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Abstract

Television commercial scheduling is a generalised form of partition problem, but the
lengths involved are rather small, leaving the complexity of the problem unclear. This
paper shows that the related problem of colour-restricted spot scheduling NP-complete,
even when the breaks are bounded (at most 10 units). We also show that scheduling
unit-length spots is easy.

The paper is intended to be self-contained.

1 Introduction

The main source of income for a commercial TV station is advertising. The broadcasting day is
interspersed with advertising ‘breaks’ typically 3 minutes long. In the business, advertisements
are called ‘spots.’

Typical spot-lengths are 7 seconds, 15, 22, 30, 45, 60, 90, and 120.

It is a rule of television advertising that competing products should not be advertised within
the same break. Hence products are separated into ‘clash groups,” and products within the
same clash group should not be advertised in the same break.

Thus the scheduling problem involves advertising breaks, spots to be broadcast, and spot
colours. The colour of a spot indicates the kind of product being advertised, so spots of the
same colour cannot be broadcast in the same break.

Around 1970, Brown [1,2] investigated this problem, but we know of no other research into
the problem. It is certainly of interest in the context of NP-completeness.

*e-mail: khaegele@gmx.net, odunlain@maths.tcd.ie, smriis@dcs.qmw.ac.uk
1 This is a simplification of the real situation. Strictly speaking, the ‘clash’ relationship is not transitive.
Sometimes non-competing products clash because their brand-names are similar.



This paper presents our discoveries about the complexity of spot scheduling. The presenta-
tion does not assume familiarity with NP-completeness, and it may serve as an introduction
to the non-specialist.

Some of these results were presented at MFCSIT2000, the first Irish conference on the
mathematical foundations of Computer Science and Information Technology, at University
College, Cork, in July 2000.

2 NP completeness.

(2.1) Polynomial time. Computational complexity is often concerned with polynomial-
time computability. A computation problem has a polynomial-time solution if when the input
has size n (suitably measured), the time to compute the result is bounded by some polynomial
in n.

(2.2) Example: linear equations. For example, there are several ways to solve a system of
n linear equations in n unknowns. One is Cramer’s Rule, which, if applied blindly, will compute
the answer with something like n x n! operations. More than 39 million operations would be
needed when n = 10. On the other hand, Gaussian elimination would produce the answer
in about n® operations. When n = 10, about 1000 operations would be needed. Gaussian
elimination is polynomial time, Cramer’s Rule certainly isn’t.

(2.3) Example: linear programming. Linear programming means, roughly speaking,
finding solutions to a system of linear inequalities

AX <B

where A is a matrix an B a column-vector. Dantzig’s Simplex Method of 1947 [3] is very
effective, but known to take exponential time on certain problems. Khachian’s algorithm of
the late 1970s runs in polynomial time but is useless in practice. Karmakar’s algorithm of 1984
[6] is another polynomial-time algorithm which is much more effective in practice. The point,
however, is that linear programming is solvable in polynomial time.

On the other hand, Integer programming — linear programming where the solution vectors
are required to have integer components — is a harmless-looking variant which is not known
to have a polynomial-time solution. It is NP-complete (2.10): strong evidence that no efficient
method exists.

(2.4) Definition of NP. The class NP is, strictly speaking, the class of languages which
can be accepted in nondeterministic polynomial time on a nondeterministic Turing machine.
See [5] for a detailed survey of the subject.

(2.5) Definition A computational task is ‘easy’ if it can be done in polynomial time. See 2.1.
Here is an equivalent, and simple, definition of NP.

(2.6) Definition NP is the class of problems whose solutions are easy to verify.



(2.7) Example: satisfiability of Boolean expressions. Another example of an NP prob-
lem is, given a Boolean expression ®, whether some truth assignment will make the expression
true. Obviously it is easy to certify that a given truth-assignment satisfies ®. Therefore the
satisfiability problem is in NP. But is it easy to decide whether such a truth-assignment exists?
At present, it is not known one way or the other, but no efficient, general, method has yet been
discovered for solving such problems, and it is believed that none exists.

The problem is NP-complete (2.10,3.3). The satisfiability problem is important and will
be discussed further in the next section.

(2.8) Definition Given two computational problems X andY , write X <Y if X can be easily
reduced to Y.

For example, the satisfiability problem is easily reduced to integer programming.
(2.9) Corollary If X is difficult and X <Y then Y is difficult. (Proof easy.) |}

(2.10) Definition A problem Y is NP-complete if (i) Y € NP and (ii) for every X in NP,
X<Y.

So if NP contains any difficult problem — one with no polynomial-time solution — then
all NP-complete problems are difficult.

(2.11) The class P is the class of languages which can be accepted in polynomial time on a
standard Turing machine. More simply,

(2.12) Definition P is the class of problems whose solutions are both easy to find and easy
to verify.

Since 1971, whether or not P = NP has been an open problem. If the classes are equal, then
all problems in NP are easy, including many important problems in Operations Research. If
the classes are different, then all NP-complete problems are difficult, a disappointing possibility
which appears to be true. The general belief is that P # NP.

Among the problems considered in this section, solving linear equations and linear programs
are in P, while satisfiability of Boolean expressions and integer programming are NP-complete.

3 CNF formulae and Cook’s Theorem.

(3.1) CNF formulae. A Boolean formula in conjunctive normal form, or CNF for short, is
an expression ® involving Boolean variables, literals, and clauses, such as

(AVBVC) & (AvBVC) & (A) & (AV B).
e A literal is either a Boolean variable X or its complement X
e A clause is a disjunction (L; V - --V L,) of literals, such as (AV BV D).

e A CNF is a conjunction C; & --- & C of clauses.



(3.2) A truth-assignment is a map 6 from the Boolean variables to Boolean values, where 0
means ‘false’ and 1 means ‘true.’ It can be extended to all CNFs involving these variables,
according to the following simple rules.

e §(X)=1-60(X)
e (L, V---V L) =1Iiff for at least one L;, §(L;) =1
e 0(Cy & -+ & C) =1iff for all C;, 6(C;) = 1.

For example, given
®=(AVBVC)& (AVBVC)& (A) & (AVB); 6: A—0, B—0, C—1
then
6(®) = ((OVOV1)&(OVOVI) & (0)&(0V0) =
OvVoVv1) & (OVOV0o) & (1) & (OV1) =1&0&1&1 = 0

The assignment 6 satisfies the formula ® if #(®) = 1. The above assignment does not
satisfy the given formula, though the formula is satisfiable. The following theorem is the basis
of all NP-completeness results.

(3.3) Proposition (Cook’s Theorem [4,5]). Satisfiability of CNF formulae is an NP-
complete problem. |}

It is possible to strengthen Cook’s Theorem as follows.
(3.4) Corollary 3SAT, satisfiability of CNFs all of whose clauses have 3 literals, is NP-
complete. (See [5].) |}
4 Spot scheduling

The spot-scheduling problem has been discussed in the Introduction. This section describes
the problem formally.

(4.1) Definition A spot-scheduling problem would be presented as follows

e A list of n spots, without loss of generality the integers {1,---,n}.
e A list of m breaks, without loss of generality the integers {1,---,m}.
e FEvery spot j has an associated length £(j) (a positive integer), and colour c(j).

e FEwvery break i has an associated size (or length) s(i) (a positive integer).
It is required to produce a schedule defined as follows.

(4.2) Definition Given an instance of a spot-scheduling problem, a schedule S is a map from
spots to breaks satisfying



e Colour constraint: for any break i and distinct spots j and k in S~1(i), c(j) # c(k).
Equivalently: if S(j) = S(k) then c(j) # c(k).

e Length constraint: for any break 7,

Yjes-10) £(7) s(4).

These constraints are based on commercial practice as discussed in the Introduction. The
following lemma is easy to prove and useful.

IA

(4.3) Lemma If X is an NP-complete problem, Y € NP, and X <Y (see 2.8), then Y is
NP-complete. |}

A well-known NP-complete problem is bin-packing, which is the same as spot-scheduling
with the colour requirement dropped. We consider the following kind of problem.

(4.4) Multi-partition.? An instance of a multi-partition problem consists of a list of n
positive integers £; and m positive integers B;. The problem is to determine whether there
exists a partition of {1...n} into m disjoint sublists, where for the i-th sublist L;,

JEL;

This closely resembles a spot-scheduling problem, in that the i-th sublist L; could correspond
to spots scheduled in the i-th break.

Partition and 3-partition. When m = 2 we have the so-called partition problem. The
3-partition problem discussed in [5, section 4.2] is a restricted version where n = 3m and by
construction each sublist L; contains 3 elements.

(4.5) Definition Let X be a computation problem, and n a suitable measure of input size® for
X. A feature I of X — some integer quantity associated with instances of X — is ‘small’ or
‘short’ if there exists a polynomial p(n) bounding I in absolute value.

(4.6) Proposition (See [5].) (i) The partition problem is NP-complete, even when By = Bs.
(ii) The partition problem can be solved in pseudo-polynomial time: that is, there is an algorithm
using ‘dynamic programming’ which solves the problems in about nB operations, where B =
min (By, By). Therefore if B is polynomially bounded the problem is easy. (iii) The 3-partition
problem is NP-complete, even when the lengths B; are small (< 2'%n*).

(4.7) Corollary Spot-scheduling is NP-complete, even where the breaks are ‘small’ (polyno-
mially bounded).

Proof. Given a spot-scheduling problem ¥ and a possible solution schedule S, it is easy
(2.5) to check that S satisfies the constraints (4.2). Therefore the problem is in NP.

2The term is ours, and may not occur elsewhere, but it conveniently covers the problems of interest here.
3For example, n could be the number of bits used in a description of the input. We usually take some more
natural measure: for example, in spot-scheduling, n could be the number of spots plus the number of breaks.



On the other hand, the 3-partition problem (4.4 is easily reduced to a spot-scheduling
problem; given a 3-partition problem, associate each of the numbers ¢; with a spot of length ¢;
and colour c¢;, where all the colours are distinct. It is straightforward to show this is an easy
reduction of 3-partition to spot-scheduling, which is therefore NP-complete. |}

However, this is not the end of the story, since in practice breaks are at most 3 minutes
long.

(4.8) Lemma Let B be a fized positive integer. Then the restricted form of multi-partition
(4.4) where all breaklengths are bounded by B, is easy.

Proof. for 1 <1 < B there are finitely many partitions of ¢ into a sum of positive integers.
That is, there are finitely many lists of positive integers

T1y+-.,Tk

where (without loss of generality) x4 > xo > -+ > x; and Y z; < B. Let py,...,p be an
enumeration of all these partitions.

Suppose that a bounded problem instance ¢;, 1 < 7 < n; B;, 1 < i < m, is given.
Suppose that a solution L, ..., L,, exists. Each sublist L; defines a partition of B;, and hence
corresponds to one of the partitions py. By re-ordering the numbers B; if necessary, it can be
arranged that the partitions occur in blocks with non-decreasing indices:

P1,P1,---3P1,P2y---P2,P3 - -+

Some of the blocks may be empty. According to the well-known ‘stars and bars’ counting
trick, each such arrangement can be represented by adding L — 1 markers between m objects,
where the markers separate adjacent blocks. Therefore there are at most

m+L—1
("25)
such arrangements: a polynomial in m of degree L — 1, which depends on B, the bound on
breaklengths, but B is fixed.

To solve the problem, all of these arrangements can be inspected in turn, until one is
found, if it exists, which matches the lengths ¢;,---,¢, and By,:--, B,,. This can be done in
polynomial time. |}

It is not clear whether the above lemma extends to general spot scheduling with the colour

restriction. We will prove a related NP-completeness result. The result is stated below,
followed by a definition of colour restriction.

(4.9) Theorem The related problem of spot-scheduling with colour restrictions is NP-complete,
even with bounded breaks.

(4.10) Colour restrictions and spot fixing. By this we mean that certain breaks are closed
off to certain colours. This can arise in two ways. First, there are restrictions on the advertising
times of certain products, such as cigarettes or alcohol during children’s programmes.



Second, advertisers can, at an extra charge, get their products advertised in certain desirable
breaks, such as confectionery during children’s programmes. We call such spots fized spots.
They have the effect of reducing the break length and excluding other spots of that colour.

Formally, a scheduling problem with colour restrictions is presented by specifying with each
break a list of colours which may be scheduled in that break. Formally, with the ith break is
associated a list L(i) of colours, and the constraints 4.2 are extended by requiring

e Colour restriction: if S(j) =i then ¢(j) € L(3).

5 Proof of Theorem 4.9

(5.1)  Proof of Theorem 4.9 is in two parts. First we prove the result with polynomially-
bounded break lengths, and then extend the result to bounded break lengths. In order to prove
Theorem 4.9 we introduce another NP-complete problem, a restricted form of 3SAT (3.4).

(5.2) Definition A balanced 3CNF @ is a 3CNF, that is a CNF in which every clause has 3
literals, in which every Boolean variable X occurs exactly as often as its complement X .

For example,
(AVBVC) & (AVBVC)& (AVBVC) & (AVBVCO)
is a balanced 3CNF.

(5.3) Lemma Balanced 8SAT, the satisfiability problem for balanced 3CNFs, is NP -complete.

Proof. Given an instance ® of Balanced 3SAT and a truth-assignment 6, it is easy (2.5)
to check that @ satisfies ®, so Balanced 3SAT is in NP.

3SAT is known to be NP-complete (3.4), so by invoking Lemma 4.3 it is enough to show
that

3SAT < Balanced 3SAT.

The ideas used here are those used to prove Lemma 3.4 [5].

Let ¥ be any 3CNF. We need to construct a balanced 3CNF @ which is satisfiable if and
only if ® is. ® is an extension of ¥, where new Boolean variables and clauses are added if
necessary.

Let L be a literal occurring in ¥, L its complement.* Let

e = (no. of occurrences of L in ¥) — (no. of occurrences of L).

Without loss of generality, e > 0. If e > 0 we add new Boolean variables and clauses, with
e new occurrences of L.

The easy case is where e > 2. Introduce new Boolean variables Vi,---,V,, and add the
clauses

(LVViVVe) & (LVVoVv V) & - & (LVV,.1VV,) & (LVV,VT)

to ®. The Boolean variables V; occur nowhere else in ®. A truth assignment 6 which makes
and all these new variables V; true satisfies all these new clauses, whether (L) is true (1) or
false (0).

‘If L =X then L= X.




Otherwise e = 1. Introduce new Boolean variables Vi, V5, V3, and M, and new clauses

(LVVIVV,) & (MV VoV Va) & (MV VsV V)

to ®. Again, a truth-assignment which makes all these new variables true satisfies the new
clauses, whatever value it assigns to L or M.

This completes the construction of ®. By construction, ® is a balanced 3CNF. Since every
clause in W is also a clause in @, a truth-assignment satisfying ® will also satistfy U. Conversely,
a truth-assignment which satisfies ¥ can be extended to one satisfying ®, simply by making
all new Boolean variables true. Therefore ® is satisfiable iff ¥ is. Construction of ¢ from WV is
easy (2.5), so

3SAT < Balanced 3SAT
as asserted. ||

(5.4) In order to prove Theorem 4.9, it is enough to show that
Balanced 3SAT < Spot-scheduling with colour restrictions.
The construction is quite direct. Until the end of this section, ® is a balanced 3CNF, and
Y. will be a spot-scheduling problem (with colour restrictions) which we derive from ®.

(5.5) The table below summarises the correspondences between ® and ¥, with explanations
following.

d by
Boolean variable X Boolean colours cx and cx
Boolean variable X Selection colours dx and dx

Clause (LV M V N) Clause break allowing only colours
cL, Cu, CN, length 5

Boolean variable X k surplus breaks allowing only colours
occurring k times in ® | cx and cx , length 1

(so does X)

Boolean variable X 4k literal spots: k£ each of colours cx and cx,
occurring k times in ® | lengths 1 and 2, respectively

Boolean variable X 2k selection spots of colours dx and dx
occurring k£ times in ® | and even length from 2k to 4k — 2
Boolean variable X 2k + 1 selection breaks of even length
occurring k times in ® | from 2k to 4k — 2

Boolean variable X S maps k unit cx spots and k double
occurring k times in ®, | cx spots to clause breaks,

g(X)=1 k double cx spots to selection breaks,

k unit cx spots to surplus breaks

Boolean variable X vice-versa
occurring k times in P,

0(X) =0




(5.6) Boolean colours and selection colours. For every Boolean variable X, the schedul-
ing problem ¥ will include spots of four ‘colours,” namely

e ‘Boolean’ colours cx and cx. Spots of these colours correspond to literals X and X and
will be called literal spots.

e ‘Selection’ colours dy and dw. Spots of these colours be called selection spots.

A truth-assignment selects the truth-value 1 or 0 for X; the selection colours ensure a
consistent selection of literal spots in the schedule.

Breaks are of three kinds

e ‘Clause’ breaks
e ‘Selection’ breaks

e ‘Surplus’ breaks

(5.7) The literal spots in Y. Let X be a Boolean variable occurring & times in ®. Since
® is balanced, X also occurs k times in ®.

The scheduling problem X contains 4k ‘literal spots’ with colours cx and cx. The idea will
become clear when the clause breaks are discussed. ¥ contains

e k literal spots of length 1 and colour cy (respectively, cx), called unit spots.

e k literal spots of length 2 and colour cx (respectively, cg), called double spots.

(5.8) Clause breaks. For every clause L V M V N in &, there is a corresponding ‘clause
break’ B in Y. Colour restrictions are used to ensure that only spots with the ‘Boolean’ colours
cr, ¢y, and cy, can be scheduled in B. B has length 5.

(5.9) Interim discussion. Suppose that & is satisfiable. Let § be a truth-assignment
satisfying ®. Using 6, a schedule S satisfying 3 can be defined. S will map exactly half of the
literal spots into clause breaks: namely, for any literal L, suppose (without loss of generality)
that (L) = 1. S assigns all the unit literal cz-spots, and all the double literal ¢t spots, to
clause breaks corresponding to those clauses containing L and L.

The remaining literal spots mapped to the selection and surplus breaks, discussed below.

Since each clause contains a true literal, at least one of the literal spots (there are 3) mapped
to the corresponding clause break is a unit spot. Therefore the total length of these spots is at
most 5, so the size and colour constraints are satisfied in the clause breaks, at least.

(5.10) Surplus breaks. Again let L be a literal occurring &k times in ®. X contains k
‘surplus breaks’ corresponding to L. Each can only accept spots of colours ¢;, and ¢, and has
length 1.

Suppose again that 6 is a truth-assignment for ®, (L) = 1, and S is a corresponding
schedule for ¥ which has been partially described. It maps all unit literal ¢; spots, and all
double ¢ spots, to clause breaks. It maps the unit ¢z spots to these surplus breaks, and the
double ¢;, spots to the selection breaks for L. discussed next.

9
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Figure 1: selection subsystem where k& = 3, cx is green, dx gold, ¢ red, and d blue. Breaks
and spots are rectangular. The coloured circles below a break show which colours are allowed
in that break.

(5.11) Selection spots and breaks. Let X be a Boolean variable occurring & times in &
(as does X). There is a subsystem of Y involving k selection spots of colour dx (respectively,
d), and even lengths in an arithmetic progression from 2k to 4k — 2. This gives 2k selection
spots for X.

Correspondingly, there is a subsystem of selection breaks for X. It involves k breaks of even
length from 2k to 4k — 2, each one allowing only the colours cx and dx (respectively, ¢ and
dx). This gives 2k breaks altogether. The selection subsystem has one more break of length
4k — 2, allowing only the colours dx and d. See Figure 1.

There are k selection spots of colour dx (respectively, dx), and k + 1 breaks (selection
breaks) where they can be scheduled. Referring to Figure 1, consider the ‘middle’ break which
can accept just blue and gold spots. If a blue spot is scheduled in that break, then no gold
spot can be scheduled there (the shortest blue and gold spots have length 2k and the middle
break has length 4k —2). This means that only & breaks are available for scheduling gold spots
and the gold spots fill these breaks completely. As a result, no green spots can be scheduled
in these breaks, but it is possible to schedule k£ double red spots. More formally,

(5.12) Lemma Let X be a Boolean variable occurring k times in ®, as does X.

(i) It is possible to schedule k double cx (respectively, cx) spots in the selection breaks for
X, together with the selection spots for X.

(ii) If a wvalid schedule S maps some (literal) cx spot (respectively, cx spot) into these
selection breaks, it cannot map any cx (respectively, cx) spot into these selection breaks.

Proof. (i) Easy — see Figure 1.

(ii) Suppose, without loss of generality, that a cx spot is scheduled in a selection break B.
There are k such breaks where the spot can be scheduled: suppose B is the jth in ascending

10



order of length. Its length is £ = 2(k 4+ 7 — 1). There are k — j + 1 selection spots of colour dx
and length > /, and since B contains a cx spot of nonzero length, it cannot hold any of them.
This means there are k£ — j 4+ 1 selection breaks sufficiently large to hold these spots. S must
map one to each of them, so the ‘middle break,” which allows dx and d spots, contains a dx
spot. Its length is 4k — 2 and the shortest dx spot has length 2k, so there is insufficient room
left to hold any d+ spot.

Therefore all the k£ dx spots must be mapped to the remaining k selection breaks, they fill
them completely, leaving no room for any cx spots.  |§

(5.13) Lemma If ® is satisfiable then ¥ has a valid schedule.

Proof. Let 6 be a truth-assignment satisfying ®. A valid schedule S is defined as follows.
Let X be a boolean variable occurring & times in ® (so does X). There are 6k spots associated
with X: 4k literal spots and 2k selection spots. S schedules these as follows.

e If f(X) = 1 then S maps the unit cx spots and the double cx spots into the 2k clause
breaks available for these colours.

It maps the unit ¢ spots to the surplus breaks for X, and the double cx spots plus the
selection spots to the selection breaks for X (Lemma 5.12 (i)).

e If 9(X) = 0 then X and X interchange roles and the mapping is defined symmetrically.

e Note that for any literal L, unit ¢;, spots and double ¢ spots in the clause-breaks means
‘L true, L false’ and vice-versa (see 5.9).

In view of Lemma 5.12 and paragraph 5.9, S is a valid schedule for . |}
(5.14) Lemma If ¥ has a valid schedule then ® is satisfiable.

Proof. Let S be a valid schedule for 3. We should be able to construct a truth-assignment 6
on the assumption that S schedules unit (respectively, double) cx spots in clause breaks means
6(X) =1 (respectively, #(X) = 0). However, there is nothing to prevent S from mapping both
unit and double cx spots to clause breaks.

For the last time, let X be a Boolean variable occurring k times in ® (as does X). There
are 4k literal spots available for X, and 4k breaks in which they can be scheduled: 2k clause
breaks and 2k selection breaks. Define

e A(X) =1if S maps some cx spot into a selection break.
e 9(X) =0if S maps some cx spot into a selection break.

e By Lemma 5.12 (ii), these cases are mutually exclusive.

We define a related schedule S'.
Suppose, without loss of generality, that (X) = 1. Then S assigns none of the literal cx
spots to selection breaks. They must all be mapped to clause breaks and surplus breaks. All

11



the unit ¢ spots map to surplus breaks, since they have length 1. Therefore all the double
Cx spots map to clause breaks.

The only way, therefore, in which the literal spots for X are mixed is where unit cx spots are
scheduled in selection breaks. But these spots can be swapped with double cx spots scheduled
in clause breaks. Since the selection breaks have room for double spots, the alterations do not
violate the length constraints.

Thus we arrive at a valid schedule S’ with the property that if #(X) = 1 then only unit
cx spots and double cy spots are scheduled in clause breaks. Since every clause break now
contains three literal spots of total length < 5, every clause contains a literal true under 6: 6
satisfies @, so @ is satisfiable. |}

(5.15) Proof of weak form of Theorem 4.9 (that spot-scheduling with colour restrictions
is NP-complete, with polynomial-size breaks).

Given a problem instance ¥ of a spot-scheduling with colour restrictions, it is obviously
easy to verify that a given schedule S of ¥ is valid. Therefore the problem is in NP.

Given a Balanced 3CNF &, we have described a corresponding spot-scheduling problem
(with colour restrictions) 3 which has a solution if (Lemma 5.13) and only if (Lemma 5.14) &
is satisfiable. X is obviously easy to construct from ®. Therefore

Balanced 3SAT < Spot-scheduling with colour restrictions.
The former is NP-complete (5.3) and the latter is in NP, so it is NP-complete (4.3). |}

To complete our proof, it is enough to show the following

(5.16) Lemma A restricted form of BALANCED 3SAT, in which each literal occurs at most
3 times, is NP-complete.

Proof. The problem is in NP by a routine argument which we omit.

Let ® be a balanced 3CNF in which a boolean variable A occurs k > 3 times (as must
its complement A). Create a new balanced 3CNF &' in which corresponding to A and its
complement there are k variables A1, ..., Ay (and their complements), each one occurring in a
location corresponding to A (or A). Now @' has only one occurrence of each A; and A;.

It is enough to extend ® by clauses ensuring the logical equivalence of the variables
Ay, ... Ag. For 1 <i < k, add the clauses

(A VA VX;) &(A; VA1 VIXG) &(AV A1 VX)) &(A; VA vV XG)

where the X; are k¥ — 1 new variables. (These clauses preserve balance, since every variable
occurs as often as its complement.) Now each X; and its complement occurs twice. and each
A; and its complement occurs 3 times.

Repeat this procedure for every variable occurring more than 3 times in &, obtaining a
balanced 3CNF W. It is easy to convert a satisfying truth-assignment for & to one for ¥ and
vice-versa. Thus & is satisfiable iff ¥ is. Construction of ¥ from & is easy, and ¥ has the
desired form (balanced 3CNF in which no literal occurs more than 3 times). Therefore the
satisfiability problem for 3CNFs of the desired form is NP-complete. |}

(5.17) Proof of Theorem 4.9. The proof of the weak form (5.15) argued that satisfiability
of a Balanced 3CNF @ is easily reduced to a spot-scheduling problem 3.

12



By Lemma 5.16, we can restrict our attention to those balanced 3CNFs ® in which every
literal occurs at most 3 times.

With this assumption, referring to the table 5.5, the parameter k& (number of occurrences
of a literal) is at most 3. The selection breaks have length at most 4k — 2, i.e., at most 10. The
other breaks have lengths 1 and 5. So the longest break is 10 units long. |

6 Scheduling unit-length spots is easy

We consider spot-scheduling problems where all spots have the same length, without loss of
generality, 1. First we consider the on-line or dynamic problem, where the breaks are fixed
but the spots are booked individually. The schedule should accommodate all spots currently
booked, and signal when no schedule is possible. Spot dispersal (see [2]) means re-scheduling
existing spots to make room for an incoming spot.

Spot dispersal works with or without colour restrictions and/or spot fixing (4.10).

(6.1) Definition A break is full under the schedule S if its length equals the total length of
spots scheduled in the break.

(6.2) Dispersal chains (See [2]). Let S be a schedule solving a certain unit-length scheduling
problem. A dispersal chain is a mixed sequence of breaks and colours, such as

by — K1 ¢ by Ko ¢ -+ - K, < by,

indicating (if » > 0) that S can be altered by moving a spot of colour ; from b; to by, and so
on, until finally a spot of colour x, is moved from b, to b,_1.

The break by must not be full, but all the other breaks are full. The j + 1st break must of
course contain a non-fixed spot of colour ;11, and b; must not contain a spot of colour ;4
and must not exclude spots of that colour through colour restrictions.

Under these assumptions, the altered schedule satisfies the constrants (4.2, 4.10).

(6.3) Lemma Suppose that S is a schedule for some spots, and a new non-fized spot, coloured
red, say, is to be scheduled. Let R be the set of breaks not assigned red spots by S and not
excluding red spots under colour restrictions, and let N be the set of breaks not filled by S.

Then the incoming red spot can be scheduled along with the the previous spots, if and only
if a dispersal chain exists connecting a break in R to a break in N.

Proof. If: easy.

Only if: (sketch). Suppose that a full schedule S’ exists for all the spots, including the last
red one. Construct a directed graph G, nodes corresponding to breaks, with an edge connecting
break b to break c, if S schedules a spot in b but S’ schedules the same spot in ¢ (¢ # b).

A dispersal chain corresponds to a simple path in G. Randomly try to build a simple
path from R to N. If one succeeds without encountering a cycle, one has a dispersal chain.
Otherwise, finding a simple cycle, use it to modify S’, obtaining another full schedule which
agrees more closely with S. So after finitely many steps one discovers a dispersal chain.  |]
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(6.4) Finding a dispersal chain. Given a schedule S and a new spot of colour ¢, call it
red, let By consist of all breaks not filled by S. Let R consist of all breaks not assigned red
spots by S and not excluding red spots.

Any break in RN By is a trivial dispersal chain, so if the intersection is nonempty, stop.
Otherwise, let K; consist of all colours k for which Bj contains a break not containing spots
of colour k and not excluding k. Let By consist of all breaks, not in By, containing non-fixed
spots whose colours are in K.

In general, K;,; consists of all colours x, not in Uf) K, for which B; contains a break not
containing spots of that colour and not excluding that colour. Let B;,; consist of all breaks,
not in U} Bj, which contain non-fixed spots whose colours are in K;.;.

Stop when a set B; is generated which either intersects R or it (and all subsequent B; and
K;) is empty.

Clearly this procedure is easy (polynomial time).

(6.5) Lemma A break b is connected to a break in By by a dispersal chain of length j if and
only if b € B; for somei < j. |}

Given a break b in B;, constucting a dispersal chain from b to a break in By is straightfor-
ward.

(6.6) Theorem The problem of scheduling unit-length spots can be solved easily (i.e., in poly-
nomial time) by spot dispersal, whether or not the problem has colour restrictions or fized

spots. |}

(6.7) The off-line unit-length scheduling problem without colour restrictions. If
we defer the scheduling problem until all the spots have been received, and there are no fixed
spots or colour restrictions, there is a more efficient method:

e Arrange the spots into groups according to colour: each group contains all spots of a
given colour.

e Arrange the breaks in decreasing order of length.

e Repeat the following for each group of spots:

Schedule the spots in the group in a ‘greedy’ fashion that is, the first spot goes into the
first break, the second into the second break, and so on, until all spots in the group are
scheduled or there are no breaks left with free space available. In this case, stop and
report ‘problem unsolvable.’

Otherwise, re-order the breaks according to descending residual length (that is, break
length minus length of spots scheduled in break) and continue with the next colour

group.

(6.8) The above method can be implemented efficiently — in linear time— using suitable
linked structures. A runtime directly proportional to the input length is possible. Its correctness
is not obvious.
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(6.9) Lemma If any schedule is possible, then this method will compute one.

Proof. The proof is a kind of induction; that is, we imagine the method as proceeding as far
as it can until it ‘makes a wrong move.” So we can assume that it constructs a partial schedule
S for some of the spots, and is unable to schedule the next spot, although spot dispersal would
permit it to do so.

Suppose for clarity that the method fails to schedule a red spot.

Since spot dispersal is assumed possible, the red spot can be scheduled if we shift spots
along a chain of breaks ending at a non-full break. Suppose for clarity that the last shift moves
a yellow spot from a break B into a break C' in N, where N denotes the set of breaks not yet
full.

The off-line scheduling method is currently scheduling red spots and has finished scheduling
all yellow spots. There may be several ways to apply spot-dispersal, but without loss of
generality, yellow is the most recently scheduled colour occurring first (6.2) in some dispersal
chain.

Consider the set A of all colours which have been scheduled after yellow, including red.
The assumption about yellow implies that every colour in A is represented in every break in
N. Therefore after the yellow spots were scheduled each break in NNV, including C, had more
than |A| units of free space.

The break B is full and contains no red spot, so the yellow spot was scheduled in B, when
it had at most |A| units of free space. This is impossible, since C' should have been allocated
a yellow spot before B was. |}
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