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The first two functions introduced in number theory are
usually 7n(n), the number of primes less than or enual to n,
and ¢(n), Euler's ¢-function, the number of totitives nof n
(i.e. positive integers which are < n and coprim: " N
There is a simple relationship between these functions, namely:

#{n) > m(n) apart from a finite number of exceptional n.

This relationship, despite its simplicity, is generally
unknown - it does not occur in Dickson, Hardy and Wright, or

Leveque. After our discovery of it, A. Makowski referred us

to [m] and [S].
The second is a proof of Erdos described by Sier-

The first appeared in 3 small unreviewed
journal.
pinski in the Polish original edition of his "flementary Theory
of Numbers", but omitted from the English edition. Conseqg-
vently, we are presenting the result again, in the hope that

it will become better knouwn. Qur proof is similar to [Mm].

We need one non-elementary but well known tesult.
For any x > 1, there is

Bertrand's Postulate. [H, p. 3ai].
a prime p such that 2x > p > x [

From this, we obtain the following.

Theorem 1. If n has r 2 5 distinct prime factors then

a/n) z 2r.

Proof. If n has more than 5 distinct prime factors, then
n2 2:3-5-7+11 = 2310 and hence Vn > 48, Since 4% is the
14th prime, the result is true for r = 5, 6 or 7. We now

prove it generally for t =z 7 by induction. Assume the result

is true for every number which has k prime factors, for some
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K = 7, and suppose n has k+1 prime factors, Hence n > 16m

which implies /o > 4/m. By Bertrand's Postulate, there

are

at least two primes between /o oand Vm. By the induction hyp-

otheais, n(v/m) z 2k, hence n(v/n) z 2k+2.0

Denote the number of composite totitives of n by c(n).
The number of prime totitives of n is the number of primes less
than or cgqual to n minus the number of prime factors of n,
i.e. n{n) - t(n) (where we have used r(n) for what we prev-

iopusly denoted r).

composite, we have:

Lemma . Ifn oz 42, then &{n) > n(n).

Proof. From (), we see that ¢(n) > n(n) if and only if
c(n) = r(n).

If r(n) < 2, then at least two of {4, 9, 25, 49} are

Recalling that 1 is neither prime nor

co-
prime to n and so c(n) 2z 2 2 r(n) for n z 50

If r(n) = 3 and 21n, then 4, H, 16 are coprime to n.

If r(n) = 3 and Eln, then 9, 27, 81 are coprime ta n.

If r{n) = 3 and n = 283YpC for some prime p > 3, then at
teast one of 25 or 49 is coprime to n and at least two of
{35, 99, 64H, 77, Y1l are coprime to n. So if r(n) = 3 and
noz U2, then c(n) = r{n).

1f r(n) = 4, then n 2z 2+3-%7 = 210 and there are always
at leasl four composite itives 2 2

U ymposite totitives, Qs Q; 5 9,9,, 0,03, where

g, o= 11, g, = 13 and g, = 17 are prime totitives of n. So
c(n) z 4 = t(n).

If r(n) = %, then since 7{(/n) 2 2r(n), there are at least

r prime totitives of n, say g,, dzs ..., Qps, all less than v/n.

|1§

(In fact, we hauve c¢(n) z r(r+1)/2.)0

He ? 2
ence i, s ...y Up oare all less than n and so c{n) z T
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Either by pursuing the arqument a little further or by
examining every integer less than 92, we obtain our maln

result.

Theorem 2.

i

o(n) < m(n) if and only if n =6, 10, 12, 18, 24, 30, 42 or 603
¢(n) = w{n) if and only ifno= 2, 3, 6, B 10, 14, 20 or 3503

¢(n) > n(n) for all other n.O

Corollary. ¢(n) > n/log n except for n = 1, 2, 3, 4, B, 10.
12, 18 or 30.

Proof. 1t is well known that m(n) > n/log n for n 2z 17 (R,
p. 71 or SW, p. 106].

n > 60 and some calculation yields the complete result.]

The Corollary follows immediately for

The following two results are immediate corollaries to our

work using a little calculation.

Proposition 1. (n) 2 /n except
Proposition 2. An integer n has the property that all of its
totitives are prime or if and only if n = 1, 2, 3, 4, b, B,
12, 18, 24 ar 30. (schatunowsky (1893) and Wolfskel (1900)

{D, p. 132, item 73 and p. 134, item 917].)

1t is known [SW, 4.1} that

i ®(n) log log n _ e”Y, yhere Y is Fuler's constant
1ime o =
L _— ¢(ﬂ) _ . t
(= lim ,of ) 1/i - log r}) and 1im qhe —h = 1. The first
of these ié:;ore accurate than our Corollary, but only asympt -
otically.
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