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I. INTRODUCTION

Fermionic determinants lie at the heart of gauge field theories with fermions. They are
obtained by integrating over the fermionic degrees of freedom in the presence of a background
potential A,, producing the one-loop effective action Se = —Indet, where the fermionic
determinant, det, is formally the ratio det(P— A +m)/det( P +m) of determinants of Dirac
operators. The coupling constant e has been absorbed into A,. This action is exact and
appears in the calculation of every physical process. Therefore, any truly nonperturbative
calculation must deal with Seg in its full generality. The main problem with calculating Seg
is that it must be known for generic potentials, typically tempered distributions, if it is to
be part of an effective measure for A,. A summary of what is known about Ses in quantum
electrodynamics in 141, 241 and 341 dimensions for general fields is given in Sec.I of Ref.1.
Recall that Seg in QED only depends on the field strength tensor F),,. It is seen that there
are upper and lower bounds on Seg, with some bounds holding only for restricted fields, such
as unidirectional ones. After fifty years or so there are still no equalities in QED for general
fields, except for massless QED in 141 dimensions - the Schwinger model [2].

In this paper an equality is obtained for the chiral limit of Seg in two-dimensional, Wick-
rotated Euclidean QED for a general field, hereafter referred to as a static magnetic field
B(r). Of course B is not completely unrestricted. We described elsewhere [1,3] precisely, how
rough potentials and fields are to be smoothed as part of the regularization process required
to make the functional integration over A, well-defined. It is sufficient to assume in this
paper that A, is differentiable and that B is square integrable with finite range R. Then B

is guaranteed to have finite flux, ®, since ||B|| > |®|/y/7 R, where ||B||*> = [ d?rB(r)?® and



® = [ d*rB(r). The author knows of no definition of a determinant that can handle infinite
flux fields; there is simply too much degeneracy [4], resulting in volume-like divergences
(which are ignored) as in the constant field case. Furthermore, finite flux and range are
consistent with the need to introduce a volume cutoff to define QED, before taking the
thermodynamic limit.

With the foregoing restrctions on B our result is

. 0 ||
2
ngglo (— Indet = i (1.1)

where m is the fermion mass. Together with the exact scaling relation
Indet(A\?B(Ar), m?) = Indet(B(r), m*/\?), (1.2)
(1.1) implies the strong field limit

3
I det (2B, m2) ~ — 2 1\ + R(N), (1.3)

> 21
where lim(R()\)/InA) = 0. Note that the chiral limit in (1.1) implies that QED,’s fermionic
determinant behaves like (|®|/47) Inm? as m — 0, which does not coincide with that of the
Schwinger model.
For nonwinding background fields with & = 0 one can prove continuity at m = 0. As
a result, massive QED,’s fermionic determinant does coincide with that of the Schwinger

model at m = 0:
. _ 1 2, 321 1 !
lim In det = 4—7T2/d rd®' B(r)B(r') In|r — '] (1.4)

This follows from results of Seiler [5] and Simon [6] as will be shown in a future paper.



It is reasonable to ask what is the relevance of QED,’s fermionic determinant, and its mass
dependence in particular, to physics? The answer is that the integral of this determinant over
the fermion mass fully determines QED,’s fermionic determinant for the same magnetic field
B(r) [7]. This determinant is still unknown except for a constant field [8,9] and a sech®(x/R)
varying unidirectional field [10].

From the input parameters to the QED, determinant one can form the dimensionless
ratios e|| B||/mc? and fi/mcR, where e has been temporarily restored. This paper deals with
the nonperturbative, small mass region e||B||/mc?, i/mcR > 1. The large mass region can
be dealt with by a derivative expansion of Indet [11]. What remains in order to estimate
QED,’s fermionic determinant for general unidirectional fields are optimal upper and lower
bounds on QED,’s determinant for intermediate values of the mass.

The derivation of (1.1) is really just a problem in quantum mechanics dealing with a
particle confined to a planar surface with an inhomogenous magnetic field normal to it. The
proportionality of the limit in (1.1) to the two-dimensional chiral anomaly, ®/27, as well
as its sign and its connection with paramagnetism, are discussed in Ref.12. Equation (1.1)
was established in Ref.12 in finite volume for a unidirectional field B(r) > 0. There is a
missing volume factor in Equation (2.7) that was corrected in Ref.13. These restrictions are
dropped in this paper.

Finally, the chiral limit of QED,’s continuum fermionic determinant should provide a
nontrivial test of algorithms for the determinant on large lattices. The reason is that chiral
limits and topological invariants - the chiral anomaly in this instance - are notoriously
difficult to calculate on a lattice [14]. Many of the results here on low-energy scattering

in static, inhomogenous magnetic fields are new and are relevant to the physical case of



electrons in such fields in 2+1 dimensions.

In Sec.IT we discuss how we will demonstrate (1.1). Section III develops the essentials
of low-energy scattering in inhomogenous magnetic fields that will be required. In Sec.IV
the crucial argument that central symmetry is sufficient to establish (1.1) is given. Finally,

Sec.V gives the fine points of the limit (1.1).

II. PRELIMINARIES

We adopt Schwinger’s proper time definition [9] of the fermionic determinant for Eu-

clidean QED,:
1 oo dt _ P2 2 —tm?2
Indet = - / T (e 7~ eap{~[(P — A)? — o3 Blth)e . (2.1)
0

Then

0 _1 2 2y-1 _ (p2 21
o Indet = 2Tr [(D* — 03B +m”) (P*+m*) ], (2.2)

where D? = (P — A)? and o3 is the Pauli matrix. Now introduce the sum rule [15]

o
Tt [(D? = B+m?) ' = (D + B+ m?) '] = -—;. (2.3)

where the trace is over space indices only, and assume without loss of generality that & > 0.

Then (2.2) and (2.3) give

@
mQ% Indet = yp +m?Tr [(D*+ B+m?) ' — (P> +m?) 1], (2.4)

The continuum part of the spectrum of the negative chirality operator D? 4+ B stretches
down to zero in the case of open spaces. Because ® > 0 the square-integrable zero modes
are confined to the spectrum of D? — B [16]. Although B has no definite sign, its flux does,
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and @, chirality and the number of square-integrable zero modes of the supersymmetric pair
of operators D? = B are correlated by the Aharonov -Casher theorem. At this stage the
minor modifications one has to make to deal with the case when ® < 0 are already clear.

It might seem that (2.4) makes (1.1) self-evident. But if (2.3) is multiplied by m? and the
limit m? = 0 taken, then the fractional part of the chiral anomaly is given by a difference of
zero-energy phase shifts of opposite chirality [17], demonstrating that the trace difference in
(2.3) develops a 1/m?- type singularity at the bottom of the continuum. How, then, does
one know a priori that such a singularity is absent from the trace in (2.4)?

Our definition of the determinant in (2.1) leads us to define the trace in (2.4) by a difference
of diagonal heat kernels,

Tr [(D*+B+m?) ™ —(PP+m?) '] = /Ooo dte=™ / d’r <r| e~ (PHB) _ =Pt r> .

(2.5)

Denote the scattering states of D? + B corresponding to outgoing radial waves by
Y (k,r) =< r|k,in > whose eigenvalues are E = k?. These satisfy the normalization

condition
/ &2 (k, 1) ) (K, 1) = 6(k — k). (2.6)

Assume that B(r) is noncentral. Let O denote the direction of the incident beam with
momentum k relative to an axis fixed in the scattering center. The asymptotic behavior of
Y (k, ) for kr > 1 is

1 . )
¢(+)(k, I‘) = — oikr cos(§—0) + f(‘ga 6) eikr +R, (27)

27 2m\/r

where f is the scattering amplitude and R is the remainder in the large-r expansion of (+).
Equation (2.7) is obtained from the Lippmann-Schwinger equation
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or )
e r) = oo e = L [ d HP (ke = 2DV ()0 (e, ), (2.8)
where Héﬂ is a Hankel function of the first kind and
V=-P-A—A - P+A>+B. (2.9)

As we will show later, we can choose a gauge such that

A=2 9, (2.10)
2rr

for r sufficiently large, where 0 is a unit vector orthogonal to r. Therefore, we are dealing
with a long range (1/7?) potential V, and this is what makes the proof of (1.1) nonroutine.

The completeness of the “in” states for D? + B and (2.5) give
Tr [(D*+ B +m?®) ' — (P?+m*) ]
o0 [ 2
- / dte=tm’ / d2r / dk ke*t / dO(|9™ (I, 1) |2 — 1o (k,1)[2) | (2.11)
0 0 0
where 1)y(k,r) = ¢’*T/2m. We are interested in the small m?, high ¢ limit of (2.11) which
is determined by the low energy end of the spectrum of D? + B. Therefore we cut off the
energy integral in (2.11) at M with MR < 1 and consider, for m?* — 0,
Tr [(D* + B +m?) ™" — (P +m?)™]
00 5 M 5 27
= / dte=tm / &P / dk ke* t/ dO(|p™M (k, )2 — [vho(k, 1) |2) + R(m?).  (2.12)
0 0 0

The remainder, R, can be put in the form

[t [ [ appe [ a0 (i + M, 0) ~ oo + 17, x,0)),

which makes the energy gap between 0 and M evident so that limm2R(m?) = 0. Thus,

m*—0

(2.4) shows that (1.1) will be established if the integral in (2.12) multiplied by m? vanishes

in the limit m? = 0.



We will calculate in the Lorentz gauge 9,4, = 0 which, in two dimensions, allows us to

set A, = €,,0,¢ with
B(Ta 0) = —62¢(7‘, 0) ’ (213)

and €, = —¢,, with € = 1. Assuming that B has range R we can calculate ¢ in a
disk D of radius a > R with ¢(a,§) = 0. A unique solution of Poisson’s equation with
Dirichlet boundary conditions requires that we also specify ¢ as r — oo, which we will do by
requiring that ¢ approach the potential of a flux line through the origin. The construction

of the Dirichlet Green’s function for this problem is standard, with the result

1 2 2 -9 ! '
B(r,0) = ——/ d*r'B(r', 0 ln< i rrcos(é’ — 6) ) , r<a
Am Jp

a? + =% — 2rr' cos (0 — 0)

= —% In(r/a), r>a. (2.14)

This potential results in a discontinuity in d¢/0r at r = a that is of order R/a* and which
vanishes in the limit of radial symmetry. This introduces a zero-flux, zero-range magnetic
field on a ring at » = a > R which cannot affect the low energy phase shifts due to B.
What is gained by this is radial symmetry for r > a.

From (2.12) it is evident that we will need the outgoing wave solution of
(P — A)? + Blut) = K2y, (2.15)

for £ — 0. This can be solved explicitly in the exterior region r > a with overall normal-
ization fixed by (2.7). We can approximate the interior solution by the exact zero-energy
solution of (2.15) because k? is a regular perturbation of D?+ B for r < a. Then an interior
solution of (2.15) can be expanded as a power series in k?. Following this the interior and

exterior solutions are matched at r = a [17].



III. LOW ENERGY SCATTERING STATES

Since the case of noncentral potentials may be unfamiliar we will parallel our discussion

with the special case of radial symmetry in the interest of clarity.

A. Central field: r > a

Expand (") (k,r) in partial waves,

o0

w(+)(k, r) = b Z @bl(k,r)e“(a_@). (3.1)

2m l=—00

Equations (3.1) and (2.6) give the normalization condition

/Ooo drrt(k,7) b(K ) = 6 (E — E). (3.2)

Substitution of (3.1) and (2.10) in (2.15) results in Bessel’s equation for v, with [ shifted
to ! — ®/2x for r > a. In order to include the case when ®/27 is an integer we choose as

linearly independent solutions the Hankel functions H, \(ﬂb Jor] (kr) whose asymptotic behavior

HIS:I:)(]W,) ~ /% e:I:z'(lcr—u7r/2—7r/4) ) (33)
TRT

Setting W = |l — ®/27| we construct 9, as the following linear combination

for r - o0 is

6—i7rW/2 eiﬂ\l|
2V/2

is the S-matrix for the partial phase shift ;. Recalling that in two dimensions

Yk, r) = (HS) (kr) + eV =1 ¢2i0®) 50O (kr)) (3.4)

where S; = %

eik'r _ 6ikr cos(0—-©) _ Z il Jl(kT) eilwi@) , (35)

l=—o00

and noting (3.3) we see that the normalization factors in (3.4) ensure that (3.1) assumes the

asymptotic form (2.7) as r — oo.



B. General field: r > a

Although radial symmetry is present for r > a, the absence of rotational symmetry for
r < a can cause the incident particle to scatter into a final state that is a superposition of
angular momentum states. Thus the S-matrix is no longer diagonal in [ : S; — S, ,, where

L is the initial-state angular momentum. Then (3.1) generalizes to

w(+ (k r o Z sz k 7. zl0 —zL@ (36)

\/_

which, together with (2.6), results in the normalization condition

3 /0 drr s, (k1) o (K1) = 6,0 6(E — E) . (3.7)
I
Equation (3.4) now generalizes to
oo (k) = e T ViEWL)/4 gin(U+]L)2

xﬁ(éuﬂ (k) + €Wl g, e WLmlED/2 g0 (kr)) | (3.8)

where W, = |l — ®/2r|, etc.. Unless O needs to be displayed, as in (3.6), we suppress it in
what follows. Again, the normalization factors in (3.8) are chosen so that (3.6) assumes the

asymptotic form (2.7). The scattering amplitude is given by

fK K

. oil0 o —iLO Lim(Wi—W,~1)/4
E e e . 3.9
V2 le (39)

C. General field: r < a

We seek zero-energy solutions of (2.15) in the region r < a that are sufficiently regular
to maintain the Hermiticity of D? + B. This operator factorizes to LTL so that (2.15) at
k? = 0 reduces to
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L'Ly =0, (3.10)

where

w10 10 10 .0¢
[ = (2 -2 77 _ i 11
¢ (z or 1 o0 r oo 7’&«) (311)

One set of solutions is given by
Ly =0, (3.12)

whose solution by inspection is
Y = e g(re ) (3.13)

where ¢ is analytic in re~® in and on the disk D. Solutions of the form (3.13) do not give
all of the regular solutions of (3.10). This is evident in the limit of radial symmetry, for then
1 is a superposition of only negative or zero angular momentum states.

There are irregular solutions of (3.12) and hence (3.10) of the form
= e "0 p(r~teif) (3.14)

where h may be expanded in a power series away from the origin. These solutions can be
used to find additional regular solutions of (3.10) that reduce to superpositions of positive
angular momenta in the radial symmetry limit. Thus, we look for regular solutions about

the origin of the form

Y =e?h(r ) F(r,0). (3.15)
Then (3.10) gives
. . oF i OF
t —¢ —i0 —1 40 - vy —
L' |le?e ™ h(r—e") <6T . 80)] 0. (3.16)

11



Again by inspection the solution of (3.16) is

o i) (OF _i0F Z.
¢ 9h<8T—;%>:e¢b(ree), (3.17)

0

where b is analytic in re” in and on D. Actually, A is now an unnecessary complication.

Letting F' = f(r,8)/h, we get

% faf i _2¢ i0
iy Rl b(re”), (3.18)

and hence (3.15) becomes

Equation (3.18) indicates that f is undetermined up to a function of the form p(re~%). But
this is the same as ¢ in (3.13), and so we set p = 0. Also, the value of ¢ at the origin can

be fixed by g. So for definiteness we require f(0) = 0. Noting that

) 0 1 0 (1 1 0
2 _—if _ 9 [~ -
Vi=e (—(% " 80) e (r + . 80) , (3.20)
the solution of (3.18) is, for r € D,
1 0 0 2,1 1 2¢(r 1 16’
flr)=—e _87°+7°80 /drln|r r'| 20 p(r'ei?) 4 O, (3.21)

where C' is a constant fixed by f(0) = 0. Since

: a 7 3 S0l a 7 5
10 1 20 ! .
e <_7“+7“ 0) njr—r'|=—e <—7°’+_'—0>1n|r r'|, (3.22)

f takes the final form

_ 1 2,1 10’ 2¢(r) 136 i ii o
[0 =5 [ r b(r'e”) (o + = 5 | In(jr =/ (3.23)

Combining (3.13), (3.19) and (3.23), the general solution of (3.10) is

12



W(r,0) = e~ 9(r0) (g(re=) + f(r,0)). (3.24)

The functions b, f and g will be determined below when we join the region r < a with
r > a. They then acquire energy-dependent normalization factors that depend on scattering
data, including the initial-state angular momentum L. Thus ¢ in (3.24) has an implicit
dependence on O.

As discussed at the end of Sec. II, k? is a regular perturbation of D? 4+ B in (2.15) in the
region 7 < a. Hence the radial wave functions 4, ;(k,r) in (3.6) may be expanded in k? for

r < a. Inserting the implicit ©-dependence of 1(r,#) in (3.24) we expand it in partial waves
Y(r,0,0) =" ¢, (r) e’ e7O. (3.25)
I,L
We set
oo (k) /V2m = 9, (r) (14 KX, (r) + O(kY)) (3.26)

and thus
k2 2m 2m
YOl r) = 6(0,0) + iy [ ¥ [0 (0~ 0,0~ 0) x(1,#,0) + OK'Y),
0 0

(3.27)
where x can be expanded as in (3.25). We will abbreviate (3.27) as
Y (k1) = (r,0) + K x x + O k'), (3.28)

where the star denotes convolution. An equation for y can be obtained by substituting
(3.28) in (2.15) and retaining terms of order k?. As we will see, x is not required in the

general field case.
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To fix b and f define the operator

P .

L:a—%%, (3.29)
and let it act on ¢(*) in (3.28), using (3.24):
LY = —pLop+e®Lf+ELp xx+ Ok Lp). (3.30)
Equation (2.14) with R = a gives
0y $(a,0) =0, (0,¢(r,0)) = —®/27a + O(R/a?). (3.31)

From now on the arbitrarily small correction to the radial derivative of ¢ at r = a will be

implicit in what follows. Thus (3.31) and (3.18) applied to (3.30) at r = a give
LY (k,a,0) = ®p(a,0)/2ma+ e blae®®) + E2LA  x + O(K* L) . (3.32)

Denote the wave functions on either side of a by w(<+) and @/J(;). Continuity of %) and

L) at r = a and repeated use of (3.28) allow (3.32) to be put in the form
e blae®) = (L — ®/2ma) ¥$ — K2® P x y/2ma + KLY x x + O(k*LylH) . (3.33)
Since b(re?) is analytic in and on D we can make the expansion

b(re®)=>" > b rtee O, (3.34)

=0 L=—

where we have anticipated the ©-dependence of b. From (3.6), (3.33) and (3.34) we get

V2rb_y ot = (d% + (- <I>/27r)/r> Vo (k,7) (14 kx,.(r) + O(k*)), (3.35)

with » = a after differentiating. Referring to (3.8) it is evident from (3.35) that the expansion
coefficients b, , and hence b and f in (3.23) will be determined to leading order in k% once
S,.. is known.
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There now remains the function g in (3.24). Equations (3.24) and (3.28) together with

continuity of (*) at r = a give
O (k, a,0) = glae™®) + f(a,0) + k> * x(a, 0) + O(k*y) . (3.36)
Letting
0) => fi.(r) ¢l 1O (3.37)
I,L

and recalling that g is analytic in and on D so that

*’La Z Z gL ,',,l e—zlﬂ —iLO ’ (338)

=0 L=—o0

we obtain from (3.6), (3.36)-(3.38), for [ > 0,
¢—>1,L(k7 a’)/\/§7r =91 a'l + f—l,L(a) + k2 —>l,L(k7 a’) X—I,L(a’)/\/iﬂ- + O(k4¢—>l,L) . (3'39)

This simplifies on making the expansion

I
> 1
In(r® + 7 — 2rr'cos(0 — 0') =Inr2 —2) 7 (:—<) cos[l(0 — 6], (3.40)
=1 >
n (3.23), giving f_; (a) =0, 1 > 0 and
foula) = — / dr / df e 200 S b pleild (3.41)
1=0

Thus g is determined to leading order in k? by (3.38)-(3.39) once S, is known. We have
now fully determined the low energy limit of ¢(*) (k,r) for general magnetic fields in terms

of the S-matrix.

D. Central Field: r < a

Now everything is diagonal. Refer back to (3.4) and define the energy-dependent part,
A,, of the phase shifts by
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Sk =x(|l| = |l — ®/27]) /2 + Ay(K?) + mm, (3.42)
where m = 0, £1, ... Then (3.4) reduces to, for r > a,
Yk, r) = 2712 (=1)™ 4l et (1, (kr) cos A, — Yy, (kr) sin A,), (3.43)
where Yy is the Bessel function of the second kind. Then at » = a with ka < 1 and W # 0,
W7 (kya) = 272 (=)™ il e [(ka/2)W /T(W 4+ 1) + A, T(W) (ka/2)" /]
x(14+O(k? A?)), (3.44)
(10, 67 )a = 272 W (=1) 1 ¢ [(ka/2)" [T(W +1) — A, T(W) (ka/2)™ /x]
x (14 O(k*, A?)). (3.45)

It will be shown in Sec. IV that A, = O(ka)?" at least. In (3.44) and (3.45) the remainder
term O(k?, A?) should be replaced with O((ka)? Inka) when W = 1.

We can now calculate b,_, in (3.35). For [ > ®/27, (3.35), (3.44) and (3.45) give
byal =77t (1 = ®/21) (=1)™ 3t e (ka/2)V JT(W +1) (14 O(K?, A?)), (3.46)
and for 1 <1 < ®/2m,
byal =772 (1 — ®/21) (—1)™ 4 e A, T(W)(ka/2)~" (1 + O(k? A2)). (3.47)

For the case W =0,

byal = —n72 (=1)™i e A, (1 +0(A2)). (3.48)
For g;, (3.39) gives
¥2(k, a)
W= rdt (1= k*x_i(a) + O(KY), (3.49)
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since (3.41) gives f,.(a) = 0 for the case of radial symmetry. Combining (3.49) with (3.44),

we obtain, for [ > 0,
g = (=)™ e® (2ma") "t [(ka/2) T2 /T(1 + 1 + ®/27)
—m VAL T (4 ®/27) (ka/2)~ 2] x (14 O(k?, A?). (3.50)
Referring to (3.37), (3.40) and (3.23) one finds for r < q,
filr) =b_ vt /OT de 2?1t e?@ 1 >1
=0, 1<0. (3.51)

In the radial symmetry limit ¢, ,(r) in (3.26) becomes diagonal, with (3.24) now giving, for

r < a,
T
Y(r) = b, te oM / dr g te?® | >1
0

=g, e 1<0. (3.52)

Since it will be needed in what follows we end this section by calculating x; in (3.26).

Substitution of (3.25) and (3.26) in (2.15) and matching terms of O(k?) gives

d [1—-1 d l
<_%+T+¢I) (E‘f‘;‘*‘(ﬁl) Y xi =Y. (3'53)

Requiring x;(0) = 0, (3.52) and (3.53) fix x; for < a to be

Yi=— / " dpp-2l-1 p26() /m dy 21+ =20 1 < 0
0 0

_ /T dpp2—1 ¢29(@) (/x dw w21 eQd)(w)) -
0 0

= 2
x [Cayyt e ([T ) iz (3.54)
0 0

It is important to bound the growth of x; for |l| — oco. In the limit of radial symmetry
(2.14) reduces to
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o(r)=— /Oa dr' v B(r'") In(rs /a) ,

for r < a. Then some easy estimates applied to (3.54) and (3.55) yield

[6(r)| < |IB]] (a —r)/2V/7,

and
s
< 2 1<o
OIS gy 'S
SBIE
< — >1.
<2

IV. LOW ENERGY PHASE SHIFTS

(3.55)

(3.56)

(3.57)

In order to calculate (2.12) in the limit m? — 0 the leading energy-dependent behavior

of S, is required. The case of central fields is dealt with first.

A. Central Fields

The calculation of A, in (3.42) proceeds by matching the log-derivatives v, = 70, In ¢, at

r = a. Then (3.43) gives

Yidw(ka) — kad,, (ka)
tan A, =
M= Y (ka) — kaYy (ka)

where 7, denotes v, (inside). For ka < 1 this reduces to

N N 0

WL v TW)T(W + 1) (1+O(ka)®),

for W = |l — ®/27| # 0,1, ... Results for integer values of W will be given below.
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Now suppose { > 1. Then (3.35) reduces to
y=®/2m — L+ V2 b, d Y (k, a) + K2[(®/2m — 1 — ) xi(a) — (rO,yx)a] + O(kY) . (4.3)
From (3.6), (3.24) and (3.26),
¥ (k, a)/V2m = fi(a) (1 + K xi(a) + O(kY)) , (4.4)

which, together with (3.51) and (4.3), gives

a2l

J& dr 2t e26(r)

7=9/2r — 1+ — k% ax!(a) + O(K*). (4.5)

Note that v, ~ [ as | — 00, as it should.

Next, let [ < 0. Equations (3.6), (3.24) and (3.26) give
v = ®/21 — I+ k* ax|(a) + O(k"), (4.6)

since f, = 0 for I < 0 by (3.51). Equations (3.42), (4.2), (4.5) and (4.6) determine the
leading energy dependence of the phase shifts for W # 0,1, ...

Finally, let W = 0,1, ... There is nothing new in principle here; only the expansion of
Yy for ka < 1 has to be modified. The whole calculation goes forward as above with the
result that for W = 2,3,..., A, is still given by (4.2); for W = 1 replace O(ka)? in (4.2) by
O((ka)?®In(ka)), and for W = 0,

A = 2Tn(ka) +0(1/1n*(ka)) . (4.7)

It is interesting that the energy dependence of A, for W = 0 specialized to [ = 0 is exactly
the same as that derived by Chandon et al. [18] for a large class of non-magnetic Schrédinger
operators in 2+1 dimensions. Note that there is no smooth interpolation of A, from W # 0
to W = 0. This case will, therefore, have to be considered seperately in what follows.
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B. General Fields

The S-matrix S, ;, appearing in (3.8) is obtained from
S = 6oy + VBT LY / T drr L) Vi (r) 1 (R, 7), (4.8)
— Jo

with v, ;, given by (3.6) and (2.8) and where

1 2T )
Vien(r) = — doV (r,0) e {t=mi (4.9)

:27r0

with V as in (2.9). An infinite set of coupled equations must be solved to extract the phase
shifts in the general field case. In practice, only a few off-diagonal elements of S, are
required to obtain the phase shifts in the low energy limit.

Consider an incident low-energy particle (ka < 1) with angular momentum L with respect
to the scattering center. It will encounter a high centrifugal barrier (I — ®/2m)?/r? to the
spatially asymmetric region 7 < a where B(r,0) # 0. For values of L ~ ®/27 the barrier
is minimized, and so we expect the magnitude of the energy-dependent corrections to the
Aharonov-Bohm phase shifts, A,, will assume their maximum values, as (4.2) and (4.7)
illustrate in the centrally symmetric case. The intuition is that S,, only has significant
off-diagonal elements for values of [, L clustered about ®/27 and that otherwise S, ; can be
assumed diagonal with small error.

To test this hypothesis we will assume that
)
L<—<L+1, (4.10)
2

and take S, to be a 2 X 2 matrix to include the transitions L <— L + 1, and diagonal

otherwise. This S-matrix can be calculated for all ® satisfying (4.10) using the results of
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the previous sections. As one would expect, the mixing of angular momentum states L
and L + 1 is maximum at the mid-interval value ®/27 = L + 1/2. Instead of reproducing
this calculation it is more instructive to set ®/2m = L + 1/2, where the Hankel functions
assume a simple form, and show that A, and Ay, have the same energy dependence as
in the centrally symmetric case; only the numerical coefficients are modified. In the case of
higher order transitions |Az| > 1 involving larger matrices, we find that the relevant mixing
parameters (see below) compared to the |[Az| = 1 case are smaller by factors of order &/42/=1,

The calculation begins by noting that the potential in (2.9) is not time-reversal invariant

for a fixed magnetic field. Therefore, S, ; is not symmetric. We choose the parameterization

€L cos 2¢ 7€' sin 2¢
S = , (4.11)
iet sin 2¢  e20L+1 cos 2¢

where we expect the mixing parameter € to vanish as £ — 0. Unitarity requires o and S to

be real with
a+B=2(0,+0,41)- (4.12)

The definition of the phase shifts in (4.11) is that of Stapp et al. [19], generalized here to

include T-violation. Referring to (3.42) we can rewrite (4.11) as

62i(AL_¢/4) cos 2¢ iei(AL+AL+1+)‘) sin 2e
g 7 (4.13)
ie" AL N gin 2¢ 2(AL+1F®/4) co5 ¢

which introduces a real T-violating parameter A\. From (3.8) and (4.12) with ®/27 = L+1/2,

the matching of the interior and exterior log-derivatives at r = a gives

kaHS,)' + e%rkaH ' cos 2
Hl(/_) + eZiAL Hl(j;) cos 2¢

Yoo = (4.14)
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with yr41 00 = 7. (AL = ALL,). Also
Yo, o+1 = V41, = kaHl(/_g)I/Hl(/_z) .
Recalling that

2 .
Hl(/j;)(z) = q:i\/ Eeizz;

(4.13) becomes,

(53 + tha) e ?* + (= + ika)e® ~ cos 2¢
eZAL cos 2¢ — e~ 2ika

Yo,L =

Y

_ 1 ;
Voo = —3 T 12.

To get the interior values of v, ., refer to (3.35). Then

\/i 7 ar bL—l,L

=&/2r — L +
Yor = 2 )

+ O(ka)?.
From (3.6) and (3.36) - (3.38),
wZL(k’ a)/\/iﬂ- = fL,L(a') + O(ka)2 ’

so that

L
a bL—l,L

=&/27r — L +
Yo = 2/ [0

(14 O(ka)?) + O(ka)?.

Referring back to (3.23), (3.37) and (3.40) it follows that, for L > 0,

1
21 al

fro(a) =

/“ dr " /2” 46 ¢i1—1)0 ;26(r.0) i b, pmeimd
0 0 m=0 "

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

In the sum over b,, ;, in (4.22), only b,_, ; and b, ; are nonzero as seen from (3.8), (3.35) and

(4.13) since mixing is only assumed for L «— L + 1. Then (4.21) and (4.22) give
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-1
Yoo =g +2ma ( [Farrr [T g 4 Do [Farr ["doe? 62"5(“0))
’ 0 0 b, 1. Jo 0

x (1 + O(ka)®) + O(ka)? . (4.23)
Repeating the above steps we find

a 27
Yo41,041 = _% + 27 CL2L+2 (/0 dr 7‘2L+1/0 do 62‘1’(7”10)

a 2T . -1
y Dot | arr | dee—weQ“"r’”’) x (14 O(ka)*) + O(ka)*.  (4.24)
0 0

bL,L+1

We now calculate the ratios of b, ; in (4.23) and (4.24). From (3.35),
Vemad b, = (v +L—@®/2m) ¢, (k,a) (1 + O(ka)?). (4.25)

Then (4.25), (4.15) and (4.18) give

kv, (k,a)
(Yoo — %) iL(k’ a)

Equations (3.8), (4.13) and (4.16) give

L — (14 O(ka)?). (4.26)

ALt ALL1=A=7L) gip 9¢

wL>+1,L(k> a’)/wa (k, a) = o—2ika _ g2iAL cog e (427)
Likewise,
(ika —1)ayz,,,(k a)
b, b = —— 14 O(ka)?), 4.28
3 I,L-H/ o (7L+1,L+1 + %) wL>+1,L+1(k’ a‘) ( ( ) ) ( )
ei(AL+AL+1+)\*7TL) sin 2¢
¢L>,L+1 (k, a’)/wL>+1,L+1 (ka CL) = (4'29)

e2iAL+1 cos 2e — e 2tka
Then solving (4.23), (4.26) and (4.27) for 7, , and matching the result with ~, , in (4.17)
gives
(1 +ika) e 2k [, + (ika — 1) I, AT cos2e =
e?BL cos2e — e ke  jkq J, e{ArtALa=A=mL) gin 9¢ + O((ka)?, (ka)?A,), (4.30)
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where

I, 27ra /derL 1/ de 29

J _ (2’/T a2L+1 / dr 7"2L/ do 610 2¢ T@)
Similarly, (4.24), (4.28), (4.29) and (4.17) with A, replaced with A, , give

ika (e 2% 4 XA cos2€) I, =

62ZAL+1

Equations (4.30) and (4.32) can be solved for A, A,,,, € and A with
A= Ao+ Aka + O((ka)?).
The results are

A, = —ka/(1+I.) + O((ka)?)
Appy = [IL+1 —1- (COS AgImJy, — sin /\OREJL)Q/(1 + IL)] ka + O((ka)3)

0 = cos AgReJ;, + sin AglmJ,,

e = (—=1)¥ (sin \gReJ,, — cos AgIm.J,) ka/(1 + I,) + O((ka)?).

cos 2 — e 2k (1 — jka) Jr HALHALTATTL) Gin 2¢ + O((ka)?, (ka)?AL,,) .

(4.31)

(4.32)

(4.33)

(4.34)

Note that A, and A, ,, have the same energy dependence as in the centrally symmetric case

given by (4.2).

V. CHIRAL LIMIT

We concluded in Sec. IV that general magnetic fields only modify the numerical coeffi-

cients of the energy-dependent part of the phase shifts calculated in the centrally symmetric
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case. It was also noted that the off-diagonal elements of S, , fall off as powers of k. There-
fore, inhomogenous fields of the type considered here do not result in special cases that are
not already included in the central symmetry limit. We therefore confine our discussion to
central symmetry from here on and proceed to show that (1.1) is true by demonstrating

that the integral in (2.12) satisfies

m2—0

lim m? [ dt e /d?/ dk ket /02”d@(|¢<+>(k,r)|2—W)O(k,r)ﬁ):o. (5.1)

This integral can be divided between contributions from the regions r < a and r > a.

A.r<a

By inspection, the term [tp|? in (5.1) gives a contribution proportional to In[(M? +
m?)/m?) and so vanishes in the indicated limit. This leaves an integral over partial waves
obtained by substituting (3.1) in (5.1). We can obtain a bound on v,(k, r) for all [ from (3.26)
and (3.52) with b, ,, g, fixed by (3.46)-(3.47) and (3.49), respectively. These equations and

the estimates

ol = 9(r) / " g 221 e20@) < L 3allBlI/VEr
0 21

/a dx p? 1 e20() > g2 e’“”B”/ﬁ/Ql (5.2)
0 — 7
following from (3.56) give

SalBINVET (o \ W
(k)] < (

m 7) (1+ O(k?), (5.3)

where the O(k?) term symbolizes a remainder term that vanishes as k — 0 for all / and that

falls off as k2/|l| for |I| > ®/2m. Recall that W = |l — ®/2x|. From (5.3),
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© w2 [ M k2t 2
/Odte /Odrr/o dk ke Z\l/)z(kﬂ“”

a? M? —|—m (Ma/2)*V
< @ sallBl/VF | 5.4
=8 ! Xll L2(W +1) (5:4)

for Ma < 1, and hence the indicated limit in (5.1) is satisfied. The special case when
l=®/2r =1,2,...is dealt with by (3.48) and (4.7). For these special values of [ the integrals
on the left-hand side of (5.4) contribute a term of order M2a?[(M? 4+ m?) In*(Ma)]~", which

vanishes in the limit indicated in (5.1)

B.r>a

Equations (3.1), (3.43) and the expansion (3.5) substituted into (5.1) result in the fol-

lowing integral:

o< 9 oo M 2
I= [Tdre™ [“arr [ akke > (72, (kr) — J2(kr)
0 a 0

+ Ju (k) Yy (kr) sin 2, + (Vo (kr) — Jg, (kr)) sin? A, . (5.5)

Consider the sum over the first two Bessel functions. Entries 5.7.11.6 of Ref.20 and 6.538.1

of Ref.21 give the result
>[I (kr) = J2(kr)] = 1/2 2 (kr) +1/2 J (k)
!

N /:O dtt [fJ7) + (1= f) J2,(0)].

= g(kr), (5.6)

where ®/2r = N+ f, 0 < f <1 and N = 0,1,... Next (5.6) has to be integrated over k
following (5.5). For this we apply the weighted mean value theorem [22]: Assume f and g

are continuous on [a, b]. If f never changes sign on [a, b] then, for some c in [a, b],
b

[ 1wy ey dk=g(e) [ 5k ak.

a
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Let f = ke *** and ¢ equal the right-hand side of (5.6). Then for some u satisfying 0 < p <

M

Y

| Yk e IS (2 < J2) = (1= e M) g(ur) 2t (5.7)

The value pu = 0 is excluded since the energy integral is manifestly r- dependent. The t-
integral in (5.5) can be done immediately, resulting in an overall factor of In[(M? +m?)/m?).
It remains to be shown that the integration over r is bounded. The definition of g in (5.6)

for large argument gives

sintf cos2z (f%2— f—%)sinmf sin2z cos 2z, 8in 2z
9(z) = — + i +0 (—3 ) : (5.8)
Tz Tz z
Subsitution of (5.8) into (5.7) and performing the r-integral in (5.5) results in
L M ,
/ dte '™ hm drr/ dk ke P> [J2 — J?
0 1
M2 2 :
=In (#) lim l— sin f sin 2uL + convergent asL — co| . (5.9)
m L—o0 A 42

The leading term, although oscillating, is bounded and that is all that is required to satisfy
the limit indicated in (5.1). For the special case when ®/27 = 1,2, .. the sum in (5.6) is
7€r0.

Next we consider the Jy, Yy, terms in (5.5). Since J2, (kz)+Y2(kz) is a decreasing function

of z for any value of W [23], then for r > a,
Y2(kr) < J2 (ka) + Y (ka) . (5.10)
It follows that
2 T (kr) Yo (kr) sin(24,)] < 37 |sin(24,)] [1+ Y3 (ka)]'/?, (5.11)
I
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where we used |Jy (z)| < 1 for W > 0. From (4.2) together with (4.5), (4.6) and (3.56) one
obtains for all [ and ®/27 # 1,2,. ..

(ka/2)*"
T(W)T(W + 1)

A <7 (ePIVT 4 1) 1+ O(k?)), (5.12)

where the O(k?) terms fall off for large |I| at least like 1/]l|. Since ka < 1 and
1
Vie(ka) ~ — D) (ka/2) "

every term in the series on the left-hand side of (5.11) is bounded by a constant

2912 (alIBINV 1) (F%;/i):: ,

for all » > a and 0 < k£ < M. It is, therefore, a uniformly covergent series of continuous
functions of k£ and can be integrated term by term. Applying the weighted mean value

theorem again we obtain

o] L M
/ dte=™ lim [ drr / dk kS Ty (kr) Yy (kr) sin2A, (k)
0 0 1

L= Jg
1 M? +m?\ . L ,
=3 In (T) Lh_)nolo/a drr; Jw(pr) Yy (pr) sin2A,(p) , (5.13)

for some p in the interval 0 < p < M. For [I| > ®/2m, Jy (ur) Yo (ur) ~ —(x|l])~! which,
together with (5.12), implies each term in the series on the right-hand side of (5.13) is
dominated by a constant whose I-dependence is (ua/2)%!/(|I!)? for all > a. For all finite
L > a it is a uniformly convergent series of continuous functions of  that can be integrated

term by term. From entry 5.11.10 of Ref.23,

/a Y dr e T () Y () = % L2200 (L) Vi (L) — Joy 1 (L) Yig sa (L)
—Jwsi (L) Yy 1 (pL)] = (L — a)
= hy(L) = hy(a). (5.14)
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There remains lim 3 k(L) sin 2A,(u) . For [I| > @ /2,
— 00 1

=L 1o (ﬁ) | (5.15)

2
which, together with (5.12), implies h,(L) sin2A,(u) is dominated by a term whose [-
dependence is (ua/2)2"/[(|l] — 1)!]? for all finite L and pa < 1. Therefore the series
Zl:hl(L) sin 24\, is uniformly and absolutely convergent for all finite values of L > a. But
it does not necessarily converge to a function continuous at the point L = oo since h,(L) is

not continuous at L = oo. In fact, for fixed [ and uL > 1,

ha(L) = —Sm@’;i/; W) o (%) . (5.16)

The remedy is now clear. Consider instead the two series

sin(2ul — 7W)
27 2

> (L) +

] sin 24\,
1

1
27 p?

> sin(2A)) sin(2uLl — 7W).
I

Now the limit L — oo and the sum can be interchanged in the first series, giving zero. The
second series is bounded for all L > @, and so the limit in (5.1) is true for the J, Y, terms.

The special case ®/27 = 1,2,... requires (4.7) when | = ®/2x. This results in a term
Jo(kr) Yo(kr)/In(ka), which is continuous for & on [0, M]. Therefore the weighted mean
value theorem may be applied again to the k-integral, resulting in an overall factor of
In[(M? + m?)/m?). There remains an integration over r.J,(ur) Yy(ur) between a and L,
giving an oscillating but bounded term sin(2uL) as L — oco. Again, (5.1) is satisfied for this
special term.

Finally, consider the last two terms in (5.5). Note that

Yy (kr) — Jo (kr)| < Yy (ka) + J5, (ka) (5.17)
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for 7 > a since J2(z) + Y2(z) is a decreasing function of z [23]. Hence, for ka < 1,
0< k<M,

2 (Ma/2)*"

2 2 : a||B s
|YW(]€7') - JW(kT)| Sln2 Al S (6 I ||/\/_+ ].) m

(14+0((Ma)?, (Ma)*™)), (5.18)

so that the sum over [ of the terms on the left-hand side of (5.18) converges uniformly for
allr > a, 0 <k < M. As it is also a sum of continuous functions of k£ for 0 < k£ < M it can

be integrated term by term over k. Application of the weighted mean value theorem gives

L M
/ dte Jim [ drr / dk k S [V2 (kr) — J2 (kr)] sin? A, (k)
0 !

m2 L—oo Jq

= % In <u> lim /L drr ;[YV?,(/M) — J2 (pr)] sin? A, (p), (5.19)

for some p in the interval 0 < p < M. For [I| > ®/27 each term in the series (5.19) is
dominated by a r- independent constant whose I-dependence is (ua/2)%"/(|I!|)?, for r > a
and pa < 1. It is therefore a uniformly convergent series of continuous functions for all

finite L > a that can be integrated term by term. Entry 5.54.2 in Ref.21 gives
2 L% 1
[ a2 er) = )] = 5 [V204E) Vi, (4L) Yo (L)
— To (L) + Jysr(pL) i (uL)| = (L — a)
= k(L) — k(a). (5.20)
Next, consider lim 3 k(L) sin? A, (). For uL > 1,
—00 77

_ cos(2uLl — W) 1
b(L) = T 40 (—) , (5.21)

and hence consider the series

ouL —
S k(L) - cos(2u _ “W)] sin? A,
I TH

1 .
— ; cos(2uL — W) sin? A, .
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The first series is a sum of continuous functions for all L > a. It is also a uniformly and
absolutely convergent series for L > a, first because |J,| < 1 and, secondly, the combi-
nations Y2 sin? A, and Yy, _, Yy, sin? A, are dominated by L-independent constants whose
I-dependence is (ua2)24/(]1|!)? for |I| > ®/27. Hence the limit L — oo and the sum can
be interchanged in the first series, giving zero. The second series is bounded for all L > a,
verifying (5.1) for the last series of terms in (5.5).

The special case ®/2m = 1,2...1s dealt with in the same way as in the case of Jy, Y}, sin A,
and gives a contribution that vanishes in the limit indicated in (5.1). Thus, (1.1) is demon-

strated.
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