
SETS OF WEAK SEQUENTIAL CONTINUITY FOR POLYNOMIALS

R. ARON AND V. DIMANT

Abstract. Let P : E → K be an N−homogeneous polynomial, where E is a Banach space

over K = R or C . We study properties of the set CP = {x ∈ E : P is weakly sequentially

continuous at x}.

Introduction

Our interest in set of points of weak sequential continuity of a polynomial arises from

the following simple observations. If P is any 2−homogeneous scalar valued polynomial

on E which is weakly sequentially continuous at 0, then P is weakly sequentially contin-

uous at every point of E. However, the analogous result for 3−homogeneous polynomials

is false. (We shall recall the simple details for these observations, as well as the necessary

background material, below.) Given an N−homogeneous polynomial P : E → K , we

let CP = {x ∈ E : P is weakly sequentially continuous at x}. Our aim in this paper

is to study CP . In Section 1, we examine general properties of this set, obtaining for

example a formula for CP ·Q. This formula will enable us to obtain information about

non-reducibility of polynomials, and our techniques will also yield information about,

for example, 3 and 4−homogeneous polynomials on `2. Later in this section, we raise

and given partial answers to the following questions:

(a). Given P ∈ P(NE), does there exist Q ∈ P(N+1E) such that CP = CQ?

(b). Given P and Q ∈ P(NE), does there exist a polynomial R such that CR = CP ∩CQ,

or such that CR = CP ∪ CQ? In Section 2, we focus our attention on properties of CP

when the underlying space E is separable, or has an unconditional finite dimensional

decomposition.

Our methods shed light on the structure of certain spaces of polynomials and, at

several places in the text we have inserted examples to illustrate this. Our examples will

be restricted to `p−spaces; note that for spaces with the Dunford Pettis property, every

polynomial is weakly sequentially continuous, and so there are no examples of interest

for these spaces. The same occurs with T ′ (the dual of Tsirelson’s original space), and

in fact there are Banach spaces E without the Dunford-Pettis property such that both

P(nE) = Pwsc(
nE) and P(nE ′) = Pwsc(

nE ′) for every n ∈ N ([C-G-G], Theorem 5.4).
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As usual, P(NE) denotes the continuous N−homogeneous scalar valued polynomials

P on E, that is those functions P to which there is a necessarily unique continuous

symmetric N−linear mapping A : E × ... × E → K such that P (x) = A(x, ..., x)

for all x ∈ E. We recall that given P and the associated A as above, the notation

A(xj, yN−j) means A(

j
︷ ︸︸ ︷
x, ..., x,

N−j
︷ ︸︸ ︷
y, ..., y). We refer to the recent book by S. Dineen [Di] for

background material.

We will be interested in the subspace Pwsc(
NE) ⊂ P(NE) consisting of polynomials

P which are weakly sequentially continuous at every x ∈ E. We will also make use of

the space Pwsc0(
NE) of those polynomials which are weakly sequentially continuous at

0 ∈ E. A related paper by C. Boyd and R. Ryan is worth mentioning. In [B-R], the

authors study those polynomials P which are weakly continuous on bounded sets at the

origin.

As remarked above, if P : E → K is any 2−homogeneous polynomial which is weakly

sequentially continuous at 0 and if (xn) → x0 weakly, then P (xn)− P (x0) = A(xn, xn −

x0)+A(x0, xn−x0) = P (xn−x0)+2A(x0, xn−x0), where A is the symmetric continuous

bilinear form associated to P. Now P (xn−x0) → 0 by hypothesis and A(x0, xn−x0) → 0

since A(x0, ·) is a continuous linear form, and so the assertion is proved. Moreover, for

P ∈ P(3`2), P (x) ≡ x1
∑∞

n=1 x2
n, it is easy to verify that CP = {x ∈ `2 : x1 = 0}.

§1. General properties of CP

We begin with several basic properties of the set CP .

Proposition 1. Let P ∈ P(NE).

(1). CP is a closed subset of E.

(2). (cf: Cor 2, [B-R]) If x ∈ CP , then λx ∈ CP for every λ ∈ K . In particular, if

CP 6= ∅, then 0 ∈ CP .

(3). CP = ∩N−2
j=0 {x ∈ E : the N − j-homogeneous polynomial Φj(x) : y → A(xj, yN−j)

is in Pwsc0(
N−jE)}.

Proof. (1). Let (yj) ⊂ CP converge in norm to x ∈ E. To show that x ∈ CP , let (xn) be

a sequence which converges weakly to x. Given ε > 0, first choose j so that ||yj −x|| < ε

and then choose n0 such that for all n ≥ n0, |P (yj + [xn − x]) − P (yj)| < ε. Therefore,

for all n ≥ n0, |P (xn)−P (x)| ≤ |P (xn)−P (yj +[xn−x])|+ |P (yj +[xn−x])−P (yj)|+

|P (yj) − P (x)|. Since (xn) is bounded and P is uniformly continuous on bounded sets,

the first and third terms above are ≤ Cε for some absolute constant C. The middle term

is dominated by ε, and so the proof of (1) is complete.

(2). If x ∈ CP , it is straightforward that 1
λ
x ∈ CP for every λ ∈ K , λ 6= 0. By part (1),

0 = limn
1
n
x ∈ CP .
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(3). If x ∈ CP , then an application of the polarization formula (see, e.g., [Di], p. 8)

shows that for every j = 0, 1, ..., N, Φj(x) is weakly sequentially continuous at x. By part

(2), each Φj(x) ∈ Pwsc0(
N−jE). Conversely, suppose that each Φj(x) : y ; A(xj, yN−j)

is weakly sequentially continuous at 0, and let (xn) be a sequence in E which converges

weakly to x. The result follows immediately from the Taylor series development of P

about x, P (xn) − P (x) =
∑N−1

j=0




N

j



Φj(x)(xn − x), and the fact that ΦN−1(x) is

linear and hence automatically weakly sequentially continuous. �

As a consequence of part (3) of the above proposition, we have the following.

Corollary 2. Suppose that P(lE) = Pwsc(
lE) for each l = 1, ..., r−1 and that P(rE) 6=

Pwsc(
rE). Then the following hold:

(i). For every P ∈ P(rE), either CP = ∅ or CP = E, and

(ii). For every P ∈ P(r+1E), either CP = ∅ or CP is a subspace of E.

Note that (i) above strengthens the example given in the introduction. We will show

in Theorem 11 that a further strengthening of Corollary 2 holds if we assume that E is

separable. Let us now discuss a sufficient condition for CP to be the entire space E, that

is for P to be weakly sequentially continuous everywhere.

The proof of the next proposition depends on the following result.

Lemma 3. Let P ∈ P(rE, F ) be an r−homogeneous polynomial between Banach spaces

E and F. If {γ1, ..., γr+1} is a linearly independent subset of E ′ and if S ⊂ F is a subspace

such that P (γ−1
j (0)) ⊂ S for each j = 1, ...., r + 1, then P (E) ⊂ S.

Proof. When r = 1, the result is trivial, and we’ll proceed by induction. Assume the

result for k = 1, ..., r− 1. Let x ∈ E be an arbitrary point, so that x can be expressed as

x = x1 +e where γ1(x1) = 0 and e ∈ ∩r+1
i=2γ−1

i (0). Now, P (x) =
∑r

j=0




r

j



A(xj
1, e

r−j) =

P (x1) +
∑r−1

j=1




r

j



A(xj
1, e

r−j) + P (e). Note that both the first and last terms in the

previous sum belong to S.

For each fixed e, x1 ; A(xj
1, e

r−j) is a j−homogeneous polynomial, with 1 ≤ j ≤

r − 1, which takes each of the r hyperplanes γ−1
2 (0), ..., γ−1

r+1(0) into S. Indeed, by the

polarization formula, A(xj
1, e

r−j) can be expressed as a finite linear combination of vectors

of the form P (sx1 + te), s, t ∈ Z . So, if x1 ∈ γ−1
k (0) for some k = 2, ..., r + 1, it follows

that sx1 + te is also in γ−1
k (0), and hence P (γ−1

k (0)) ∈ S. Therefore A(xj
1, e

r−j) ∈ S.

By the induction hypothesis, the image of the polynomial x1 ; A(xj
1, e

r−j) lies in S

for each j = 1, ..., r − 1, and so every P (x) ∈ S. �
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Proposition 4. Let P ∈ P(NE) be such that for N−1 linearly independent functionals

γi, 1 ≤ i ≤ N − 1, we have γ−1
i (0) ⊂ CP . Then CP = E.

Proof. For each j = 0, 1, ..., N, let Φj ∈ P(jE,P(N−jE)) be given by Φj(x)(y) ≡

A(xj, yN−j). By Proposition 1 (3), CP = ∩N−2
j=0 {x ∈ E : Φj(x) ∈ Pwsc0(

N−jE)}. Hence,

for each fixed i and j, since γ−1
i (0) ⊂ CP it follows that Φj(γ

−1
i (0)) ⊂ Pwsc0(

N−jE). By

Lemma 3, it follows that for every x ∈ E, Φj(x) ∈ Pwsc0(
N−jE). Hence CP = E, as

required. �

The same method of proof shows that if P(jE) = Pwsc(
jE) for j = 1, ..., s, and

P ∈ P(NE) is such that CP contains N − s hyperplanes, then in fact CP = E.

As an example of the use of this result, consider the polynomial P ∈ P(5`2), P (x) =

x1x2x3
∑∞

j=1 x2
j . It is easy that CP = {x ∈ `2 : x1 = 0 or x2 = 0 or x3 = 0}. Propo-

sition 4 implies that there is no Q ∈ P(4`2) such that CP = CQ. Similarly, since

P(2`3) = Pwsc(
2`3), the polynomial P (x) ∈ P(6`3), P (x) = x1x2x3

∑∞
j=1 x3

j , is such

that CP 6= CQ for any 5−homogeneous polynomial Q.

We now turn to relations between CP and CQ. Although the proof of the theorem

below is not difficult, we will see that the result is useful for much of what follows.

Theorem 5. If P ∈ P(NE) and Q ∈ P(ME), then

CP ·Q = (CP ∩ CQ) ∪ (CP ∩ P−1(0)) ∪ (CQ ∩Q−1(0)).

Proof. We will only prove that CP ·Q ⊆ (CP ∩ CQ) ∪ (CP ∩ P−1(0)) ∪ (CQ ∩ Q−1(0)),

the reverse inclusion being quite easy. Let x ∈ CP ·Q and let (xn) → x weakly in E.

Since x + t(xn − x)
w
−→ x, we have that P (x + t(xn − x))Q(x + t(xn − x)) → P (x)Q(x)

as n → ∞ for all t ∈ K . Applying the polarization formula to both P and Q and the

associated symmetric multilinear forms A and B, respectively, we obtain

P (x + (t(xn − x)) =
N∑

j=0




N

j



A(xj, (xn − x)N−j)tN−j,

Q(x + (t(xn − x)) =
M∑

l=0




M

l



B(xl, (xn − x)M−l)tM−l.

Since {




N

j



A(xj, (xn − x)N−j)} and {




M

l



B(xl, (xn − x)M−l)} are bounded

sequences for each j and l, by passing to a subsequence we may assume that there are

αj, j = 0, ..., N and βl, l = 0, ..., M, such that {




N

j



A(xj, (xnk
− x)N−j)} → αj and




M

l



B(xl, (xnk
− x)M−l) → βl. Note, in particular, that αN = P (x) and βM = Q(x).
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Consequently,

P (x + t(xnk
− x)) ·Q(x + t(xnk

− x)) → (
N∑

j=0

αjt
N−j) · (

M∑

l=0

βlt
M−l),

and so

(
N∑

j=0

αjt
N−j) · (

M∑

l=0

βlt
M−l) = αN · βM .

Now, in order for the product of two polynomials to be constant, either both polyno-

mials must be constant or one of them should be identically zero. Thus, we have three

possibilities:

(1). α0 = · · ·αN−1 = β0 = · · ·βM−1 = 0, and so P (xnk
) → P (x) and Q(xnk

) → Q(x).

(2). α0 = · · ·αN = 0, so that P (xnk
) → P (x) = 0.

(3). β0 = · · ·βM = 0, so that Q(xnk
) → Q(x) = 0.

Summarizing, for each sequence (xn) ∈ E which converges weakly to x, we have a

subsequence such that (1), (2), or (3) holds. We need to prove that the same possibility

holds for every subsequence. First, observe that if (2) holds for some sequences and (1)

holds for some other sequences, then (2) holds for every sequence. A similar remark

obviously holds with (3) and (1).

For the remaining case, let us suppose that there are two sequences (xn) and (yn),

both weakly convergent to x ∈ E, such that (2) holds while (3) fails for (xn), and that

(3) holds while (2) fails for (yn). In other words, by passing to a subsequence we may

suppose that P (xn) → P (x) = 0 while Q(xn) → β 6= Q(x), and that Q(yn) → Q(x) = 0

although P (yn) → α 6= P (x). Since x ∈ CP ·Q, (t+1)x ∈ CP ·Q for every t ∈ K . Therefore,

P (txn +yn) ·Q(txn +yn) → P ((t+1)x) ·Q((t+1)x). As before, passing to a subsequence

we have that

P (txnk
+ ynk

) ·Q(txnk
+ ynk

) = (
N∑

j=0




N

j



A(xj
nk

, yN−j
nk

)tj) · (
N∑

l=0




M

l



B(xl
nk

, yM−l
nk

)tl)

converges to the product of polynomials

(
N∑

j=0

ajt
j) · (

M∑

l=0

blt
l),

and this product should be 0. But, for this to occur, one of the polynomials must be

identically 0. However, a0 = α 6= 0 and bM = β 6= 0. Thus, we have a contradiction, and

the theorem is proved. �

Since Cγ = E for γ ∈ E ′, we get the following.

Corollary 6. If P ∈ P(NE) and γ ∈ E ′, then Cγ·P = CP ∪ γ−1(0).

Example 7. We now apply this result in several settings.

1. First, we show that the polynomial P ∈ P(3`2), P (x) = x1
∑

j x2
2j + x2

∑

j x2
2j+1 is
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irreducible in the space of polynomials. Indeed, suppose that P = Q ·R where Q and R

are non-trivial homogeneous polynomials; necessarily one of the factors, say R, is in E ′.

By Corollary 6, CP = CQ ∪R−1(0). Now, since CP = {x ∈ `2 : x1 = x2 = 0} and since

CQ is either ∅ or `2, we have a contradiction.

2. Also, let 1 < p < ∞ and let N be the smallest integer ≥ p. If P ∈ P(N`p) is given

by P (x) =
∑

i∈J xN
i where J ⊂ N is an arbitrary infinite set, then CP = ∅. Therefore

if Q ∈ P(N+1`p), Q(x) = x1
∑

i x
N
2i + x2

∑

i x
N
2i+1, then CQ = {x ∈ `p : x1 = x2 = 0},

which implies by Corollary 6 that Q is irreducible.

3. Similarly, let P : Lp[0, 1] → R (1 < p < ∞), P (f) =
∫ b
a f(t)2dt, where 0 ≤

a < b ≤ 1. Then Cp = ∅, since the Haar basis (fn)
w
→ 0 although P (fn) 6→ 0. From

this, it follows that for the 3−homogeneous polynomial Q : Lp[0, 1] → R , Q(f) =
∫ 1/2
0 f(t)dt

∫ 1/2
0 f 2(t)dt+

∫ 1
1/2 f(t)dt

∫ 1
1/2 f 2(t)dt, CQ is the intersection of two hyperplanes,

CQ = {f ∈ Lp[0, 1] :
∫ 1/2
0 f(t)dt =

∫ 1
1/2 f(t)dt = 0}. Once again, CQ is irreducible.

4. As our final example, fix p ∈ (1,∞) and let N be the smallest integer ≥ p. Define

R ∈ P(N+2`p) by

R(x) =
∞∑

i=1

(

x2
i

2i

)
∑

j∈Fi

xN
j ,

where the sets {Fi} form a partition of N into infinite sets. We claim that R is irreducible.

We first prove that this is the case when the underlying field is C . A straightforward

argument shows that CR = {0}. For every j < N, every P ∈ P(j`p) is approximable by

finite polynomials, and hence every such P belongs to Pwsc(
j`p). Therefore, if R could

be written as R = R1 ·R2, then we would have three possibilities:

(i). Both R1 and R2 have degree < N. In this case, CR would be equal to `p.

(ii). R1 ∈ `′p, in which case CR = R−1
1 (0) ∪ CR2

.

(iii). R1 ∈ P(2`p). Suppose first that N > 2. By Theorem 5, CR ⊃ CR1
∩ R−1

1 (0) =

R−1
1 (0), which is always an unbounded set. Now, suppose that N = 2, in which case our

remarks in the introduction imply that the only possibilities for both CR1
and CR2

are

either ∅ or `p.

Therefore, in none of the three cases is it possible to have CR1·R2
= {0}, and the

argument in the complex case is complete. As for the real case, it suffices to recall [[B-S],

Theorem 3] that the complexification of a real polynomial is unique. Therefore, if R

could be factored as R = P ·Q where P, Q, and R are real polynomials, then the product

of the complexifications of P and Q would have to be the polynomial R considered on

complex `p. But, this would contradict our work which showed that in the complex case,

R cannot be factored in such a way.
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We now turn our attention to three ‘permanence’ questions. We will make several

general comments about them here, returning to obtain more complete answers in Section

2 in the context of E being separable or having an unconditional finite dimensional

decomposition.

Question 1. Given P ∈ P(NE), does there always exist Q ∈ P(N+1E) such that

CP = CQ?

Note that the answer is obviously yes if CP = E. Note that the converse question, of

whether there is R ∈ P(N−1E) such that CP = CR, has a trivial negative answer in case

N = 2 and CP 6= E; a less trivial negative answer is given in the example following the

proof of Proposition 4. We remark that we know of no negative example to Question 1

or to Question 2, which follows.

Question 2. Given P, Q ∈ P(NE), does there exist R ∈ P(ME) for some M such that

CR = CP ∩ CQ?

In §2, dealing with spaces E with unconditional finite dimensional decomposition, we

show that under certain conditions Question 2 has an affirmative answer with, moreover,

M = N. When E is an arbitrary real Banach space, Question 2 has a simple positive

answer:

Proposition 8. If P, Q ∈ P(NE) for a real Banach space E, then the polynomial

R ≡ P 2 + Q2 ∈ P(2NE) is such that CR = CP ∩ CQ.

Proof. For the non-trivial implication, let x ∈ CR and let xn → x weakly. Writing

the Taylor series of P and Q as functions of t ∈ R , we obtain P (x + t(xn − x)) =

∑N
j=0




N

j



A(xj, (xn − x)N−j)tN−j and Q(x + t(xn − x)) =
∑N

j=0




N

j



B(xj, (xn −

x)N−j)tN−j; here A (resp. B) denotes the symmetric N−linear form associated to P

(resp. Q).

Choose a subsequence (xnk
)k such that P (x + t(xnk

− x)) →
∑N

j=0 αjt
N−j and Q(x +

t(xnk
− x)) →

∑N
j=0 βjt

N−j, where αN = P (x) and βN = Q(x). Since x ∈ CR and

(x + t(xnk
− x))

w
→ x, P (x + t(xnk

− x))2 + Q(x + t(xnk
− x))2 → P (x)2 + Q(x)2.

Therefore, for all t ∈ R , (
∑N

j=0 αjt
N−j)2 + (

∑N
j=0 βjt

N−j)2 = α2
N + β2

N . Since the co-

efficients are real, it follows that α0 = ... = αN−1 = β0 = ... = βN−1 = 0, and this

means that P (xnk
) → P (x) and Q(xnk

) → Q(x). Summarizing, whenever we have a

sequence (xn) which tends weakly to x, we can always find a subsequence (xnk
) such

that P (xnk
) → P (x) and Q(xnk

) → Q(x), and this implies that x ∈ CP ∩ CQ. �

Our final question complements Question 2:

Question 3. Given P, Q ∈ P(NE), does there exist R ∈ P(ME) for some M such that

CR = CP ∪ CQ?

Question 3 has a negative answer, at least if we require M = N. For instance, if P, Q ∈

P(4`2), P (x) = x1x2
∑∞

j=1 x2
j , and Q(x) = x2x3

∑∞
j=1 x2

j , then CP = {x ∈ `2 : x1 or x2 =
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0} and CQ = {x ∈ `2 : x2 or x3 = 0}, so that CP ∪CQ = {x ∈ `2 : x1 or x2 or x3 = 0}.

However, by the example following Proposition 4, there is no R ∈ P(4`2) such that

CR = CP ∪ CQ.

Our final result in this section will give a general situation in which Question 3 has

an affirmative answer. We will need the following consequence of Theorem 5, from which

the proposition below follows.

Lemma 9. Suppose that P, Q ∈ P(NE).

(a). If CP ⊂ P−1(0) and CQ ⊂ Q−1(0), then the polynomial P ·Q ∈ P(2NE) is such

that CP ·Q = CP ∪ CQ.

(b). If Q ∈ Pwsc(
NE), then CP+Q = CP .

Proposition 10. Suppose that P, Q ∈ P(NE). If there exist P1, Q1 ∈ Pwsc(
NE) such

that CP ⊂ (P +P1)
−1(0) and CQ ⊂ (Q+Q1)

−1(0), then R ≡ (P +P1)·(Q+Q1) ∈ P(2NE)

satisfies CR = CP ∪ CQ.

In particular, if CP and CQ are complemented subspaces of E with associated pro-

jections ΠP and ΠQ, then R ≡ (P − P ◦ ΠP ) · (Q−Q ◦ ΠQ) satisfies CR = CP ∪ CQ.

§2. CP for special Banach spaces

In this section, we study the sets of weak sequential continuity CP when P is an

n−homogeneous polynomial on a separable Banach space or, at times, on a Banach

space with unconditional finite dimensional decomposition (FDD). Not surprisingly, our

results are considerably sharper with these added hypotheses.

Our first result characterizes CP for separable E.

Theorem 11. Let E be a separable Banach space and let P ∈ P(NE) such that CP 6= ∅.

Then there is a sequence (Pi)
∞
i=1, each Pi ∈ P(niE) with ni ∈ {1, 2, ..., N − 2}, such that

CP = ∩∞
i=1P

−1
i (0).

The proof of Theorem 11 will be presented after the following Proposition.

Proposition 12. Let E be a separable Banach space.

(a). If S ⊂ E is a closed subspace of E, then there is a sequence (φi)
∞
i=1 ⊂ E ′ such

that S = ∩∞
i=1φ

−1
i (0).

(b). If S ⊂ F is a closed subspace of an arbitrary Banach space F and if P ∈ (rE, F ),

then there is a sequence (Pi)
∞
i=1 ⊂ P(rE) such that P−1(S) = ∩∞

i=1P
−1
i (0).
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Proof. (a). Let T be an algebraic complement of S; that is, T is a (not necessar-

ily closed) subspace of E such that every element x ∈ E can be written uniquely as

x = y + z where y ∈ S and z ∈ T. Let {zi}
∞
i=1 be a dense subset of {z ∈ T : ||z|| = 1},

and for each i, let φi ∈ E ′ be a functional of norm 1 such that φi|S ≡ 0 and φi(zi) = 1. It

is clear that S ⊂ ∩∞
i=1φ

−1
i (0). For the converse, let x ∈ ∩∞

i=1φ
−1
i (0), x = y+z where y ∈ S

and z ∈ T. If z 6= 0, then z
||z||

can be approximated by some zj. Consequently, φj(
z

||z||
) is

close to 1, which contradicts the fact that φj(x) = φj(z) = 0. Therefore x = y ∈ S.

(b). We begin by applying [F, Ry], to obtain a factorization of P as P = P̃ ◦ Φr,

where Φr : E → ˆ⊗r

π,sE is the canonical mapping x ; x
⊗

...
⊗

x and P̃ : ˆ⊗r

π,sE → F

is the canonical linear mapping associated to P. We apply part (a), obtaining that

P̃−1(S) = ∩∞
i=1φ

−1
i (0) for some collection {φi : i = 1, 2, ...} ⊂ ( ˆ⊗r

π,sE)′. Therefore,

P−1(S) = ∩∞
i=1P

−1
i (0) where Pi = φi ◦ Φr, which completes the proof. �

Proof of Theorem 11. Using Proposition 1 and the fact that CP 6= ∅, we see that

CP = ∩N−2
j=1 Φ−1

j (Pwsc0(
N−jE)).

Since each Φj ∈ P(jE,P(N−jE)), we may apply part (b) of Proposition 12 to conclude

that each Φ−1
j (Pwsc0(

N−jE)) is an intersection of kernels of j−homogeneous polynomials

on E. The result follows by taking as the required sequence (Pi) all the j−homogeneous

polynomials, j = 1, ..., N − 2, so obtained. �

It is worth noting that the same arguments show that for separable Banach spaces E

such that P(lE) = Pwsc(
lE) for l = 1, ..., r− 1, then for every N and every P ∈ P(NE),

either CP = ∅ or CP = ∩∞
i=1P

−1
i (0), each Pi being an ni−homogeneous polynomial with

ni ∈ {1, 2, ..., N − r}.

After Proposition 15, we will indicate how Proposition 12 shows how every closed

subspace S of `p is equal to CP for some ([p] + 1)−homogeneous polynomial P. Perhaps

more interesting is the fact that we do not know if the same holds for `2(I) for uncountable

index set I. In particular, we do not know if there exists P ∈ P(N`2(I)) such that CP is

non-empty and separable.

For the remainder of this paper, we will only consider Banach spaces E with uncon-

ditional FDD. We first recall some notation which will be needed in what follows. Let

E have unconditional finite dimensional decomposition {En}n∈N with associated pro-

jections {Πn}n∈N. If J = {nj}j∈N is a strictly increasing sequence of positive integers,

let σj = Πnj
− Πnj−1

, and define the block diagonal N−homogeneous polynomials with

respect to J to be

DJ(NE) ≡ {P ∈ P(NE) : P has the representation P (x) =
∞∑

j=1

P (σj(x))}.
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We use the simpler notation D(NE) for DN(NE).

The following result, concerning polynomials which are diagonal with respect to an

increasing subsequence of natural numbers, is motivated by the observation (see, e.g.,

[Theorem 10, [S]]) that if P : `p → K is of the form P (x) =
∑∞

n=1 anxk
n where, neces-

sarily, (an) ∈ `∞, then either CP = ∅ or CP = `p (when (an) ∈ c0). Although the result

holds in the context of Banach spaces E with unconditional FDD, the simple analogue

of this argument is false. Indeed, one can find such an E and a P ∈ P(2E) such that

(||P ◦ σn||)n∈N ∈ c0, although P 6∈ Pwsc(
2E) [See 2.4, [D-G]].

Proposition 13. Let E be a Banach space with unconditional FDD and let J ⊂ N. If

P ∈ DJ(NE), then either CP = ∅ or E.

Proof. It suffices to show that if x /∈ CP for some x ∈ E, then 0 /∈ CP . Let (xn) be a

sequence which converges weakly to x such that for some ε > 0, |P (xn)− P (x)| > ε for

every n. By passing to subsequences, we see that there is a block sequence (un) relative

to some subset J1 ⊂ J which tends weakly to 0 and such that ||un − (xn − x)|| → 0.

Note that for all n ≥ some n0, |P (un + x)− P (x)| ≥ ε
2
. To show that 0 /∈ CP , it suffices

to show that (P (un)) 6→ 0.

Let (σj) be the family of projections associated to J1, so that P ∈ DJ1
(NE) and

P (x) =
∑∞

j=1 P (σj(x)). Since

σj(un + x) =







σj(x) if j 6= n

un + σn(x) if j = n,

P (un + x) =
∑∞

j=1 P (σj(un + x)) =
∑∞

j=1 P (σj(x)) + [P (un + σn(x))− P (σn(x))] =

= P (x) + [P (un + σn(x)) − P (σn(x))], and so |P (un + x) − P (x)| = |P (un + σn(x)) −

P (σn(x))|. Therefore, ε
2

< |P (un+σn(x)))−P (σn(x))| = |
∑N

j=1




N

j



A(σn(x)N−j, uj
n)| =

|
∑N−1

j=1




N

j



A(σn(x)N−j, uj
n)+P (un)|. Now, since ||σn(x)|| → 0 and the sequence (un)

is bounded, each A(σn(x)N−j, uj
n) → 0, and so we conclude that P (un) 6→ 0. �

By [D-G] we know that in spaces with unconditional FDD, there is n ∈ N ∪ {∞}

such that every k−homogeneous polynomial on E of degree k ≤ n is weakly sequen-

tially continuous. Moreover, if there exists a k−homogeneous polynomial which is not

weakly sequentially continuous, then for every l ≥ k, there is an l−homogeneous poly-

nomial which is not weakly sequentially continuous anywhere. Consequently, we have

the following improvement of Theorem 11.
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Proposition 14. Let E be a Banach space with unconditional FDD. Suppose that

r − 1 ≡ sup{n ∈ N : P(nE) = Pwsc(
nE)} ∈ N.

(i). If P ∈ P(rE), then either CP = ∅ or CP = E.

(ii). If P ∈ P(NE) with N ≥ r + 1, then either CP = ∅ or CP = ∩∞
i=1P

−1
i (0) where each

Pi ∈ P(niE) with ni ∈ {1, ..., N − r}.

In Proposition 14 (ii), note that if N − r < r, then all the polynomials Pi are weakly

sequentially continuous. We have a sort of ‘reciprocal’ of this observation:

Proposition 15. Let E be a Banach space with unconditional FDD. Suppose that

r − 1 ≡ sup{n ∈ N : P(nE) = Pwsc(
nE)} ∈ N. Let (Pi)

∞
i=1 be a sequence of weakly

sequentially continuous polynomials, where each Pi ∈ P(niE) satisfies ni ∈ {1, ..., N − r}

for some fixed N. Then there exists a polynomial P ∈ P(NE) such that CP = ∩∞
i=1P

−1
i (0).

Proof. We begin by recalling ([D-G], Prop. 1.8) that with the given hypotheses on E

and r, there exist a subsequence J ⊂ N, a block-diagonal polynomial Φ ∈ DJ(rE), and

a normalized block sequence (uj) with respect to J such that Φ(uj) = 1 for every j ∈ N.

In particular, Φ 6∈ Pwsc(
rE).

Now, let

P (x) =
∞∑

i=1

Pi(x)

2i

∑

j∈Fi

Φ(σj(x))u∗
j(σj(x))N−r−ni.

Here, {Fi}
∞
i=1 is a partition of N into infinite subsets, (u∗

j) is the biorthogonal sequence

associated to the block sequence (uj), and we are assuming without loss of generality

that ||Pi|| ≤ 1 for all i.

We claim that CP = ∩∞
i=1P

−1
i (0). To see this, suppose that x0 ∈ ∩

∞
i=1P

−1
i (0) and that

xn → x0 weakly; without loss of generality, ||xn|| ≤ 1 for every n. Noting that there is

a constant C > 0 such that
∑

j∈Fi
|Φ(σj(x))||u∗

j(σj(x))|N−r−ni ≤ C for every i and every

x, ||x|| ≤ 1, we obtain that for every n and M,

|P (xn)| ≤ C





M∑

i=1

|Pi(xn)|

2i
+

∞∑

i=M+1

|Pi(xn)|

2i



 .

Thus, if we first choose M to ensure that the second term is small independent of n

and then let n →∞ so that Pi(xn) → 0 for i = 1, ..., M, then P (xn) will be small for all

large n.

Conversely, let x ∈ CP and fix i = i0. Since (x + ul)l∈Fi0
→ x weakly as l → ∞,

P (x + ul) → P (x). Now, P (x + ul) =

=
∞∑

i=1

Pi(x + ul)

2i




∑

j∈Fi

Φ(σj(x))u∗
j(σj(x))N−r−ni



+

+
Pi0(x + ul)

2i0
[Φ(σl(x) + ul)u

∗
l (σl(x) + ul)

N−r−ni0

−[Φ(σl(x))u∗
l (σl(x))N−r−ni0 ].
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The first summand converges to P (x), and so the second summand must tend to 0.

Now, since Pi0(x + ul) → Pi0(x) and

[Φ(σl(x) + ul)u
∗
l (σl(x) + ul)

N−r−ni0

−[Φ(σl(x))u∗
l (σl(x))N−r−ni0 ] 6→ 0,

it must be that Pi0(x) = 0. Since i0 was arbitrary, it follows that x ∈ ∩∞
i=1P

−1
i (0). �

One instance of the use of Proposition 15 can be seen by considering E = `p in

which case r = . As we noted in Proposition 12, any closed subspace S ⊂ `2 can be writ-

ten as S = ∩∞
i=1φ

−1
i (0), and so Proposition 15 shows that S = CP for some P ∈ P([p]+1`p).

We conclude by discussing questions 1, 2, and 3 in more detail, in the case that E

has unconditional FDD.

Note that in the definition of P in the above proof, if we replace each exponent

N − r−ni by N − r−ni +1, we obtain an N +1−homogeneous polynomial Q such that

CQ = ∩∞
i=1P

−1
i (0). Consequently, we have the following result.

Corollary 16. Let E have an unconditional FDD and r − 1 = sup{n ∈ N : P(nE) =

Pwsc(
nE)} ∈ N. Suppose that N and P ∈ P(NE) are such that either CP = ∅ or

CP = ∩∞
i=1P

−1
i (0), where each Pi ∈ Pwsc(

niE) is chosen so that ni ∈ {1, ..., N − r}. Then

there exists Q ∈ P(N+1E) such that CP = CQ.

A similar method provides a strengthening of Proposition 8, valid for either real or

complex spaces.

Corollary 17. Suppose that E has an unconditional FDD and that r − 1 = sup{n ∈

N : P(nE) = Pwsc(
nE)} ∈ N}. Let P and Q be N−homogeneous polynomials. If

CP = ∩∞
i=1P

−1
i (0) and CQ = ∩∞

j=1Q
−1
j (0), where each of the Pi and Qj are weakly

sequentially continuous polynomials of degree at most N−r, then there exists R ∈ P(NE)

such that CR = CP ∩ CQ.

Proof. Let {Fi : i ∈ N} be a partition of N into a collection of pairwise disjoint infinite

sets. With the same notation as in the proof of Proposition 15, let

R(x) ≡
∞∑

i=1




Pi(x)

2i

∑

j∈F2i

Φ(σj(x))u∗
j(σj(x))N−r−ni



+

+
∞∑

i=1




Qi(x)

2i

∑

j∈F2i−1

Φ((σj(x))u∗
j(σj(x))N−r−mi



 .

An argument similar to that used to prove Proposition 15 shows that R ∈ P(NE) and

CR = CP ∩ CQ. �
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A similar argument yields a partial answer to Question 3:

Corollary 18. Suppose that E has an unconditional FDD and that r − 1 = sup{n ∈

N : P(nE) = Pwsc(
nE)} ∈ N}, and let P, Q ∈ P(NE). Suppose also that CP =

∩∞
i=1P

−1
i (0) and CQ = ∩∞

i=1Q
−1
i (0), with each Pi and Qj an ni, respectively mj, homoge-

neous weakly sequentially continuous polynomial, where all ni and mj are at most N − r.

Then there is R ∈ P(2N+rE) such that CR = CP ∪ CQ.

Proof. Let {Fi,j}i,j be a doubly-indexed partition of N where each Fi,j is infinite. Then,

the 2N + r−homogeneous polynomial

R(x) ≡
∑

i,j




Pi(x)Qj(x)

2i+j

∑

l∈Fi,j

Φ(σl(x))u∗
l (σl(x))2N−ni−mj





is such that CR = CP ∪ CQ. �

We conclude with several comments about the possibility of extending Questions 2

and 3. First, there is no difficulty in extending Proposition 8 and Corollaries 17 and 18 to

the situation in which the polynomials P and Q have different degrees. A more interesting

problem is whether our results extend to infinite intersections and unions. Specifically,

given a sequence of N−homogeneous polynomials Pi on E, are there polynomials R such

that CR = ∩iCPi
and CR = ∪iCPi

? It is not difficult to see that both Proposition 8 and

Corollary 17 can be modified so as to be valid for infinite intersections. On the other

hand, the problem for infinite unions cannot have an affirmative solution as stated, since

∪iCPi
is not closed in general. In fact, there is usually no R such that CR = ∪iCPi

. To

see this, take for example the sequence (Pj) ⊂ P(3`2) given by Pj(x) = γj(x)
∑∞

i=1 x2
i

where γj(x) ≡ xj − jx1. Then CPj
= {x ∈ `2 : xj = jx1} = γ−1

j (0). Suppose that there

is a polynomial R such that CR = ∪iCPi
. By Proposition 4, since each γ−1

j (0) ⊂ CR, it

follows that CR = E. However, ∪∞
i=1CPi

6= E since e1 6∈ ∪∞
i=1CPi

, which shows that no

such polynomial R exists.
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