Exact finite-size scaling with corrections in the two-dimensional Ising model with special boundary conditions

The two-dimensional Ising model with Brascamp-Kunz boundary conditions has a partition function more amenable to analysis than its counterpart on a torus. This fact is exploited to exactly determine the full finite-size scaling behaviour of the Fisher zeroes of the model. Moreover, exact results are also determined for the scaling of the specific heat at criticality, for the specific-heat peak and for the pseudocritical points. All corrections to scaling are found to be analytic and the shift exponent lambda does not coincide with the inverse of the correlation length exponent 1/nu.