
On spectral pictures

Robin Harte

Abstract The “spectral picture” of a bounded operator on a Banach space consists of its essential spectrum
together with a mapping from its holes to the group of integers, obtained by taking the Fredholm index. In
this note we abstract this from the Calkin algebra to a general Banach algebra, replacing the integers with
the quotient of the group of invertibles by its connected component of the identity.
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By a spectrum K we shall understand, in the first instance, a nonempty compact subset K ⊆ C of the
complex plane: this works because every compact set is the spectrum of something. If K ⊆ C is a spectrum
then so is its topological boundary ∂K and so is its connected hull

0.1 ηK = K ∪
⋃
{H : H ∈ Hole(K)},

where [4],[8] we write Hole(K) for the (possibly empty) set of bounded components of the complement of K
in C: thus C \ ηK is the unique unbounded component of C \K.
1. Definition By a “spectral picture” we shall understand an ordered pair (K, ν) in which K is a spectrum
and ν is a mapping from Hole(K) to the integers Z.

If K ⊆ C is a spectrum and if f : U → C is a continuous mapping whose domain U ⊆ C includes K
then it is clear that f(K) is again a spectrum, where of course

1.1 f(K) = {f(λ) : λ ∈ K}.

We shall pay particular attention to functions

1.2 f ∈ Holo(ηK),

for which U ⊇ ηK is open in C and on which f is holomorphic. Recall ([8] Proposition 2.2)

1.3 ∂f(K) ⊆ fλ(∂K) and f(ηK) ⊆ ηf(K);

also if L ∈ Hole f(K) and H ∈ Hole K then ([1] Proposition 3.1, Lemma 3.5)

1.4 either L ∩ f(H) = ∅ or L ⊆ f(H).

2. Definition If (K, ν) is a spectral picture and if f ∈ Holo(ηK) then

2.1 f(K, ν) = (f(K), νf ),

where for each hole L ∈ Hole f(K) we set

2.2 νf (L) =
∑
{Nf (L,H)ν(H) : L ⊆ f(H)},

where if µ ∈ L ⊆ f(H) the equation f(λ) = µ has exactly Nf (L,H) solutions λ ∈ H:

2.3 Nf (L,H) = #{λ ∈ H : f(λ) = µ} = # f−1(µ) ∩H.

Of course, via Rouché’s theorem from complex analysis, the number Nf (L,H) is independent of the choice
of µ ∈ L. If L ∈ Hole f(K) is not a subset of f(H) for any hole H ∈ Hole(K) then we interpret the right
hand side of (2.2) as the integer 0 .

The fundamental example of a spectral picture comes from Fredholm theory:
3. Example If X is a Banach space and A = B(X)/K(X) the Calkin algebra on X and T ∈ B(X) is a
bounded linear operator on X then take

3.1 a = [T ]K(X) ; K = σA(a) = σess(T )

and for each H ∈ Hole(K) define

3.2 ν(H) = index(T − λI) with λ ∈ H.

Fredholm theory guarantees that ν(H) is well-defined (independent of the choice of λ ∈ H); then
according to [1](3.7) or [9](8.8) the spectral picture of f(T ) is the image, in the sense of (2.1), of the spectral
picture of T . Indeed writing f(z)− µ = g(z)

∏
j(z − λj) argue

3.3 νf (L) = index(f(T )− µI) = index g(T ) +
∑
j

index(T − λjI).
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For a more general version of all this look at the abstract index group [2] of a Banach algebra, the
quotient

3.4 κ(A) = A−1/Exp(A) = A−1/A−1
0

of the invertible group by its connected component of the identity [4],[8],[7]

3.5 A−1
0 = Exp(A) ≡ {ec1ec2 . . . eck : k ∈ N, c ∈ Ak}.

Now a “spectral landscape” for a Banach algebra A is an ordered pair (K, ν) in which K is a spectrum and
ν is a mapping from Hole(K) to the abstract index group κ(A); as a favour we ask that the cosets ν(H)
mutually commute. Then the “spectral landscape” of an element a ∈ A is what we would expect:
4. Definition The spectral landscape of an element a ∈ A of a Banach algebra A is the ordered pair
(K, ν) = (σA(a), ισ(a)) where ισ(a) : Hole(σ(a))→ κ(A) is defined by setting

4.1 ισ(a)(λ) = Exp(A)(a− λ) if λ ∈ H ∈ Hole(A).

The image of a spectral landscape (K, ν) by a polynomial f : C → C, or more generally a holomorphic
function f ∈ Holo(ηK), will be the ordered pair (f(K), νf ), where

4.2 νf (L) =
∏
{ν(H)Nf (L,H) : L ⊆ f(H)}.

The spectral mapping theorem follows by the argument of (3.3):
5. Theorem If a ∈ A and f ∈ Holo(ησ(a)) then the spectral landscape of f(a) is the image of the spectral
landscape of a:

5.1 (σf(a), ισf(a)) = (fσ(a), (ισa)f ).

Proof. If f : U → C is holomorphic on an open set U ⊇ ησ(a) containing the spectrum and all its holes and
if µ ∈ L ∈ Hole σf(a) then

5.2 f(z)− µ = g(z)
∏
j

(z − λj),

where g : U → C is holomorphic and nonvanishing on ησ(a), giving

5.3 (f(a)− µ)Exp(A) =
∏
j

Exp(A)(a− λj) •

The spectral landscape also co-operates with passage to a subalgebra: if T : A→ B is a homomorphism
then

5.4 T A−1 ⊆ B−1,

and if T is also bounded then

5.5 T Exp(A) ⊆ Exp(B) :

thus there is induced κ(T ) : κ(A)→ κ(B). If finally T is also bounded below, so that effectively A is a closed
subalgebra of B, then for arbitrary a ∈ A

5.6 ∂σA(a) ⊆ σB(Ta) ⊆ σA(a) ⊆ ησB(Ta)

with

5.7 Hole σA(a) ⊆ Hole σB(Ta).

Now the behaviour of the spectral landscape under passage to a closed subalgebra A ⊆ B is that for arbitrary
a ∈ A

5.8 ιBσ(Ta)J = κ(T )ιAσ(a),

where J is the restriction mapping.
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If for example A = B(X) for a Banach space X then the spectral picture of an operator a ∈ A is
what we might call the essential spectral landscape of the element a, or rather the combination (K, ν) where
K = σess(a) and ν = Index ◦ ιessσ : there is a well defined mapping Index : κ(B(X)/K(X)) → Z from the
abstract index group of a Calkin algebra to the integers. The actual spectral landscape of a ∈ A maps holes
in the actual spectrum of A into the quotient group κ(A): when A = B(X) for a Hilbert space X then
A−1 = Exp(A) is connected, so that this becomes trivial.

In real life the “spectral picture” [11] needs to be augmented by the addition of “pseudo-holes”, and
the group of integers extended to include ∞ and −∞. Thus the spectral landscape might be seen as the
superposition of a “left” and a “right” landscape, while the abstract index group becomes the intersection
of a left and a right semigroup:
6. Definition If A is a Banach algebra then the abstract left index semi-group of A is the quotient

6.1 κleft(A) = A−1
left/Exp(A) = {Exp(A)a : a ∈ A−1

left},

while the abstract right index semi-group of A is the quotient

6.2 κright(A) = A−1
left/Exp(A) = {aExp(A) : a ∈ A−1

right}.

We should remark that if 1 ∈ G ⊆ H, G a subgroup of the semigroup H, then the set of left cosets
{xG : x ∈ H} forms a partition of H, in the sense that any two are either disjoint or coincide; the same is
true of right cosets. When we specialise to the semigroup H = A−1

left ⊆ A of left invertibles then the left
cosets are subsets of the right:
7. Theorem If A is a Banach algebra then κleft(A) and κright(A) are semigroups, with the discrete topology.

Proof. Suppose x′x = 1: then if 0 6= λ ∈ C

7.1 xA−1x′ ⊆ A−1 + λ(1− xx′) ⊆ x′A−1x :

the inverse of xax′ − λ(1− xx′) is xa−1x′ − λ−1(1− xx′). Also (cf [7] Theorem 7.11.2)

7.2 the sets A−1 and A−1
left \A−1 are open in A :

if a ∈ A−1 then {a(1− x) : ‖x‖ < 1} ⊆ A−1 and if a ∈ A−1
left \A−1 then {a(1− x) : ‖x‖ < 1} ⊆ A−1

left \A−1.
From the first part of (7.1) it follows

7.3 x′x = 1 =⇒ xA−1 ⊆ A−1x.

From (7.3) we are able to successfully multiply right cosets to form the semigroup A−1
left/A

−1, which by (7.2)
acquires the discrete topology. All this holds equally well with the generalized exponentials Exp(A) in place
of A−1: for example (cf [7] (7.11.3.4)) xecx′ + 1− xx′ = excx

′
. In addition

7.4 Exp(A) is the connected component of 1 in A−1
left •

Now a “left spectral landscape” on a Banach algebra A will be an ordered pair (K, ν) in which K is a
spectrum and ν is a mapping from Hole(K) to the left abstract index semigroup κleft(A):

8. Definition The left spectral landscape of a ∈ A is the ordered pair (K, ν) where K = σleftA (a) is the left
spectrum of a in A and ν = ιleftσ : Hole(K)→ κleft(A) takes right cosets:

8.1 ν(H) = Exp(A)(a− λ) if λ ∈ H ∈ Hole(K).

Continuity and the discrete topology ensure that ν is well defined. When we specialise to the Calkin
algebra A = B(X)/K(X) then there are well-defined mappings Index : κleft(A) → Z ∪ {−∞} and Index :
κright(A)→ Z ∪ {∞}.
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If T ∈ HBL(A,B) has closed range then with

8.2 ωT (a) =
⋂
Td=0

σA(a+ d),

there is inclusion [4],[8]

8.3 ∂ωT (a) ⊆ σB(Ta) ⊆ ωT (a) ⊆ ησB(Ta)

and hence

8.4 Hole ωT (a) ⊆ Hole σB(Ta).

The analogue of the abstract index semigroup is now the quotient

8.5 κT (A) = (A−1 + T−1(0))/Exp(A).

Whether or not the subgroup Exp(A) is normal in the semigroup A−1 + T−1(0) there is a well-defined
mapping, if a ∈ A,

8.6 ιTω (a) : Hole ωT (a)→ κT (A)

given by setting

8.7 ιTω (a)(H) = (a− λ)Exp(A) if λ ∈ H ∈ Hole ωT (a).

If we were to attempt to extend the spectral landscape concept to systems a ∈ AX of Banach algebra
elements we might proceed along the following lines. Analagous to the semigroup of left invertibles, we take

8.9 A−Xleft = {a ∈ AX : 1 ∈
∑
x∈X

Aax},

with the corresponding definition of A−Xright: thus the left spectrum of a ∈ AX becomes

8.10 σleftA (a) = {λ ∈ CX : a− λ 6∈ A−Xleft}.

Now instead of the abstract left index semigroup we have the following object:

8.11 κleft(AX) = A−Xleft/Exp(A) = {Exp(A)a : a ∈ A−Xleft},

collecting right cosets. Emboldened, we offer
9. Definition If X is an arbitrary set then the left spectral picture of a ∈ AX is the ordered pair (K, ν)
where K = σleftA (a) and ν = ιleftσ (a) : Hole(K)→ κleft(AX) takes right cosets:

9.1 ν(H) = Exp(A)(a− λ) if λ ∈ H ∈ Hole(K).

The most obvious flaw in this construction is that in higher dimensions the left spectrum may not often
have “holes”. The formula (4.2) is unlikely to extend, since Rouchés theorem does not; indeed the number
of λ ∈ H for which f(λ) = µ need not be finite at all.
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Our attitude to the “spectral picture” [2] has been the same as to “spectral projections” [5],[6]: the
spectral projection associated with an isolated point of the spectrum of a bounded operator is given by a
Cauchy integral, but in most texts has no definition. By exploring [5] what this definition should be we
found ourselves creeping up behind the “Drazin inverse”, or a slight generalization thereof: in particular we
found that something which by definition commuted with the operator could be proved to double commute.
This and the abstracted concept of “quasi-polar” Banach algebra elements seem to be interesting in their
own right. In the same way the “spectral picture” of a bounded operator is built from its essential spectrum
and the Fredholm index, but the discussion does not seem to pause to explain what sort of beast we are
dealing with.
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