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Abstract. We construct a new numerical method for computing refer-
ence numerical solutions to the self–similar solution to the problem of
incompressible laminar flow past a thin flat plate with suction–blowing.
The method generates global numerical approximations to the veloc-
ity components and their scaled derivatives for arbitrary values of the
Reynolds number in the range [1,∞) on a domain including the boundary
layer but excluding a neighbourhood of the leading edge. The method is
based on Blasius’ approach. Using an experimental error estimate tech-
nique it is shown that these numerical approximations are pointwise ac-
curate and that they satisfy pointwise error estimates which are indepen-
dent of the Reynolds number for the flow. The Reynolds–uniform orders
of convergence of the reference numerical solutions, with respect to the
number of mesh subintervals used in the solution of Blasius’ problem, is
at least 0.86 and the error constant is not more than 80. The number
of iterations required to solve the nonlinear Blasius problem is indepen-
dent of the Reynolds number. Therefore the method generates reference
numerical solutions with ε–uniform errors of any prescribed accuracy.

1 Introduction

The numerical solution of singularly perturbed boundary value problems, for
which the solutions exhibit boundary layers, gives rise to significant difficulties.
The errors in the numerical solutions of such problems generated by classical
numerical methods depend on the value of the singular perturbation parameter
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ε, and can be large for small values of ε [2]. For representative classes of sin-
gular perturbation problems special methods have been constructed and shown
theoretically to generate numerical approximations that converge ε–uniformly.
Also, numerical experiments have confirmed the efficacy of such methods in prac-
tice [2]. Singularly perturbed boundary value problems, for which the solutions
exhibit boundary layers, frequently arise in flow problems with large Reynolds
number Re. In such problems the small parameter ε = Re−1. The discretization
of such problems gives rise to nonlinear finite difference methods for which there
is no known ε–uniform error analysis in the maximum norm. For this reason an
experimental method for justifying ε–uniform convergence is the only remaining
possibility. To make use of such a technique, especially for large Re, it is essential
to have a known ε–uniform reference solution which approximates the exact so-
lution to any prescribed accuracy. For flow problems with boundary layers there
is usually no known analytic solution that can be used as a reference solution,
and the same is true even for problems with a self–similar solution. Thus the
task of constructing a reference numerical solution with ε–uniform errors of any
prescribed accuracy arises from a wide class of flow problems.

An example of such a problem is flow past a flat plate with suction–blowing,
for all Reynolds numbers for which the flow remains laminar and no separation
occurs. For this problem it is important to construct a numerical method for
which the pointwise errors in the scaled numerical solutions and their scaled
derivatives are independent of the Reynolds number. In the present paper we
consider the associated Prandtl problem of flow past a flat plate with suction–
blowing. For large values of the Reynolds number the solution of this problem
exhibits parabolic boundary layers in the neighbourhood of the plate, outside a
neighbourhood of the leading edge. At the leading edge new singularities appear
due to the incompatibilities of the problem data at the leading edge. Therefore,in
the present paper we construct a numerical method which generates Reynolds–
uniform reference numerical approximations to the scaled velocity components
and their scaled derivatives for arbitrary values of the Reynolds number in a finite
rectangular domain including the boundary layer but excluding a neighbourhood
of the leading edge. This numerical method is based on the numerical solution
of the related Blasius problem on the positive semi–axis. The accuracy of the
numerical approximations depends on only the number of mesh subintervals N
used for the solution of the Blasius problem. Our method is a development of
that described in [2] for flow past a flat plate without suction–blowing.

2 Formulation of the Problem

We are required to find the solution, and its derivatives, of Prandtl’s problem for
incompressible flow past a semi–infinite flat plate P = {(x, 0) ∈ <2 : x ≥ 0} with
suction–blowing in a bounded domain D, which adjoins the plate and contains
the boundary layer.

Prandtl’s problem on the cut plane Ω = <2\P is described as follows



Reynolds–uniform numerical method 3

(PP )



Find uP = (uP , vP ) such that for all (x, y) ∈ Ω
uP satisfies the differential equations

−1
Re

∂2uP (x,y)
∂2y + uP · ∇uP (x, y) = 0

∇ · uP(x, y) = 0

with the boundary conditions

uP (x, 0) = 0, vP = v0(x) for all x ≥ 0

lim|y|−>∞ uP(x, y) = limx−>−∞ uP(x, y) = (1, 0), for all x ∈ <

where v0(x) is the vertical component of the suction–blowing velocity. This is a
nonlinear system of equations for the unknown components uP , vP of the velocity
uP . The solution at all points in the open half plane to the left of the leading
edge is uP = (1, 0). For special choices of the function v0 the solution of (PP ) is
self–similar, see (3) below.

Note that in Prandtl’s problem, even without suction–blowing, the vertical
component of the velocity tends to infinity as we approach the leading edge. To
avoid this singularity, we choose the computational domain D = (a,A)× (0, B)
where a,A and B are fixed positive numbers independent of Re. Our aim is to
construct a method for finding reference numerical approximations to the self–
similar solution and its derivatives of problem (PP ) for arbitrary Re ∈ [1,∞)
with error independent of Re.

We now describe conditions under which the solution of (PP ) is self–similar.
Using the approach of Blasius, see [1], for example, a solution uP = (uP , vP ) of
(PP ) can be written in the form

uP (x, y) ≡ uB(x, y) = f ′(η) (1)

vP (x, y) ≡ vB(x, y) =

√
1

2xRe
(ηf ′(η)− f(η)) (2)

where

η = y
√
Re/2x

and the function f is the solution of the problem

(PB)



Find a function f ∈ C3([0,∞)) such that for all η ∈ (0,∞)

f ′′′(η) + f(η)f ′′(η) = 0

with the boundary conditions

f(0) = f0, f ′(0) = 0, limη−>∞ f
′(η) = 1.
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(PB) is known as Blasius’ problem and uB = (uB, vB) is known as the Blasius
solution of (PP ). The existence and uniqueness of a solution to this third order
nonlinear ordinary differential equation is discussed in [1]. Positive values of f0
correspond to suction, while negative values of f0 represent blowing, and f0 is
related to v0 in (PP ) by the formula (see for example [3])

v0(x) = −f0
√

1/2xRe. (3)

The first order derivatives of the velocity components uP and vP are given
by

∂uP
∂y

(x, y) =
∂uB
∂y

(x, y) =
η

y
f ′′(η) (4)

∂vP
∂y

(x, y) =
∂vB
∂y

(x, y) =
η

2x
f ′′(η) (5)

∂uP
∂x

(x, y) = −∂vP
∂y

(x, y) (6)

∂vP
∂x

(x, y) =
∂vB
∂x

(x, y) = − 1
2x

[vB +

√
1

2xRe
η2f ′′(η)] (7)

From (1), (2), (4), (5), (6) and (7) we see that to find the velocity com-
ponents uP and vP , and their first order derivatives, it is necessary to know
f ′(η), ηf ′(η) − f(η), ηf ′′(η) and η2f ′′(η) for all η ∈ [0,∞). We also observe
from these relations that, when Re is large, vP and ∂vP

∂x are small and ∂uP

∂y is
large. Therefore, in order to have values of order unity, we use the following
scaled components:

√
RevP ,

√
Re ∂vP

∂x , and 1√
Re

∂uP

∂y .
In the next section numerical approximations to the solution of (PB), and

its first order derivatives, are constructed on the semi-infinite domain [0,∞).

3 Numerical Solution of Blasius’ Problem

To find uP and vP and their first order derivatives we have to solve (PB) for
f and its derivatives on the semi-infinite domain [0,∞). This is not a trivial
matter, since numerical solutions can be obtained at only a finite number of
mesh points. For this reason, for each value of the parameter L ∈ [1,∞), we
introduce the following problem on the finite interval (0, L)

(PB,L)



Find a function fL ∈ C3(0, L) such that for all η ∈ (0, L)

f ′′′L (η) + fL(η)f ′′L(η) = 0

with the boundary conditions

fL(0) = f0, f ′L(0) = 0, f ′L(L) = 1.
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The collection of all such problems forms a one-parameter family of problems
related to (PB), where the interval length L is the parameter of the family.
Because the values of fL, f ′L and f ′′L are needed at all points of [0,∞), we
introduce the following extrapolations

f ′′L(η) = 0, for all η ≥ L (8)
f ′L(η) = 1, for all η ≥ L (9)
fL(η) = (η − L) + fL(L), for all η ≥ L. (10)

To solve (PB), we first obtain a numerical solution FL of (PB,L) on the finite
interval (0, L) for an increasing sequence of values of L. Then, we extrapolate
FL to the semi-infinite domain [0,∞). The sequence of values of L is defined as
follows. For each even number N ≥ 4 define LN = lnN (see [2] for motivation
for this choice of LN ) and consider the corresponding finite interval [0, LN ].
On [0, LN ] a uniform mesh I

N

u = {ηi : ηi = iN−1lnN, 0 ≤ i ≤ N}N0 with N
mesh subintervals is constructed. Then numerical approximations FL, D+FL,
D+D+FL to fL, f ′L, f ′′L respectively, are determined at the mesh points in I

N

u

using the following non-linear finite difference method

(PNB,L)


Find F on ĪNu such that, for all ηi ∈ INu , 2 ≤ i ≤ N − 1,

δ2(D−F )(ηi) + F (ηi)D+(D−F )(ηi) = 0

F (0) = f0 D+F (0) = 0, and D0F (ηN−1) = 1.

We note that, in order to simplify the notation, we have dropped explicit use of
the indices L and N . Thus, we denote the solution of PNB,L by F instead of FNL .

Since (PNB,L) is non-linear, we use the following iterative solver to compute
its solution

(ANB )



For each integer m, 1 ≤ m ≤M, find Fm on INu such that , for all ηi ∈ INu

δ2(D−Fm)(ηi) + Fm−1(ηi)D+(D−Fm)(ηi)−D−(Fm − Fm−1)(ηi) = 0

Fm(0) = f0, D+Fm(0) = 0, and D0Fm(ηN−1) = 1

with the starting values for all mesh points ηi ∈ I
N

u

F 0(ηi) = ηi.

Algorithm (ANB ) involves the solution of a sequence of linear problems, with
one linear problem for each value of the iteration index m. The total number
of iterations M is taken to be M = 8lnN The motivation for this choice of
M is described in [2]. It is important to note the crucial property that M is
independent of the Reynolds number Re. The final output of algorithm (ANB )
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is denoted by F , where again we simplify the notation by omitting explicit
mention of the total number of iterations M . We follow the same criterion as
in [2] to determine F on the finest required mesh as the ”exact” solution.The
corresponding value of N is denoted by N0.

To ensure that F , D+F and D+D+F are defined at all points of each
mesh I

N

u the following values are assigned: D+F (ηN ) = 1, D+D+F (ηN−1) =
0, D+D+F (ηN ) = 0. We then define F , D+F and D+D+F at each point of
[0, LN ] using piecewise linear interpolation of the values at the mesh points of I

N

u .
The resulting interpolants are denoted by F , D+F and D+D+F respectively.

In order to define F , D+F and D+D+F at each point η ∈ [0,∞) the following
extrapolations, analogous to (8), (9) and (10), are introduced

D+D+F (η) = 0, for all η ∈ [LN ,∞) (11)
D+F (η) = 1, for all η ∈ [LN ,∞) (12)

F (η) = F (LN ) + (η − LN ), for all η ∈ [LN ,∞). (13)

The values of F , D+F and D+D+F , respectively, are the required numerical
approximations to f, f

′
, f

′′
of the Blasius solution and its derivatives at each

point of [0,∞).

4 Numerical Experiments for Blasius’ Problem

In [3] a limiting value for suction is found at f0 = 7.07 and for blowing at
f0 = −0.875745. In numerical experiments to illustrate the proposed technique,
we take the representative values f0 = 3 and f0 = 6 for suction; f0 = −0.25 and
f0 = −0.5 for blowing.

We want to determine error estimates for the approximations F , D+F and
D+D+F to f, f

′
and f

′′
, respectively, for all N ≥ 2048. Consequently, we take

IN0
u , whereN0 = 65536, to be the finest mesh on which we solve Blasius’ problem.

Using the experimental numerical technique described in [2] we determine the
following computed error estimates

f0 = 3

‖F − f‖[0,∞) ≤ 2.505N−0.86

‖D+F − f ′‖[0,∞) ≤ 1.452N−0.86

‖D+D+F − f ′′‖[0,∞) ≤ 20.427N−0.84

f0 = 6

‖F − f‖[0,∞) ≤ 2.635N−0.86

‖D+F − f ′‖[0,∞) ≤ 2.925N−0.86

‖D+D+F − f ′′‖[0,∞) ≤ 65.927N−0.81
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f0 = −0.25

‖F − f‖[0,∞) ≤ 1.066N−0.86

‖D+F − f ′‖[0,∞) ≤ 0.202−0.86

‖D+D+F − f ′′‖[0,∞) ≤ 0.453N−0.86

f0 = −0.5

‖F − f‖[0,∞) ≤ 0.603N−0.85

‖D+F − f ′‖[0,∞) ≤ 0.345N−0.87

‖D+D+F − f ′′‖[0,∞) ≤ 0.488N−0.86.

Similarly, the computed error estimates for the approximations ηD+F (η)−
F (η), ηD+D+F (η) and η2D+D+F (η) to (ηf

′ − f)(η), ηf
′′
(η) and η2f

′′
(η),

respectively, for all N ≥ 2048, are

f0 = 3

‖(ηD+F − F )− (ηf
′ − f)‖[0,∞) ≤ 2.505N−0.86

‖η(D+D+F − f ′′
)‖[0,∞) ≤ 1.8N−0.85

‖η2(D+D+F − f ′′
)‖[0,∞) ≤ 0.7N−0.86

f0 = 6

‖(ηD+F − F )− (ηf
′ − f)‖[0,∞) ≤ 2.635N−0.86

‖η(D+D+F − f ′′
)‖[0,∞) ≤ 3.297N−0.85

‖η2(D+D+F − f ′′
)‖[0,∞) ≤ 0.745N−0.86

f0 = −0.25

‖(ηD+F − F )− (ηf
′ − f)‖[0,∞) ≤ 1.066N−0.86

‖η(D+D+F − f ′′
)‖[0,∞) ≤ 1.178N−0.86

‖η2(D+D+F − f ′′
)‖[0,∞) ≤ 3.275N−0.86

f0 = −0.5

‖(ηD+F − F )− (ηf
′ − f)‖[0,∞) ≤ 1.228N−0.86

‖η(D+D+F − f ′′
)‖[0,∞) ≤ 1.670N−0.86

‖η2(D+D+F − f ′′
)‖[0,∞) ≤ 5.952N−0.86.

We see from the above computed error estimates that, in all cases and at
each point of [0,∞), the orders of convergence with respect to N , the number of
mesh intervals used to solve Blasius’ problem, are not less than 0.81. Similarly,
in all cases, the error constants are at most 65.927. The worst cases occur for
f0 = 6.
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5 Numerical Experiments for Prandtl’s Problem

In this section we find reference numerical solutions of Prandtl’s problem and
computed error estimates for the scaled numerical solutions and their derivatives.
In all of the numerical computations we use the specific values a = 0.1, A =
1.1, B = 1.0.

We construct the approximations UB = (UB , VB) of the velocity components
uB of the self–similar solution of Prandtl’s problem (PP ) by substituting the
approximate expressions F and D+F for f and f ′ respectively, into (1) and (2).
Thus, for each (x, y) in the open quarter plane {(x, y) : x > 0, y > 0)} we have

UB(x, y) = D+F (η) (14)

VB(x, y) =

√
1

2xRe
(ηD+F (η)− F (η)) (15)

We call UB = (UB , VB) the reference numerical solutions of the self–similar
solution of Prandtl’s problem (PP ).

We now assume that error estimates, for the scaled approximations (UB ,
√
ReVB)

to (uP ,
√
RevP ), of the form

‖UB − uP ‖Ω ≤ C1N
−p1

√
Re‖VB − vP ‖Ω ≤ C2N

−p2

are valid for allN > N0 where p1 > 0, p2 > 0, and the constantsN0, p1, p2, C1, C2

are independent of the total number of iterations M and the number of mesh
intervals N used in the numerical solution of Blasius’ problem.

The errors in the x-component UB and the scaled y-component
√
ReVB of

the velocity corresponding to M ≥ 8lnN satisfy

‖UB − uP ‖Ω = ‖D+F − f ′‖[0,∞)

√
Re‖VB − vP ‖Ω =

√
Re‖

√
1

2xRe
[(ηD+F (η)− F (η))− (ηf ′ − f)]‖[0,∞)

≤
√

5‖(ηD+F (η)− F (η))− (ηf
′
− f)‖[0,∞).

Then, using the experimental numerical technique described in [2] and the com-
puted error estimates for the numerical solutions of Blasius’ problem in the pre-
vious section, we obtain for all N ≥ 2048 the following computed error estimates
for the reference numerical solutions of Prandtl’s problem

f0 = 3

‖UB − uP ‖Ω ≤ 1.452N−0.86

√
Re‖VB − vP ‖Ω ≤ 5.601N−0.86
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f0 = 6

‖UB − uP ‖Ω ≤ 2.925N−0.86

√
Re‖VB − vP ‖Ω ≤ 5.89N−0.86

f0 = −0.25

‖UB − uP ‖Ω ≤ 0.202N−0.86

√
Re‖VB − vP ‖Ω ≤ 2.38N−0.86

f0 = −0.5

‖UB − uP ‖Ω ≤ 0.345N−0.87

√
Re‖VB − vP ‖Ω ≤ 1.35N−0.86.

We see from these computed error estimates that, in all cases, the orders
of convergence with respect to N , the number of mesh intervals used to solve
Blasius’ problem, are at least 0.86. Similarly, in all cases, the error constants are
at most 5.89. The worst case occurs for f0 = 6.

Substituting the appropriate expressions into (4), (5), (6) and (7) we obtain
the approximations DxUB , DyUB , DxVB , DyVB to the first order derivatives of
the velocity components of the self–similar solution of Prandtl’s problem (PP ),
where

DyUB(η(x, y)) =
η

y
D+
η D

+
η F (η)

DyVB(η(x, y)) =
η

2x
D+
η D

+
η F (η)

DxUB(η(x, y)) = −DyVB(η(x, y))

DxVB(η(x, y)) = − 1
2x

(VB +

√
1

2xRe
η2D+

η D
+
η F (η)).

From the computed error estimates for the numerical solutions of Blasius’
problem, in the previous section, we obtain for all N ≥ 2048 the following
computed error estimates for the reference scaled discrete derivatives of the
velocity components

1√
Re
‖DyUB −

∂uP
∂y
‖Ω =

√
1

2x
‖D+

η D
+
η F (η)− f

′′
(η)‖[0,∞)

≤
√

5‖D+
η D

+
η F (η)− f

′′
(η)‖[0,∞)



10 B. Gahan, J.J.H. Miller, G.I. Shishkin

‖DyVB −
∂vP
∂y
‖Ω = ‖DxUB −

∂uP
∂x
‖

=
η

2x
‖D+

η D
+
η F (η)− f ′′(η)‖

√
Re‖DxVB −

∂vP
∂x
‖Ω =

√
Re

2x
(‖VB − vB‖+

√
1

2xRe
η2‖D+

η D
+
η F (η)− f

′′
(η)‖)

≤ 1
2x

(
√
Re‖VB − vB‖+

√
1

2x
η2‖D+

η D
+
η F (η)− f ′′(η)‖).

Then, for all N ≥ 2048 we obtain the following estimates

f0 = 3

1√
Re
‖DyUB − ∂uP

∂y ‖Ω ≤ 45.676N−0.86

‖DyVB − ∂vP

∂y ‖Ω ≤ 9N−0.85

√
Re‖DxVB − ∂vP

∂x ‖Ω ≤ 35.831N−0.86

f0 = 6

1√
Re
‖DyUB − ∂uP

∂y ‖Ω ≤ 147.42N−0.86

‖DyVB − ∂vP

∂y ‖Ω ≤ 16.49N−0.85

√
Re‖DxVB − ∂vP

∂x ‖Ω ≤ 37.78N−0.86

f0 = −0.25

1√
Re
‖DyUB − ∂uP

∂y ‖Ω ≤ 1.01N−0.86

‖DyVB − ∂vP

∂y ‖Ω ≤ 5.89N−0.86

√
Re‖DxVB − ∂vP

∂x ‖Ω ≤ 48.52N−0.86

f0 = −0.5

1√
Re
‖DyUB − ∂uP

∂y ‖Ω ≤ 1.09N−0.86

‖DyVB − ∂vP

∂y ‖Ω ≤ 8.35N−0.86

√
Re‖DxVB − ∂vP

∂x ‖Ω ≤ 73.3N−0.86.

We see from these computed error estimates that, in all cases, the orders
of convergence with respect to N , the number of mesh intervals used to solve
Blasius’ problem, are at least 0.85. Similarly, in all cases, the error constants are
at most 73.3. The worst order of convergence occurs for f0 = 6 and the worst
error constant for f0 = −0.5.
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Remark on Navier-Stokes’ Problem It is well known that incompressible flow
past a plate P = {(x, 0) ∈ <2 : x ≥ 0} with suction–blowing in the domain
D = <2\P is governed by the Navier-Stokes equations

(PNS)



Find uNS = (uNS , vNS), pNS such that for all (x, y) ∈ D
uNS satisfies the differential equations

− 1
Re4uNS + uNS · ∇uNS = − 1

ρ∇pNS

∇ · uNS = 0

with the boundary conditions

uNS(x, 0) = 0, vNS = v0(x) for all x ≥ 0

lim|y|−>∞uNS(x, y) = limx−>−∞uNS(x, y) = (1, 0), for all x ∈ <

where uNS is the velocity of the fluid, Re is the Reynolds number, ρ is the
density of the fluid and p is the pressure. This is a nonlinear system of equations
for the unknowns uNS , pNS . It is known that the solution of (PP ) is a good
approximation to the solution of (PNS) in a subdomain excluding the leading
edge region, provided that the flow remains laminar and no separation occurs.
Moreover, as Re increases the difference between the solutions of problems (PP )
and (PNS) decreases. This means that the reference solution of Prandtl’s problem
is the leading term in the solution of the above Navier–Stokes’ problem.

6 Conclusion

For the problem of incompressible laminar flow past a thin flat plate with
suction–blowing we construct a new numerical method for computing reference
numerical solutions to the self–similar solution of the related Prandtl problem.
The method generates global numerical approximations to the velocity compo-
nents and their scaled derivatives for arbitrary values of the Reynolds number
in the range [1,∞) on a domain including the boundary layer but excluding a
neighbourhood of the leading edge. The method is based on Blasius’ approach.
Using an experimental error estimate technique it is shown that these numer-
ical approximations are pointwise accurate and that they satisfy pointwise er-
ror estimates which are independent of the Reynolds number for the flow. The
Reynolds–uniform orders of convergence of the reference numerical solutions,
with respect to the number of mesh subintervals used in the solution of Blasius’
problem, is at least 0.86 and the error constant is not more than 80. The num-
ber of iterations required to solve the nonlinear Blasius problem is independent
of the Reynolds number. Therefore the method generates reference numerical
solutions with ε–uniform errors of any prescribed accuracy.
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