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School of Mathematics

Course 311 — Abstract Algebra 2007-08
(Optional JS & SS Mathematics, SS Two-subject Moderatorship )

Lecturer: Dr. D.R. Wilkins

Requirements/prerequisites:

Duration: 18 weeks

Number of lectures per week: 3

Assessment:

End-of-year Examination: One 3-hour examination

Description: See http://www.maths.tcd.ie/~dwilkins/Courses/311/ for lecture notes
and more detailed information.

Chapter 1: Topics in Group Theory. This chapter begins with a brief review of basic
group theory. This is followed by the statement and proof of the Sylow Theorems. These
theorems are then applied in order to prove that all simple groups of order less than 60
are cyclic. The chapter concludes with a discussion of solvability, a concept that is of key
importance in Galois Theory.

Chapter 2: Rings and Polynomials. This chapter begins with a brief review of the defi-
nitions and basic properties of rings, integral domains and fields. This is followed by a
detailed discussion of the basic properties of rings of polynomials in one variable with
coefficients in a field. These results are very important for the development of Galois
Theory. We prove Gauss’s Lemma, which ensures that a polynomial whose coefficients
are all integers can be factored as a product of polynomials of lower degree with rational
coefficients if and only it can be factored as a product of polynomials of lower degree with
integer coefficients. Another important result concerning irreducibility discussed here is
Eisenstein’s Irreducibility Criterion.

Chapter 3: Introduction to Galois Theory. This chapter concerns the application of con-
cepts and results from group theory, ring theory and field theory to the study of polyno-
mial equations. Here one seeks to express the roots of a polynomial as functions of its
coefficients. To any polynomial is associated a finite group, referred to as the Galois group
of the polynomial. The roots of a polynomial can be expressed in terms of its coefficients
by means of algebraic formulae involving only the operations of addition, subtraction,
multiplication, division and the extraction of nth roots if and only if the Galois group
of the polynomial is ‘solvable’. This result can be used to prove that there cannot exist
any algebraic formula for the roots of a general quintic polynomial that involves only the
algebraic operations of addition, subtraction, multiplication, division and the extraction
of nth roots.

Chapter 4: Modules and Commutative Rings. This chapter covers some of the basic
concepts and results of commutative algebra. We introduce the concept of a module
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over a commutative ring. We study Noetherian rings and modules: a Noetherian ring is
a unital commutative ring in which every ideal is finitely generated: a Noetherian module
is a module over a unital commutative ring in which every submodule is finitely gener-
ated. We shall prove Hilbert’s Basis Theorem, which ensures that any ring of polynomials
with coefficients in a Noetherian ring is itself a Noetherian ring. The chapter concludes
with a proof of a classification theorem for finitely generated modules over a principal
ideal domain.

Chapter 5: Algebraic Varieties and Hilbert’s Nullstellensatz. This chapter provides an
introduction to basic concepts of algebraic geometry, which is concerned with the study
of sets of common zeros of collections of polynomials in several indeterminates. Any
collection of polynomials in n indeterminates (or variables) with coefficients in a field K
determines a corresponding subset of Kn (the set of all ordered n-tuples of elements of
K). This subset is the set of common zeros of the polynomials in the collection, and sets
of this form are referred to as algebraic sets. We show that there is a well-defined topology
on the set Kn, referred to as the Zariski topology, whose closed sets are the algebraic sets
in Kn. We also examine the correspondence between algebraic sets in Kn and ideals of
the corresponding polynomial ring. The deepest theorem in this section of the course is
Hilbert’s Nullstellensatz. The Weak Nullstellensatz is essentially a generalization of the
Fundamental Theorem of Algebra. It asserts that the set of common zeros of a collection
of polynomials in n indeterminates with coefficients in an algebraically closed field K is
non-empty if and only if that collection generates a proper ideal of the corresponding
polynomial ring. The Strong Nullstellensatz establishes a one-to-one correspondence be-
tween algebraic sets and radical ideals of the polynomial ring, in the case where the field
of coefficients is algebraically closed.
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