since w ◦ v coincides with the identity on the open set Im(w). In
particular, v is one to one.

Now, the solutions x1, . . . , xn of the equation

xn − v1(ξ1, . . . , ξn)x
n−1 + · · ·+ (−1)nvn(ξ1, . . . , ξn) = 0

satisfy the conditions Ri(x) = vi(ξ), i = 1, . . . , n. That is, v(ξ) = R(x) = v(G(x)), hence
ξ = G(x). 2
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Corollary 1.2. Given (ξ1, . . . , ξn) ∈ C
n there is x ∈ `n+p−1

p such that

Fp(x) = ξ1, . . . , Fp+n−1(x) = ξn.

This results shows that any P ∈ Ps(`p) has a “unique” representation in terms of {Fk},
in the sense that if q ∈ P(Cn) for some n is such that P (x) = q(Fp(x), . . . , Fn+p(x)), and if
q′ ∈ P(Cm) for some m is such that P (x) = q′(Fp(x), . . . , Fm+p(x)), with, say n ≤ m, then
q′(ξ1, · · · , ξm) = q(ξ1, · · · , ξn).

For x, y ∈ `p, we will write x ∼ y, whenever there is a permutation T of the basis in `p
such that x = T (y). For any point x ∈ `p, δx will denote the linear multiplicative functional
on Ps(`p) ”evaluation” at x. It is clear that if x ∼ y then δx = δy.

Theorem 1.3. Let x, y ∈ `p and Fi(x) = Fi(y) for every i > p. Then x ∼ y.

Proof. Call x = (x1, x2, . . . ), y = (y1, y2, . . . ). Without loss of generality, we can assume that
1 = |x1| = · · · = |xk| > |xk+1| ≥ . . . and 1 ≥ |y1| ≥ |y2| ≥ . . .

If |y1| < 1 then for many big j, |Fj(x)| will be close to k while for all big j, Fj(y) will be
close to 0. Thus |y1| = 1. Suppose that 1 = |y1| = · · · = |ym| > |ym+1| ≥ . . . Claim: m = k.
Suppose for a contradiction, that m < k. Then, for many big j, |Fj(x)| is close to k, while
for all big j, |Fj(y)| < m+ 1/2 < k. This contradiction shows that m < k is false; similarly,
k < m is false, and so m = k.

Let x̃ = (x1, . . . , xk) and ỹ = (y1, . . . , yk). Also, for z = (zi) ∈ `p, let zj denote the point

(zj
1, z

j
2, . . . ). We claim that x̃ ∼ ỹ, where we associate x̃ = (x1, ..., xk) ∈ C

k, for example,
with (x1, ..., xk, 0, 0, ...). Consider the function f : (S1)2k → C given by

f(ũ, ṽ) = f(u1, . . . , uk, v1, . . . , vk) = [u1 + · · ·+ uk]− [v1 + · · ·+ vk].

Since Fj(x− x̃) and Fj(y− ỹ) → 0 as j →∞ and since we are assuming that Fj(x) = Fj(y)
for all j ≥ p, it follows that f(x̃j, ỹj) → 0 as j → ∞. Now, f is obviously a continuous
function, and so it follows that for any point (u, v) ∈ (S1)2k which is a limit point of
{(x̃j, ỹj) : j ≥ p}, f(u, v) = 0.

Next, the point (1, . . . , 1) ∈ (S1)2k is a limit point of {(x̃j, ỹj) : j ≥ p}. If the net
(x̃jt, ỹjt)t → (1, . . . , 1), then (x̃jt+1, ỹjt+1)t → (x̃, ỹ). Consequently, f(x̃, ỹ) = 0, or in other
words F1(x̃) = F1(ỹ). Similarly, Fj(x̃) = Fj(ỹ) for all j. From Lemma 1.1 it follows that
x̃ ∼ ỹ. So Fj(x− x̃) = Fj(y − ỹ) for every j ≥ p i.e.

Fj(0, . . . , 0, xk+1, xk+2, . . . ) = Fj(0, . . . , 0, yk+1, yk+2, . . . )

for every j ≥ p. If |xk+1| = 0 and |yk+1| = 0 then xi = 0 and yi = 0 for i > k. Let
|xk+1| = a 6= 0 then we can repeat the above argument for vectors x′ = (xk+1/a, xk+2/a, . . . )
and y′ = (yk+1/a, yk+2/a, . . . ) and by induction we will see that x ∼ y. 2

Corollary 1.4. Let x, y ∈ `p. If for some integer m ≥ p, Fi(x) = Fi(y) for each i ≥ m, then
x ∼ y.

Proof. Since m ≥ p then x, y ∈ `m and from Theorem 1.3 it follows that x ∼ y in `m. So
x ∼ y in `p. 2
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Proposition 1.5. (Nullstellensatz) Let P1, . . . , Pm ∈ Ps(`p) be such that kerP1 ∩ · · · ∩
kerPm = ∅. Then there are Q1, . . . , Qm ∈ Ps(`p) such that

m∑

i=1

PiQi ≡ 1.

Proof. Let n = maxi(degPi). We may assume that Pi(x) = gi(Fp(x), . . . , Fn(x)) for some
gi ∈ P(Cn−p+1). Let us suppose that at some point ξ ∈ C

n−p+1, ξ = (ξ1, . . . , ξn−p+1), gi(ξ) =
0. Then by Corollary 1.2 there is x0 ∈ `p such that Fi(x0) = ξi. So the common set of zeros
of all gi is empty. Thus by the Hilbert Nullstellensatz there are polynomials q1, . . . , qm such
that

∑
i giqi ≡ 1. Put Qi(x) = qi(Fp(x), . . . , Fn(x)). 2

2. Finitely generated symmetric algebras

Let us denote by Pn
s (`p), n ≥ p the subalgebra of Ps(`p) generated by {Fp, . . . , Fn}. By

appealing to Corollary 1.2, one easily verifies that Pn
s (`p) ∩ P(k`p), is a sup-norm closed

subspace of P(k`p) for every k ∈ N.
Let An

us(B`p) and Hn
bs(`p) be the closed subalgebras of Aus(B`p) and Hbs(`p) generated by

{Fp, . . . , Fn}, that is the closure of Pn
s (`p) in each of the corresponding algebras. Note that

for any f ∈ Hn
bs(`p), with f having Taylor series f =

∑
Pk about 0, we have Pk ∈ P

n
s (`p).

Indeed, if f ∈ Pn
s (`p), it is immediate that Pk ∈ P

n
s (`p)∩P(k`p) for all k. Then the same holds

for any f ∈ Hn
bs(`p) by recalling the continuity of the map which assigns to a holomorphic

function its kth Taylor polynomial.
By [6] III. 1.4, we may identify the spectrum of An

us(B`p) with the joint spectrum of
{Fp, . . . , Fn} , σ(Fp, . . . , Fn). It is well known that M(H(Cn)) = C

n in the sense that all
continuous homomorphisms are evaluations at some point in C

n.
Let us denote by Fn

p the mapping from `p to C
n−p+1 given by Fn

p : x 7→ (Fp(x), . . . , Fn(x)).

Then Dn
p := Fn

p (B`p) is a subset of the closed unit ball of C
n−p+1 with the max-norm.

Let K be a bounded set in C
n. Recall that a point x belongs to the polynomial convex hull

of K, [K], if for every polynomial f , |f(x)| ≤ supz∈K |f(z)|. A set is polynomially convex if
it coincides with its polynomial convex hull. Recall that the sup norm on K of a polynomial
coincides with the sup norm on [K]. It is well known (see e.g. [6]) that the spectrum of the
uniform Banach algebra P (K) generated by polynomials on the compact set K coincides
with the polynomially convex hull of this set. Thus, [Dn

p ] denotes the polynomial convex
hull of Dn

p .

Theorem 2.1.
(i) The composition operator CFn

p
: H(Cn+1−p) → Hn

bs(`p) given by CFn
p
(g) = g ◦ Fn

p is a

topological isomorphism.

(i′) The composition operator CFn
p

: P ([Dn
p ]) → An

us(B`p) given by CFn
p
(g) = g ◦ Fn

p is a

topological isomorphism.

(ii) M(Hn
bs(`p)) = C

n+1−p.
(ii′) M(An

us(B`p)) = [Dn
p ].

Proof. Clearly the composition operators are well defined and one to one, so it remains to
prove that they are onto.
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In (i), let f ∈ Hn
bs(`p) and f =

∑
Pk be the Taylor series expansion of f at 0. Since

Pk ∈ Pn
s (`p), there is a homogeneous polynomial gk ∈ P(Cn+1−p) such that Pk(x) =

gk(Fp(x), . . . , Fn(x)). Put g(ξ1, . . . , ξn−p+1) =
∑

∞

k=1 gk(ξ1, . . . , ξn−p+1); since g is a conver-
gent power series in each variable, it is separately holomorphic, hence holomorphic. Note
that f = g ◦ Fn

p .
In (i′), observe that for any g ∈ P ([Dn

p ]) , ||CFn
p
(g)|| = supx∈B`p

|g ◦ Fn
p (x)| = ||g||Dn

p
=

||g||[Dn
p ]. Thus CFn

p
is an isometry, hence its range is a closed subspace, which moreover

contains Pn
s (`p), therefore CFn

p
is onto An

us(B`p).

(ii) and (ii′) follow from (i), (i′). 2

To conclude, we record the following elementary result which will be needed in Section 3.

Lemma 2.2. If (ξ0
1 , . . . , ξ

0
m) ∈ [Dm

p ] and n < m then (ξ0
1 , . . . , ξ

0
n) ∈ [Dn

p ].

Proof. If (ξ0
1, . . . , ξ

0
n) /∈ [Dn

p ], there is a polynomial of n variables such that

|q(ξ0
1 , . . . , ξ

0
n)| > sup

(ξ1 ,...,ξn)∈Dn
p

|q(ξ1, . . . , ξn)|.

Consider the polynomial q̃ in m variables given by q̃(ξ1, . . . , ξm) = q(ξ1, . . . , ξn). Then,

sup
(ξ1,...,ξm)∈Dm

p

|q̃(ξ1, . . . , ξm)| = sup
x∈B`p

|q̃(Fp(x), . . . , Fp+m−1(x))| =

sup
x∈B`p

|q(Fp(x), . . . , Fp+n−1(x))| < |q(ξ0
1 , . . . , ξ

0
n)| = |q̃(ξ0

1 , . . . , ξ
0
m)|.

But this means (ξ0
1 , . . . , ξ

0
m) /∈ [Dm

p ], a contradiction. 2

3. Spectrum of Aus(B`p)

In the study of the spectrum of Aus(B`p) the most decisive feature is that the polynomials
{F n

p }
∞
n=p generate a dense subalgebra. Actually for every f ∈ Aus(B`p) its Taylor polynomials

are easily seen to be symmetric, using the fact (see, e.g., [3]) each such polynomial can be
calculated by integrating f.

Note that there are symmetric holomorphic functions on B`p which are not in Aus(B`p).
One such example is f =

∑
∞

k=p Fk. To see that f is holomorphic on the open ball B`p, let
x ∈ B`p be arbitrary and choose ρ < 1 such that ||x|| < ρ. Then,

∑
∞

k=p |Fk(x)| converges

since the sequence (Fk(
x
ρ
)) = (Fk(x)

ρk ) is null. On the other hand, f /∈ Aus(B`p) since f(te1) =
tp

1−tp
→∞ as t ↑ 1.

First we will show that the spectrum of the uniform algebra of symmetric holomorphic
functions on B`p does not coincide with equivalence classes of point evaluation functionals.
The example also shows that Dn

p is not polynomially convex.

Example 3.1. For every n put vn = 1
n1/p (e1 + ... + en) ∈ B`p. Then δvn(Fp) = 1 and

δvn(Fj) → 0 as n → ∞ for every j > p. By compactness of M(Aus(B`p)) there is an
accumulation point φ of the sequence {δvn}. Then φ(Fp) = 1 and φ(Fj) = 0 for all j > p.
From Corollary 1.4 it follows that there is no point z in `p such that δz = φ. Another, more
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geometric, way of looking at this example is to fix k ∈ N and consider Dp+k
p ⊂ C

k+1. It

is straightforward that (1, 0, ..., 0) /∈ Dp+k
p , although this point is a limit of the sequence

(Fp+k
p (vn)) = (1, 1

n1/p , ...,
1

n(k−1)/p ). Intuitively, the accumulation point φ corresponds to the

point (1, 0, ...0, ...) ∈ B`∞.

Let us denote by Σp := {(ai)
∞
i=p ∈ `∞ : (ai)

n
i=p ∈ [Dn

p ] for every n}. As a consequence of
Lemma 2.2, Σp is the limit of the inverse sequence ([4] 2.5) {[Dn

p ], πm
n ,N} where πm

n : C
m →

C
n is the projection onto the first n coordinates. When Σp is endowed with the product

topology, that is the topology of coordinatewise convergence, it is a non- empty compact
Hausdorff space by ([4] 3.2.13). Σp is a weak-star compact subset of the closed unit ball `∞
since the weak star topology and the pointwise convergence topology coincide on the closed
unit ball of `∞.

Now we describe the spectrum of Aus(B`p). It is immediate that it is a connected set;
it suffices to recall Shilov’s idempotent theorem ([6], III.6.5) and notice that there are no
idempotent elements in Aus(B`p).

Theorem 3.2. Σp is homeomorphic to the spectrum of Aus(B`p).

Proof. (cf ([10], 8.3)) First of all, observe that any Ψ ∈ M(Aus(B`p)) is completely
determined by the sequence of values {Ψ(Fn)} since Ψ is determined by its behaviour on
Ps(`p), the algebra generated by {Fn}, which in turn is dense in Aus(B`p).

We construct an embedding

j : (ai)
∞

i=p ∈ Σp ; Φ ∈ M(Aus(B`p)),

and prove that it is a homeomorphism. Given (ai)
∞
i=p ∈ Σp a homomorphism j[(ai)

∞
i=p] := Φ

on Aus(B`p) is defined in the following way: Every polynomial P ∈ Ps(`p) may be written
as g ◦Fn

p for some n ∈ N and some polynomial g in n− p+ 1 variables. Thus we may define
Φ(P ) := g(ap, . . . , an). Certainly Φ(P ) is well defined since if P = h ◦ Fm

p for some other
polynomial h, and, say, m > n, then by Corollary 1.2, h = g̃, where g̃ has the same meaning
as in Lemma 2.2. Hence g(ap, . . . , an) = g̃(ap, . . . , an, . . . , am) = h(ap, . . . , an, . . . , am). It is
easy now to see that Φ is linear and multiplicative on the subalgebra of symmetric polyno-
mials. Also |Φ(P )| = |g(ap, . . . , an)| ≤ ||g||[Dn

p ] = ||g||Dn
p
≤ ||P ||. Therefore Φ is uniformly

continuous on Ps(`p), and hence it has a continuous linear and multiplicative extension to
the closure of Ps(`p) that is, to Aus(B`p). We still denote this extension by Φ.

Obviously, j is one to one. Moreover j is also an onto mapping: Indeed, for any Ψ ∈
M(Aus(B`p)), the sequence {Ψ(Fn)} ∈ Σp because {Ψ(Fn)m

n=p} is an element of the joint
spectrum of M(Am

us(B`p)) (obtained just by taking the restriction of Ψ to An
us(B`p)) which

we know to be [Dm
p ]. Of course, j[{Ψ(Fn)}] = Ψ since they coincide on each Fn.

Next, this embedding is continuous. To see this, observe first that the spectrumM(Aus(B`p))
is an equicontinuous subset of the dual space (Aus(B`p))

∗. Therefore, the weak-star topology
coincides on it with the topology of pointwise convergence on the elements of the dense set
of all symmetric polynomials, and hence on the generating system {Fn}

∞
n=p.

Finally j is a homeomorphism as the continuous bijection between two compact Hausdorff
spaces. 2
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We can view Σp as “the joint spectrum” of the sequence {Fn}
∞
n=p, since Φ(Fn) = an.

We denote by Fp the mapping x ∈ B`p ; (F n
p (x)) ∈ C

N. Note that Fp(B`p) ⊂ Σp. So we

may remark that the set Dp = Fp(B`p) ⊂ Σp corresponds to the set of point evaluation multi-
plicative functionals on Aus(B`p). Actually, we have that Dp ⊂ Bc0∪{(e

piθ, · · · , eniθ, · · · )| θ ∈
[0, 2π]}. To see this, we first let x ∈ B`p be such that |xm| < 1 for all m ∈ N. Then, as we

observed in the proof of Theorem 1.3, the sequence (Fn(x))∞n=p converges to 0. In case x ∈ B`p

is such that |xm′ | = 1 for some m′ ∈ N, then m′ is unique, xm′ = eiθ and further, xm = 0 if
m 6= m′. Thus Fn(x) = eniθ.

It is clear that Dn
p ⊂ [Dn

p ] but we do not know whether this embedding is proper. This is

related to a corona type theorem for Aus(B`p) since Dp is dense in Σp if Dn
p = [Dn

p ] for all
n ∈ N.

Note that if q > p then Dp ⊂ Dq and the inclusion is strict. Indeed, let x ∈ B`q so that
x 6∈ `p. If Fq(y) = Fp(x) for some y ∈ `q then x ∼ y in `q and so x ∼ y in `p, which is a
contradiction.

Proposition 3.3. Σp ⊂ `∞ is polynomially convex and coincides with the polynomial convex

hull of Dp ⊂ (`∞, τpw).

Proof. Let (ai)
∞
i=p ∈ `∞ be such that |P ((ai))| ≤ ||P ||Σp for all polynomials P ∈ P(`∞). For

any n ≥ p and any g ∈ P(Cn+1−p), the mapping Q given by (xi)
∞
i=p ∈ `∞ ; g(xp, . . . , xn) is

a polynomial on `∞. Hence

|g(ap, . . . , an)| = |Q((ai))| ≤ ||Q||Σp ≤ ||g||[Dn
p ].

Therefore (ap, . . . , an) ∈ [Dn
p ], as we want and Σp is polynomially convex. So to finish,

it is enough to check that Σp is contained in the polynomial convex hull of Dp. To do
this, let (ai)

∞
i=p ∈ Σp and P ∈ P((`∞, τpw)). As P is pointwise continuous, it depends on

a finite number of variables, say xp, . . . , xn. Thus the mapping q given by (xp, . . . , xn) ;

P (xp, . . . , xn, 0, . . . , 0, . . . ) is a polynomial on C
n+1−p. Since (ap, . . . , an) ∈ [Dn

p ],

|P ((ai))| = |P (ap, . . . , an, 0, . . . , 0, . . . )| = |q(ap, . . . , an)|

≤ ||q||[Dn
p ] = ||q||Dn

p
≤ ||P ||Dp,

it follows that (ai)
∞
i=p belongs to the polynomial convex hull of Dp. 2

Theorem 3.4. There is an algebraic and topological isomorphism between Aus(B`p) and the

uniform Banach algebra on Σp generated by the w∗(`∞, `1) continuous coordinate functionals

{πk}
∞
k=p.

Proof. For every f ∈ Aus(B`p) and Φ ∈ M(Aus(B`p)) denote by f̂(Φ) = Φ(f) the standard
Gelfand transform which is known to be an algebraic isometry into C(Σp). Recall that the
range of the Gelfand transform is a closed subalgebra which, as we are going to see, will
coincide with Ap, the uniform Banach subalgebra of C(Σp) generated by the coordinate
functionals {πk}

∞
k=p.
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Since F̂k(ξ) = ξk for ξ = (ξi)i ∈ Σp, it follows that the Gelfand transform of Fk is the
kth coordinate functional on `∞. As Aus(B`p) is the closure of the algebra generated by

{Fk : k ≥ p}, it follows that f̂ ∈ Ap for every f ∈ Aus(B`p). Therefore Ap is precisely the
range of the Gelfand transform. 2

Proposition 3.5. The mapping S : f ∈ A(D) → F ∈ Aus(B`p) defined by F ((xi)) =∑
∞

i=1 x
p
i f(xi) is an isometry onto the closed subspace F of Aus(B`p) generated by {Fk+p}

∞
k=0.

Proof. Let f(z) =
∑

∞

k=0 ckz
k be the Taylor series expansion. For each (xi) ∈ B`p, put

F ((xi)) :=
∞∑

k=0

ckFk+p((xi)) =
∞∑

k=0

∞∑

i=1

ckx
p+k
i .

Since |Fk+p((xi))| ≤ ||(xi)||
p+k and the series

∑
∞

k=0 ckt
k is absolutely convergent in the open

unit disc,
∞∑

k=0

∞∑

i=1

|ckx
p+k
i | =

∞∑

k=0

|ck|
∞∑

i=1

|xp+k
i | =

∞∑

k=0

|ck|Fk+p((|xi|)) ≤
∞∑

k=0

|ck|(||(xi)||
p+k) = ||(xi)||

p
∞∑

k=0

|ck|(||(xi)||
k) <∞.

So F ((xi)) is well defined and F ((xi)) =
∑

∞

i=1

∑
∞

k=0 ckx
p+k
i =

∑
∞

i=1 x
p
i f(xi).

Also |F ((xi))| = |
∑

∞

i=1 x
p
i f(xi)| ≤

∑
∞

i=1 |x
p
i ||f(xi)| ≤ ||f ||D||(xi)||

p, and hence ||F ||B`p
≤

||f ||D. On the other hand, if a ∈ D and x0 = (a, 0, . . . , 0, . . . ), we have x0 ∈ B`p and
|F (x0)| = |a|p|f(a)|. By the maximum principle, it follows that ||F ||B`p

≥ ||f ||D. Conse-

quently, ||F ||B`p
= ||f ||D.

Now we check that F ∈ Aus(B`p) and then that actually, F ∈ F . To do this, let sm(t) =∑m
k=0 ckt

k be the partial sums of the Taylor series of f and let ψn = 1
n
(s0 + s1 + · · ·+ sn) be

the Cesáro means. Put Sm((xi)) =
∑m

k=0 ckFk+p((xi)) =
∑

∞

i=1 x
p
i sm(xi). Then

Ψn((xi)) =
1

n
(S0((xi)) + S1((xi)) + · · ·+ Sn((xi))) =

1

n

∞∑

i=1

xp
i (s0(xi) + s1(xi) + · · ·+ sn(xi)) =

∞∑

i=1

xp
iψn(xi)

are the Cesáro means partial sums of
∑

k=0 ckFk+p.
Since

|Ψn((xi))− F ((xi))| = |
∞∑

i=1

xp
i (ψn(xi)− f(xi)| ≤ ||ψn − f || · ||(xi)||,

the uniform convergence of ψn to f on D implies the uniform convergence of Ψn to F on
B`p. So F ∈ Aus(B`p) and moreover F ∈ F since every Ψn is obviously in F .

The mapping S being an isometry, its range is a closed subspace of Aus(B`p). Therefore,
its range is onto F since Fk+p is the image of zk. 2

Proposition 3.6. Σp 6= B̄`∞ for every positive integer p.

Proof. We show that no point of the form (eiθ,±1, 0, . . . , 0, . . . ) is in Σp. This will follow
from Proposition 3.5 applied to every linear fractional transformation f(z) = z−a

1−āz
, |a| < 1,
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whose Taylor series f(z) = −a+
∑

∞

n=1 ā
n−1(1−|a|2)zn has radius of convergence bigger than

1. Its image F by the mapping S in 3.5 is F = −aFp +
∑

∞

n=1 ā
n−1(1− |a|2)Fn+p, Moreover

the convergence of this series is uniform on B`p , and therefore the Gelfand transform of

F is F̂ = −aπp +
∑

∞

n=1 ā
n−1(1 − |a|2)πn+p. Pick θ such that −aeiθ = |a| and assume that

the point (eiθ, 1, 0, . . . , 0, . . . ) is in Σp. Then |F̂ (eiθ, 1, 0, . . . , 0, . . . )| ≤ ||F || = ||f || = 1.

However, |F̂ (eiθ, 1, 0, . . . , 0, . . . )| = |(−aπp +
∑

∞

n=1 ā
n−1(1−|a|2)πn+p)(e

iθ, 1, 0, . . . , 0, . . . ))| =
| − aeiθ + 1− |a|2| = |a|+ 1− |a|2 > 1, which is a contradiction. 2

We remark that arguments similar to those in Theorem 1.3 enable us to show that no
point of the form (1,−1,−1, z4, z5, ...) ∈ B`∞ can be in Σp.

Our final result describes the class of functionals on `∞ which belong to the range of of
Aus(B`p) under the Gelfand transform, thereby completing a circle of connections between
Aus(B`p), A(D), C(Σp), and certain functionals on `∞. Recall that such Gelfand transforms
are weak-star continuous on Σp.

Proposition 3.7. Let φ be a linear functional on `∞ weak-star continuous on Σp. Then φ
is the Gelfand transform of some F ∈ Aus(B`p) and, furthermore, there is f ∈ A(D) with

||φ||Σp = ||f ||D and such that

φ(Fp(x)) =
∞∑

i=1

ap
i f(ai) x = (ai) ∈ B`p .

Proof. Every (ai)
∞
i=p ∈ Σp is the w(`∞, `1) convergent series Σ∞

i=paiei. Therefore, φ((ai)) =

Σ∞
i=paiφ(ei) and, setting ci = φ(ei), we have that the series Σ∞

i=pciπi is pointwise convergent
in Σp to φ. Moreover, the partial sums of this series are uniformly bounded on Σp since

|Σl
j=pcjπj((ai))| = |Σl

j=pcjaj| = |Σl
j=pφ(ej)aj|

= |φ(ap, · · · , al, 0, · · · , 0, · · · )| ≤ ||φ||`∞.

Thus φ is the weak limit in C(Σp) of the series Σ∞
i=pciπi. Since each of the terms in the series

belongs to the range of the Gelfand transform, it follows that there is F ∈ Aus(B`p) such

that F̂ = φ and also that the series F =
∑

∞

i=p ciFi converges weakly in Aus(B`p).
Note that ||φ||Σp = ||F ||B`p

, and also that F belongs to the weakly closed subspace F
generated by {Fk+p}

∞
k=0. Thus by Proposition 3.5 there is f ∈ A(D) such that F (x) =

F (
∑

∞

i=1 xiei) =
∑

∞

i=1 x
p
i f(xi). Therefore, φ(Fp(x)) = F̂ (Fp(x)) = F (x) as we wanted. 2.
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