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no place in statistics unless clearly relevant to a statistical
problem. He frequently emphasised that a problem generally
involved much more than its relevant statistics and resented
any charge of materialism on statisticians as much as he res-
ented the use of mathematics for its own sake in the ostensible
address of a statistical problem. )

He was undoubtedly himself a powerful and energetic math-
ematician and a magnificently creative statistician, with an
unusual emphasis on applicability throughout his work at all
times. He had an amazing all-round talent and was a man whose

contributions to statistics will not be forgotten.

Depantment of Economics,

New Univensity of Ulsten.
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PUTTING COORDINATES ON LATTICES

John Hannah

In this article I shall show how the problem of putting
coordinates on certain types of lattices leads to the class of
von Neumann reqular rings, and discuss briefly the resulting
connexion betuween ring and lattice properties. The article is
based on a talk I gave at the Group Theory Conference in Galway
on May 13th, 1983, and I would like to thank the organizers
both for their invitation to speak and for tolerating the pres-

ence of a ring theorist.

Recall that a lattice is a partially ordered set in which
any pair of elements a,b have a greatest lower bound a A b and
a least upper bound a v b, We shall be considering complemen=-
ted modular lattices in what follows. A lattice L is said to
be complemented if it has a least element (denoted by 0) and a
greatest element (denoted by 1) and if every element a € L has
a complement a' € L; that is, a ra' =0 and ava' = 1. Such
complements are not usually unique. We say that L is modular

if whenever a,b,c, € L with a < c then (avb) ac = avibac).

Example 1: Let V be any vector space (possibly infinite dim-
ensional) and let L be the set of all subspaces of V ordered
by inclusion, so that aasb = a Nb and avb = a + b, Then L is

a complemented modular lattice.

2. : Von Neumann, studying rings of operators on Hilb-
ert spaces, came across rings whose sets of projections (that
is, self-adjoint idempotent operators p, so that p = p¥ = p?)
formed lattices if p < g uwas taken to mean that p = gp (so that
g is a left and right identity for pl. Although there was no

simple algebraic formula for paaq and pvag in this case, von

Neumann was able to show that this lattice was camplemented
and modular.
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Consider for a moment the special case of Example 1 where

V = R? and L is the lattice of subspaces of V. We can view
L as the real projective plane P with the one-dimensional

subspaces being the points of P and the two-dimensional sube

spaces the lines of P. In this picture of L the operation

A is still intersection but avb corresponds now to the line

joining the points a and b.

The original space R?® is now the

usual homogeneous co-ordinates for P and von Neumann wondered
if such a "co-ordinatization" was available for his lattice of
projections too. It would of course be desirable for such
co-ordinates to be related to the original ring structure of
his examples, and to see what we should expect we shall look

more closely at Example 1.

Notice that the lattice of subspaces of Fé is "the same"
as the lattice of right ideals of the ring M3(R)
ices with real entries. Indeed a subspace U of R?
ponds to the right ideal U of M3(R)
Thus,

consisting of all vectors of the form

corres-
consisting of all matrices
whose columns belong to U,

for example, the subspace U

X N X y z
is sent to the set U

0 of all matrices of g o 0

0 the form 0 8] o/

(Ve could equally use left ideals of M (R) : since left mult~
iplication in M ;(R) corresponds to row operations we could

make the rows of the matrices come from U in that case.)

To see what sort of right ideals should correspond to the
lattice elements in general we need to consider the infinite
dimensional case of Example 1. In this case we can represent
the elements of V as infinite columns almost all of whose entr-
ies are zero. For our ring this time uwe take the ring of all
linear transformations on V, represented as infinite square
matrices (having dim V rows and columns) each column of which
has only finitely many nonzero entries. This representation

allows us to use the same lattice isomorphism as above: a sub-

of 3x3 matr-é

|
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space U 1s sent to the set U of all matrices whose columns

come from U. For example:

O O oo o
o 0O o e o
['on T e R e B @ Y ©
O 0O oo o
.
.

R — -

(Notice that using left ideals here would lead to a different

ring since these infinite matrices lack the left-right symmetry
which the transpose operation imposes on M3(R) . The choice
between left and right here is made when we decide whether to

write V as row or column vectors.)

The set I is again a right ideal but not all right ideals
In fact {
To find a generator for {J simply

arise this way (as they do in the case of M3(R)).
is a principal right ideal.
choose a generating set for the subspace U, making sure that
and use the matrix whose col-
The fact that right multip-

lication corresponds to column operations allows us to generate

the set contains dim V elements,
umns make up the generating set,
all of ﬁ from this one matrix, This example leads us to the
definition we have been seeking:

Definition:
a ring R such that L is lattice-~isomorphic to the set L(R) of
principal right ideals of R,

Putting co-ordinates on a lattice L means finding

We cannot expect any old ring to be suitable for this pur-
pose: in most rings L(R) is not even a lattice, let alone com-
Plemented and modular.
erty here is being complemented.
pal right ideal of R.
there is some b €R such that aR a bR =

Von Neumann showed that the key prop-

Indeed let aR be any princ-
If aR has a complement in L(R) then
R.

0 and aR v bR =
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Regardless of what a and v mean in L(R) (all we have at this - 25 -
stage is the partial order of inclusion) this gives aR0 bR = @ aj, aj are perspective (that is, have a common complement C j
and aR + bR = R, Thus we can urite so that a3 v Cjj = @3j ¥ Cij = 2iv 3j and a; A Cjj = ag “Ci? =‘D)'
! This frame plays a similar role to the frame in R consisting
ax + by = 1, of the x, y and z axes. Indeed if we look at the lattice L
Hence axa + bya = a : of all subspaces of R® we can get a frame by letting ai, a2,
so that bya = a - axa € bR N aR =0 f a3 be the x, y and z axes (respectively); a C?mNOﬂ complemin;
! ! c13 of ap and as would be, for example, the line x =2z, y = U.
; and so a = axa. Using the projective plane picture of L we can retrieve the

usual addition of points on the line a1 v az by using just the

Thus, in @ co-ordinatizing ring for a complemented mod- jattice operations shouwn in the diagram: the solid lines repr-

ular lattice, for any element a there is some x such that esent the frame, the broken lines give the construction for the

a = axa, Rings with this property are said to be (von Neuman| sum of any tuo "Finite" points B andy on the line a1 v az.
regular, and von Neumann showed that if R is regular then L(R) T

is a complemented modular lattice with AaB = ANB and : I //// -
AvB = A + B. \81 (=zero)\jC,3 -

Example 3: If V is any vector space then the ring of all
| linear transformations of V is a regular ring.

4, It is not hard, using Maschke's Theorem and
Example 3, to see that if F is any field and G is any locally
finite group having no elements of order equal to the charact-
eristics of F then the group algebra F[b] is a regular ring.
Auslander and others have shown that these are the only regull
group algebras.

5. The ring of integers Z is not regular, a2 (=point at infinity)

The original problem, finding what we now know should be

a regular ring which coc-ordinatizes a given complemented mod-

ular lattice, has been solved only in a few special cases. l
Von Neumann produced a solution which looked after his lattic

of projections by imitating the usual construction of co-ordiff

ates in a projective plane, For this method the lattice mus} “

have a "hamogeneous n-frame" with n > 4. Such a frame cons- 1. Join B to as to meet the line joining ci13 and a, at x.
ists of n independent lattice elements a,, az, ... ap (so thal 2. Join Y to c13 to meet the line joining a: and as at vy.
aj~r(a,va,v .. 23j_1vajs;  e..vap) = 0 for each i) with 3. The line joining x and y meets ajva, at B +Y.

the properties that a,v av ... vap = 1 and each distinct pad

Addina points on a3 v az
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A similar diagram can be used to define the product By. In
terms of the original lattice and its frame we are making a
ring from the set of complements of a2 in a1 v a2: two such

complements B and y are added and multiplied according to the

rules
B+y = ([(B vas)A(ClsVaz)]v[(Yan)A(azvaa)])A(alvaz)
By = [5Vsz)'\(alvaa)]V[('YVCn)A(azvaa)])A(alvaz).

Von Neumann used these same operations in his more general)
setting, the extra dimension (n > 4) being needed to verify
It can then
the lattice

ring just

that these operations had the desired properties.
be shown that the original lattice is the same as
L(R) uwuhere R is the ring of mxn matrices over the
constructed, Furthermore this ring is unique up to isomorph-
ism (only a 3-frame, as illustrated in the diagram, is needed
for this assertion; the uniqueness breaks down in lower dimen-

sions since, for example,

the lattice {0,1} may be co-ordinat-i
ized by any division ring). In von Neumann's original settin
- where the lattice was the set of projections of a ring of
operators - it turns out that there is often an embedding of
the original ring in the co-ordinatizing ring, and so the aim
of getting a ring compatible with the original structure is

achieved in these cases.

In the general setting it is now natural to seek lattice
characterizations of the various classes of regular rings and
we conclude by considering an example of such a characteriz-
ation, In a recent paper Munn introduced the class of
bisimple rings: if the ring R has an identity element, we say
it is bisimple if for any pair of nonzero elements a, b there
Rb. These arﬁ

just the rings whose multiplicative semigroups are bisimple.

is a third element c such that aR = cR and Rc =

Any division ring is bisimple but all other bisimple rings are

quite large;

for example if S is the ring of all linear trans-
and if T i

the ideal of finite-rank transformations then the factor ring

formations on a countable-dimensianal vector space,
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Munn showed that all bisimple rings are
RcR = RbR) and

and so we can ask which complemented modular lattices

s/I is bisimple.
simple (in the above notation we have RaR =
regular,
correspond to these rings.

A hint is given by another of Munn's resulfs: any pair of
nonzero principal right ideals of a bisimple ring R must be
{isomorphic as R-modules (replacing a by the c given by the
definition we may assume the right ideals are aR, bR where
Ra = Rb;
gives an isomorphism from aR to bR).

then a = xb and b = ya and left multiplication by y
Hence in the lattice
L(R) any two nontrivial intervals [0,A] and [0,B] are isomor-
phic as lattices. Unfortunately such lattice isomorphisms
throw away too much of the ring structure for this property to
characterize bisimple rings. However a stronger isomorphism

is provided by the notion of perspectivity that we have already

met: if lattice elements A, B are perspective they have a
common complement C, say, so that
AvC = BvcC = AvaSB
with AAC = BaC = 0.
Hence Av B
A = T = B

where the isomorphisms will be module isomorphisms if we are
(R).
for our purposes (since if A < B we want A ¥ B but clearly
cannot have A and B perspective) but a simple splitting trick
allows us to get round this problem:

working inside Perspectivity by itself is too strong

Result: Let R be a regular ring with identity and let L(R)
be its lattice of principal right ideals.
if and only if L(R) satisfies

(*) ... for any nonzera a, b € L(R) there are splittings

Then R is bisimple

a = a,v a, where a; A a, = 0

and

b, v b,

|
o

where b, A b,
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such that a,, b: and a,, b, are perspective pairs of elements
of Z(R).

The key idea of the proof here is that if A, B are prin-
cipal right ideals of a bisimple ring R such that A 0 B = 0
then A and B are perspective (as before we may assume A = aR
and B = bR where Ra = Rb; then ¢ = (a+b)R is a common complem-
ent of A and B).

A stronger result is also true: any complemented modular
lattice satisfying the condition (*) is easily seen to possess
a homogeneous 4-frame (or else be the lattice {0,1})and so, by
von Neumann's result, can be co-ordinatized by a (necessarily

bisimple) regular ring.
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TEN COUNTEREXAMPLES IN GROUP THEORY

John Ryan

Introduction

Many major theorems in the theory of finite groups have
been proved by the minimum counterexample technigue, which
works as follows. We assume that the theorem is false and let
G be a counterexample of smallest possible order. The assump-
tion that G exists is then used to force a contradictiaon and
the theorem in question is thereby established. In practice,
the contradiction frequently arises fram the existence of a
counterexample of order less than that of the presumed minimum
counterexample {(m.c.e.). This technique of course is merely
a disqguised form of induction or the method of infinite descent

used in number theory.

However, even when a conjecture about finite groups turns
out to be false, it is often of interest to discover an m.c.e.,
or "least criminal™ as it is often called. Note that an m.c.e.

‘need not be unique. Searching for an m.c.e, is a very good

method of becoming familiar with the groups of small order and
perhaps the size of an m.c.e. is an indication of how plausible
the conjecture was in the first place!

In this article we discuss ten "not implausible” conject-
ures about finite groups and produce an m.c.e. in each case.
We outline the arguments used in establishing that a given group
is an m.c.e.

The material in this paper is based on the author's M.A.

thesis "Minimum Counterexamplesin Group Theory", University
College, Cork, 1982, prepared under the supervision of Dr. D.
MacHale. I wish to thank Dr. MacHale for suggesting this
‘problem and the Mathematics Department of U.C.C. for their
Co-operation and facilities.




