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ABSTRACT. We consider free convection near a semi-infinite vertical
flat plate. This problem is singularly perturbed with perturbation
parameter Gr, the Grashof number. Our aim is to find numerical
approximations of the solution in a bounded domain, which does not
include the leading edge of the plate, for arbitrary values of Gr > 1.
Thus, we need to determine values of the velocity components and
temperature with errors that are Gr—independent. We use the Blasius
approach to reformulate the problem in terms of two coupled non-
linear ordinary differential equations on a semi— infinite interval. A
novel iterative numerical method for the solution of the transformed
problem is described and numerical approximations are obtained for
the Blasius solution functions, their derivatives and the corresponding
physical velocities and temperature. The numerical method is Gr—
uniform in the sense that error bounds of the form C, NP, where
Cp and p are independent of the Gr, are valid for the interpolated
numerical solutions. The numerical approximations are therefore of
controllable accuracy.
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1 THE FREE CONVECTION PROBLEM

A free or natural convection flow occurs when a fluid at rest, subjected to
a body force such as gravity, is near an object at a different temperature.
The heat transfer between the object and the fluid causes an increase or a
decrease in the fluid density at the surface of the object, and thus generates
an unbalancing body force. The fluid near the surface is accelerated, and a
boundary layer develops. We study this problem for a two-dimensional, steady
flow near a semi-infinite flat plate. This involves an interesting and typical
system of singularly perturbed partial differential equations.
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Our goal is to construct a numerical method for this problem in a bounded
domain that does not include the leading edge of the plate. Because the solution
we seek is self-similar, using Blasius’ approach, we can reduce the problem to
the numerical solution of a coupled system of nonlinear ordinary differential
equations. We require that the numerical approximations generated by our
method converge to the exact solution with an order of convergence that is
independent of the Grashof number Gr for all Gr > 1. We refer to a numerical
method with this property as a layer-resolving method. No standard numerical
method exists, which fulfills this requirement.

1.1 PHYSICAL DESCRIPTION

We consider a semi-infinite vertical flat plate in an incompressible fluid. We
assume that the density of the fluid varies linearly with the temperature and
that its other properties are constant. The plate is heated to the temperature
61, while the fluid temperature away from the plate is 6.

For 6; > 6, the heat transfer into the fluid decreases its density in a small
region around the plate, resulting in an upward motion of the fluid. Since
motion in the fluid results only from this heat transfer, we assume that the
fluid away from the surface is not affected by this upward motion.

The governing equations are

Oou Ov
9z + oy 0 (1)
du du ~ 8%u
U —H)a— =980 —0) + I/a—y2

L 00
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with the boundary conditions

v=u=0, 6=60, for y=0
u — 0, 0 -0, for y— o0

When we non-dimensionalise these equations we obtain

ou 00
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with the boundary conditions

1 for g=0
=0 for g
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where the Grashof and Prandtl numbers have their usual definitions
BL3 (6 — O

Pr = 4)

124
(0]
1.2 BLASIUS’ FORMULATION

The problem is now transformed using Blasius’ technique to a one dimensional
problem. For a complete description of this we refer the reader to [2].
The transformed problem involves the unique dimensionless variable

1
_(Gr\* g
=173 F1/4
and two dimensionless functions f and ¢, which are related to the physical
velocities and temperature through the following relations

6(#,9) = tn) ()
PO Gr\? .1

we) = 4(5) trm ©

FOPA Gr\t 1
i) = () 55 0rm -3 ¢

T4

In terms of these functions, the governing equations become

t"+3Pr-ft' =0 (8)
f///+3ff//_2f/2+t:0 (g)

with the boundary conditions

f0)=rf'0)=0, #0)=1

f'(n = 00) =0, t(np — o0) = 0

This is again a singularly perturbed problem. Our aim is to find numerical
approximations of the velocity components and temperature in a bounded do-
main, which does not include the leading edge of the plate. Because we want
this solution for arbitrary values of Gr > 1, we need to determine numerical
approximations to the solution of the above problem at each point 7 of the
semi-infinite interval T = (0, c0).
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2 LAYER-RESOLVING METHOD FOR BLASIUS’ PROBLEM

The equations obtained by Blasius are posed on the semi-infinite interval I,
and there are boundary conditions at infinity. It is obvious that the problem
cannot be solved numerically in this form. A standard alternative approach
is to satisfy these boundary conditions by using an iterative method involving
additional boundary conditions at n = 0 (see [2]).

0 o infinity

Figure 1: Mesh on semi-infinite domain for Blasius’ problem.

Here we use the method described in [1, Chap.11], which yields a solution on
the whole of I. We divide I into two subintervals, [0, L] and [L,+4oc0). On
the first we define a discrete problem on a uniform mesh, and on the second
we define an affine extension of each function using the boundary conditions.
Thus, for T, the interpolated function of the discrete approximation of ¢, we
have T(n — +00) = 0 and therefore we take T'(n > L) = 0. Similarly, for F
we know that a%f(n — +00) = 0 and we take F(n > L) = F(L), where this
latter value is obtained from the solution of the discrete problem on [0, L].

In order to guarantee that the method is Gr—uniform, a careful choice of the
point L is of course crucial. We take Ly = In N and on the subinterval [0, Lx]
we define the uniform mesh IV = {z; = iN !InN : 0 <4 < N}. This choice
is motivated by the discussion in [1] for a simpler problem. The computations
described in what follows show that in practice the resulting method is L-
uniform.

We introduce the discrete problem

Vie{l---N —1}, 8°T; + 3Pr- F,DT; = 0
Vi € {2---N — 1}, D=6%F; + 3F;0°F; — 2(D~F;)? = —T;
(PLN) with
Fy=0, DtFy=0, D-Fy=0
To=1, Tn=0

where Dt and D~ are the forward and backward first order finite difference

operators, 62 is the centred second order operator and, for any mesh function
G, G; = G(.’L‘,) for all z; € V.

We need to linearize these equations. The natural first attempt is the lineariza-
tion

§*T™ +3Pr-F™ 'D"T™

D™ §*F™ + 3F™~1§°F™ —2(D"F™)? = -T™ (11)

I
o
~~
—
(=]
SN—r

which we iterate until uniform convergence is achieved for a given tolerance.
But, for a fixed N, the iterates do not converge as m grows. In fact we have
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lim F?>™ #£ lim F?>™*!and lim T?™ # lim T?7™+

m—o0 m—0o0 m—o0 m—0o0

even iterations results

odd iterations results

Figure 2: Oscillations of F' function (sketch)

Figure 2 shows a sketch of the oscillations of the iterates F™.
To prevent these oscillations we use previously computed values of F' by intro-
ducing the auxiliary variables

1 1
Fmt = 5Fm—l + tim—z. (12)

It is clear that F,™ ™' depends on all previously computed values of F. Since
it is much less subject to oscillation than F™~!, we use it to replace F™ !

in equation (10). The resulting method yields good results for all physically
relevant values of the Prandtl number.

3 CONVERGENCE OF THE METHOD

We use the above method to compute approximations for values of N in the
range 128 to 32768, and work in quadruple-precision in order to obtain sig-
nificant error bounds. We study the convergence of the resulting sequence of
solutions, and their first and second derivatives, using the experimental error
analysis technique described in [1].

All of the computations in this section are carried out for Pr = 0.72, which is
the value of the Prandtl number for air. Other experiments within a physically
relevant range of Pr yield similar results.

As in [1], for any mesh functions G on the mesh IV, we define the maximum

pointwise error
~DNVmax

EN = HGN—G

IN
the two—mesh difference

oY= e -a"|

INUI2N
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and the order of convergence
_ DN
p" = logy 75

where 61\] is the interpolated function corresponding to the G» mesh function
and Npax = 32768 is the largest value of N used in the computations. The
computed values of the error parameters C' and p are defined in an analogous
way to those in [1]. From the numerical results in the first and last two rows of
Tables 1-3 we see that, in practice, the method is robust and layer-resolving in
the sense that it is L—uniform and that the L—uniform order of convergence of
the numerical approximations of f and ¢, and their derivatives, is better than
0.78 for all N > 512.

N 128 256 512 1024 2048 4096 8192 16384

EN(F) 0.020684  0.010497  0.005228  0.002543  0.001201 0.000547  0.000236  0.000092
EN(T) 0.005699  0.002864  0.001672  0.000938  0.000510  0.000268  0.000134  0.000061
DN (F) | 0.014051 0.006856 0.003334 0.001606  0.000761 0.000353  0.000159  0.000069
DN (1) 0.003695  0.001468  0.000738  0.000429  0.000242 0.000134  0.000073  0.000040
PV (F) 1.035344  1.039840  1.053815 1.077516 1.109775 1.150155 1.200088 1.264512
PN (T) 1.331509  0.991703 0.781964  0.825135 0.853144  0.872730 0.886969  0.897438

N 128 256 512 1024 2048 4096 8192

16384

EYN (D+F) 0.008547  0.003847  0.001754  0.000800  0.000363  0.000161  0.000070
EN(D*T) 0.006304  0.003760  0.002147  0.001190  0.000643  0.000337  0.000176
DN (D+F) 0.020668  0.012189  0.007557  0.004147  0.002438 0.001319  0.000735
DN (D+T) 0.007780  0.004259  0.002350  0.001287  0.000701  0.000380  0.000205
Y (DTF) 0.761882  0.689707  0.865701  0.766244  0.885989  0.843121  0.896398
ﬁN(D+T) 0.869365 0.857542  0.869375 0.875633 0.883201 0.890366 0.896959

0.000057
0.000087
0.000395
0.000110
0.886538
0.902954

N 128 256 512 1024 2048 4096 8192

16384

EN(5°F) 0.017785  0.010544  0.006069  0.003395  0.001850  0.000977  0.000491
EN(52T) 0.007241  0.004030  0.002212  0.001197  0.000624  0.000325  0.000163
DN (62F) 0.042189  0.023946  0.014474  0.008000 0.004551  0.002483  0.001362
DN (6T) 0.011175  0.006820  0.003682  0.002133  0.001136  0.000641  0.000338
1‘)N(52F) 0.817064  0.726389  0.855304  0.813816  0.873976  0.866127  0.891145
ﬁN(52T) 0.712518 0.889433 0.787396  0.908475 0.825205 0.924485  0.851711

0.000224
0.000066
0.000735
0.000187
0.893042
0.934954

Table 3: Computed maximum pointwise error EN, computed two-mesh differ-
ence DV and computed order of convergence pV for 62F and §2T in quadruple
precision arithmetic.

3.1 COMPUTED ERROR BOUNDS FOR BLASIUS’ FUNCTIONS

The results in [1] for a simpler problem suggest that we can expect error bounds
of the form CN P, where C and p are independent of Gr. Considering values
of N > 512, the experimental error analysis described in [1, chap.8] yields
computed values for p and C. Applying this technique to the present problem
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we obtain the following a posteriori error bounds for the functions F, T and
their derivatives, for all N > 512

max |(F — f) (n)| < 4.607TN~10% (13)
n€[0,+00)
max [(T —t < 2.320N 0782
ne[o’m)l( ) ()] <
max ‘(D+F f’) < 2.182N 0766
7€[0,+00)
max ‘( T — t’) )| < 1.175N—0-869
n€[0,+00)
max ‘(5217 f”) )| < 5.386N 0814
n€[0,+00)
2T — ¢t < 1.188N 0787
15 | (FT - ) )] <

These computed error bounds show experimentally that our numerical method
is robust and layer-resolving for N in the range 512 to 32768.

3.2 ERROR IN THE PHYSICAL QUANTITIES

We return now to the original non-dimensionalised problem. We want to com-
pute the error for the velocities and temperature on a bounded sub-domain
Q =[0.1,1] x [0, 1] of the non-dimensionalised semi-infinite domain. The choice
of the interval [0.1,1] for the variable Z is required because of the singularity
in the velocity components 4, ¢ and their derivatives at the point Z = 0.

We use the relations between these quantities and Blasius’ functions described
in section 1.2. We see that the velocity components 4 and ¢ respectively be-
have like Gr? and Gri. Therefore, we need to scale the components by these
factors in order to obtain quantities that are bounded uniformly with respect
to the Grashof number. Graphs of the resulting approximate scaled velocity
components and temperature on [0.1,1] x [0,1] are shown in Figures 3-5 for
Gr = 10° and N = 32768. We see that a boundary layer in each physical
variable arises on the boundary of the plate.

The corresponding scaled errors in the physical quantities are

Gr imax |(U — ) (2,§)| (14)
Q

= max
(2,9)€Q
n=n(&,9)

o (577-1) 0

<2 max
(@,9)€0
n=n(2,9)

(DFF - £) )|
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Gr#max|(V - 0) (&,9)] (15)
Q
= max | (5T - 5FO) - 0 (0) - 30)
n=n(,9)
<126 max gD Fn) ~3F () — (nf () =31 ()|
17(=m!ny()56,17)
max |(© = 6) (3,9)| = max |(T—¢) () (16)
Q (2,9)eQ
n=n(.9)

We see that we need to estimate the additional quantity nD+F(n) — 3F(n).
The required numerical results are given in Table 4.

N 128 256 512 1024 2048 4096 8192 16384
DN 0.042154  0.020567  0.010003  0.004819  0.002283  0.001058  0.000477  0.000207
I 1.035344 1.039840 1.053815 1.077516  1.109775 1.150155 1.200088 1.247754

Table 4: Computed two-mesh difference DY and computed order of conver-
gence p" for nD+F — 3F in quadruple precision arithmetic.

With these results, and those from the previous section, we find the following
computed scaled error bounds for the physical quantities

Groi||lU—dllg < 4.37N0766 (17)
Groi||V —illg < 17.4N"1053

HG)—@Hﬁ < 232N 0782

These computed error bounds show that the boundary layers have been suc-
cessfully resolved. We remark that we can use the same approach to generate
similar approximations to the derivatives of the physical variables.

4 CONCLUSION

For free convection on a semi-infinite vertical flat plate, Grashof uniform nu-
merical approximations to the velocity components and temperature have been
generated in a bounded domain, which does not include the leading edge of the
plate, for arbitrary values of Gr, using the Blasius formulation. Analysis of
the numerical approximations shows that this numerical method is robust and
layer-resolving. It follows that numerical approximations of controllable ac-
curacy, with errors independent of the value of the Grashof number, can be
computed with this method.
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