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On Groups whose Squares are Subgroups

HOWEN CHUAH

Abstract. Let G be a group. The square of G is the set G2 consisting of elements
of the form g2, where g ∈ G. If G2 is a subgroup of G, we say that G has the square
subgroup property. In this article, we study several conditions related to the square
subgroup property, including the order of G when it is a finite group. We also provide
several examples of groups with or without the square subgroup property.

1. Introduction

Let G be a group. We define the square of G by

G2 = {x2 ; x ∈ G}.

A natural question is whether G2 is a subgroup of G. If this happens, we say that G has
the square subgroup property. This problem has been studied in [2][4]. In particular,
for G finite, [4] provides a sufficient condition as follows. Let |G| be its order.

Theorem 1.1. ([4], Thms.1.1,2.1,2.5)
If |G| is odd, or G is abelian or a dihedral group, then G2 is a subgroup of G.

Theorem 1.1 does not cover the cases where |G| is even, and does not provide examples
where G2 is not a subgroup. We address these issues later in Theorems 1.3 and 1.4.

A property of G2 is provided by its comparison with the commutator subgroup, as
given by the next theorem. Recall that the commutator subgroup of G is defined by

G′ = subgroup of G generated by {xyx−1y−1 ; x, y ∈ G}.

Theorem 1.2. If G2 is a subgroup of G, then G′ ⊂ G2.

While Theorem 1.1 provides examples of groups with the square subgroup property,
we shall construct several examples which do not have this property. Let Sn denote the
symmetric group. Let An ⊂ Sn denote the alternating group, namely An consists of
all even permutations. If q is a power of a prime number (for example 22, 23, 32), up to
isomorphism there is a unique finite field with q elements, and we denote it by Fq. Let
SLn(Fq) denote the n× n matrices with entries in Fq and with determinant 1.

Theorem 1.3. If G is one of the following, then G2 is not a subgroup of G: non-abelian

simple group, An(n ≥ 4), Sn(n ≥ 6), SL2(Fq)(q > 3), SLn(Fq)(n ≥ 3).

Since Theorem 1.1 says that all groups of odd orders have the square subgroup
property, it remains to consider the groups of even orders. This is answered by the next
theorem.

Theorem 1.4. Let n ∈ N. The following conditions are equivalent:

(a) Every finite group of order n has the square subgroup property.

(b) n ≤ 8 or 4 does not divide n.
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For any n > 8 divisible by 4, the proof of Theorem 1.4 constructs a group of order
n which does not have the square subgroup property. However, it is still far from
exhausting all such groups. Therefore, it leads to an interesting problem for future
study: For any n > 8 divisible by 4, find all the groups of order n which do not have
the square subgroup property.

While the above discussions focus on finite groups, it is natural to study this problem
for infinite groups as well, and yet there has been no existing work on it. We now study
some examples of infinite groups. If G = H ×K is a direct product of groups, then G2

is a subgroup of G if and only if H2 and K2 are respectively subgroups of H and K.
With this in mind, we obtain many examples of infinite groups G such that G2 is not a
subgroup. For instance if H is any one of the groups in Theorem 1.3, and G = H ×R

n

is the direct product, then G2 is not a subgroup of G. Conversely, the next theorem
provides an example where G2 is a subgroup. Let GLn(C) be the multiplicative group
of all n× n invertible complex matrices.

Theorem 1.5. Let G = GLn(C). Then G2 = G.

The main theorems are proved in the sections as follows.
Section 2: Theorem 1.2
Section 3: Theorem 1.3
Section 4: Theorem 1.4
Section 5: Theorem 1.5
We also prove several other results along the way, including Proposition 4.1, Propo-

sition 4.5, and Theorem 4.6.

Acknowledgement. The author encounters this problem while taking a course in
modern algebra, and is grateful to his teacher C. Y. Chang for providing great guidance.
The author also thanks the referee for providing some helpful suggestions.

2. Commutator Subgroups

In this section, we prove Theorem 1.2. Let C = {xyx−1y−1 ; x, y ∈ G} consists
of the commutators of G, and it generates the commutator subgroup G′ = 〈C〉. The
conditions for C = 〈C〉 is more complicated than G2 = 〈G2〉. Nevertheless, Theorem
1.2 says that when the latter occurs, then G′ is a subgroup of G2.

Proof of Theorem 1.2:

Suppose that G2 is a subgroup of G. For given g ∈ G and x ∈ G2, we write x = a2

for some a ∈ G. Then gxg−1 = ga2g−1 = (gag−1)2 ∈ G2. This implies that G2 is a
normal subgroup of G, so G/G2 is a group.

For g ∈ G, we let g ∈ G/G2 denote the corresponding quotient element. For any
g1, g2 ∈ G/G2, we have g1

2g2
2 = ee = (g1g2)

2 = g1g2g1g2. So g1g2 = g2g1, which
implies that G/G2 is abelian.

Let g1, g2 ∈ G. Since G/G2 is abelian, g1g2 = g2g1, so g1g2(g2g1)
−1 = e. It follows

that g1g2g
−1
1 g−1

2 ∈ G2. Hence G2 contains all the commutators of G, namely G′ ⊂ G2.
�

3. Square Subgroup Property

Let G be a finite group. If the square set G2 is a subgroup of G, we say that G has
the square subgroup property. In this section, we prove Theorem 1.3, which provides
several families of examples where G does not have the square subgroup property.

The next proposition shows that the square subgroup property is preserved when
taking quotients and direct sums.
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Proposition 3.1. [4, Thm.2.2]
(a) Suppose that G2 is a subgroup of G, and N is a normal subgroup of G. Then (G/N)2

is a subgroup of G/N .

(b) Let G = ⊕Gα be a direct sum of groups. Then G2 is a subgroup of G if and only if

each G2
α is a subgroup of Gα.

Contrary to Proposition 3.1, the square subgroup property of G is not preserved
when taking a subgroup H. This is illustrated by the following example. Recall that
An consists of the even permutations of the symmetric group Sn.

Example 3.2. Let G = S4 and H = A4. We shall show that G has the square subgroup
property, but H does not have the square subgroup property. We first claim that

G2 = H. (3.1)

It is clear that G2 ⊂ H. Conversely, we consider

H = {e} ∪ {(a b)(c d)} ∪ {(a b c)}, (3.2)

where {a, b, c, d} = {1, 2, 3, 4}. If σ = (a b)(c d), then σ = (a c b d)2 ∈ G2. If
σ = (a b c), then σ = (σ2)2 ∈ G2. Hence H ⊂ G2, which proves (3.1) as claimed. So
G2 is a subgroup of G.

If σ = (a b)(c d), then σ2 = e. So (3.2) implies that H2 = {e} ∪ {(a b c)2}, namely
|H2| = 1+8 = 9. This is not a factor of |H| = 12, so by Lagrange’s theorem, H2 is not
a subgroup of H.

Recall that G is said to be solvable if there exists a chain of subgroups {e} = H1 ⊂
... ⊂ Hn = G such that each Hi is a normal subgroup of Hi+1, and Hi+1/Hi is abelian.
We will need the following lemma.

Lemma 3.3. Every non-trivial finite solvable simple group is a cyclic group of prime

order.

Proof. Let G be a finite solvable simple group. Let {e} = H1 ⊂ ... ⊂ Hn = G be
the chain of subgroups described above. Replacing n by a smaller number if necessary,
we may assume that Hn−1 6= G. Since G is simple, it implies that Hn−1 = {e}, so
G ∼= G/Hn−1 is abelian. Since a finite abelian simple group is a cyclic group of prime
order, the lemma follows. �

The next theorem illustrates many examples where G do not have the square sub-
group property. They include most of the finite simple groups and alternating groups.

Theorem 3.4.

(a) Let G be a finite simple group, and suppose that G2 is a subgroup of G. Then G is

a cyclic group of prime order.

(b) (An)
2 is a subgroup of An if and only if n ≤ 3.

Proof. LetG be a finite simple group, and letG2 be a subgroup ofG. For all x = a2 ∈ G2

and g ∈ G, we have gxg−1 = ga2g−1 = (gag−1)2 ∈ G2, hence G2 is a normal subgroup
of G. Since G is simple, we have G2 = {e} or G2 = G, and we discuss them separately.

Suppose that G2 = {e}. For all a, b ∈ G, a2b2 = e · e = e = (ab)2, so ab = ba.
Therefore, G is abelian. By Lemma 3.3, G is a cyclic group of prime order.

Next suppose that G2 = G. Then the mapping f : G −→ G given by f(g) = g2 is
surjective. Since G is finite, f is bijective. If |G| is even, then by Cauchy’s theorem,
G has an element of order 2, which contradicts the fact that f is bijective. So |G| is
odd. By the Feit-Thompson theorem (see for instance [1, p.104-106 Exercise12]), this
implies that G is solvable. By Lemma 3.3, G is a cyclic group of prime order. This
proves Theorem 3.4(a).
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Next we prove Theorem 3.4(b). For n ≥ 5, An is a non-abelian finite simple group.
By Theorem 3.4(a), (An)

2 is not a subgroup of An. For n = 4, by Example 3.2, (A4)
2 is

not a subgroup of A4. For n ≤ 3, it is straightforward to check that (An)
2 is a subgroup

of An. This proves Theorem 3.4(b). �

Our next objective is to show that for n large enough, (Sn)
2 is not a subgroup of Sn.

We first state a useful lemma. We omit its proof, which is straightforward.

Lemma 3.5. Let σ = (a1 ... am) ∈ Sn be an m-cycle. Then

σ2 =

{

(a1 a3 ... am a2 a4 ... am−1) if m is odd,
(a1 a3 ... am−1)(a2 a4 ... am) if m is even.

For x ∈ R, let ⌊x⌋ ∈ Z denote the largest integer such that ⌊x⌋ ≤ x.

Theorem 3.6. (Sn)
2 is a subgroup of Sn if and only if n ≤ 5.

Proof. Let n ≥ 6. Assume that (Sn)
2 is a subgroup of Sn, and we shall derive a

contradiction. There exists k ∈ N such that ⌊n2 ⌋ < 2k ≤ n − 2. Since (Sn)
2 is a

subgroup of Sn, it is a normal subgroup, and hence it is one of {e}, An or Sn. But
clearly (Sn)

2 cannot be {e} or Sn. We obtain the remaining possibility

(Sn)
2 = An. (3.3)

Consider σ = (1 2 ... 2k)(2k + 1 2k + 2) ∈ Sn. Note that σ ∈ An, so by (3.3), σ = τ2

for some τ ∈ Sn. Let τ = τ1τ2...τs be a cyclic decomposition, where τi has length li.
We have (1 2 ... 2k)(2k + 1 2k + 2) = σ = τ21 ...τ

2
s . By Lemma 3.5, there exists j such

that lj > 2k, for otherwise there is no (2k)-cycle in τ2, a contradiction. By Lemma 3.5,
lj = 4k ≥ 2(⌊n2 ⌋+ 1) > n, which is a contradiction. We have shown that (Sn)

2 is not a
subgroup of Sn for n ≥ 6.

Next we consider n ≤ 5. By direct computations, (S1)
2 = (S2)

2 = {e}, and (S3)
2 =

A3. Also, Example 3.2 shows that (S4)
2 = A4. It remains to show that

(S5)
2 = A5. (3.4)

Clearly (S5)
2 ⊂ A5. Conversely, pick e 6= σ ∈ A5. Then σ is one of (a b c), (a b)(c d),

(a b c d e). The cases (a b c), (a b)(c d) are treated in Example 3.2. If σ = (a b c d e),
then σ = (σ3)2 ∈ (S5)

2. This proves (3.4). We have completed the proof of Theorem
3.6. �

Let F be a finite field. Let SLn(F ) be the n× n matrices with entries in F and with
determinant 1, let Z(SLn(F )) be its center, and let

PSLn(F ) = SLn(F )/Z(SLn(F )).

Recall that if q is a power of a prime number, we let Fq denote the unique finite field
with q elements.

Lemma 3.7.

(a) PSL2(Fq) is simple if and only if q > 3.
(b) If n ≥ 3 and F is a finite field, then PSLn(F ) is simple.

Proof. Lemma 3.7(a) is due to Jordan-Moore [3, Thm.8.13], and Lemma 3.7(b) is due
to Jordan-Dickson [3, Thm.8.23]. �

The above lemma enables us to construct more examples of finite groups which do
not have the square subgroup property.
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Theorem 3.8. Let q be a power of a prime number.

(a) (SL2(Fq))
2 is not a subgroup of SL2(Fq) if q > 3.

(b) If n ≥ 3, then (SLn(Fq))
2 is not a subgroup of SLn(Fq).

(c) (GLn(F2))
2 is a subgroup of GLn(F2) if and only if n ≤ 2.

Proof. Assume that (SL2(Fq))
2 is a subgroup of SL2(Fq) for some q > 3. By Proposition

3.1(a), (PSL2(Fq))
2 is a subgroup of PSL2(Fq). But by Lemma 3.7(a), PSL2(Fq) is

a finite simple group, so by Theorem 3.4(a), it is cyclic of prime order. This is a
contradiction, and we have proved Theorem 3.8(a).

Assume that (SLn(Fq))
2 is a subgroup of SLn(Fq) for some n ≥ 3. By Proposition

3.1(a), (PSLn(Fq))
2 is a subgroup of PSLn(Fq). But by Lemma 3.7(b), PSLn(Fq) is

a finite simple group, so by Theorem 3.4(a), it is cyclic of prime order. This is a
contradiction, and we have proved Theorem 3.8(b).

Clearly GLn(F2) = SLn(F2). For n ≥ 3, (SLn(F2))
2 is not a subgroup of SLn(F2) by

Theorem 3.8(b). For n = 2, SL2(F2) ∼= S3, so (SL2(F2))
2 is a subgroup of SL2(F2) by

Theorem 3.6. The case of n = 1 is trivial. We have proved Theorem 3.8(c). �

Proof of Theorem 1.3:

We have shown that the following finite groups do not have square subgroup property.
Non-abelian simple groups: Theorem 3.4(a),
An(n ≥ 4): Theorem 3.4(b),
Sn(n ≥ 6): Theorem 3.6,
SL2(Fq)(q > 3), SLn(Fq)(n ≥ 3): Theorem 3.8(a,b). �

4. Orders of Groups

In this section, we prove Theorem 1.4. Recall that G is said to have the square
subgroup property if G2 is a subgroup of G.

Proposition 4.1. If |G| = 2k where k is odd, then G2 is a subgroup of G.

Proof. Suppose that |G| = 2k, where k is odd. Then G contains a subgroup H of index
2 (see p.122, Ex.13 of [1]). We claim that

H = H2 ⊂ G2. (4.1)

To obtain (4.1), the only thing to prove is H ⊂ H2. Since |H| = k is odd, we have
k + 1 = 2r for some r ∈ N. Pick x ∈ H. We have x = xxk = (xr)2 ∈ H2. This proves
that H ⊂ H2, which implies (4.1) as claimed.

Conversely, we claim that
G2 ⊂ H. (4.2)

Pick x = g2 ∈ G2, where g ∈ G. Since H is of index 2 in G, H is normal in G, so G/H
is a group. Now xH = g2H = (gH)2 = eH, so x ∈ H. This proves (4.2) as claimed.
By (4.1) and (4.2), we have G2 = H, so G2 is a subgroup of G. �

Theorem 4.2. The smallest finite group which does not have the square subgroup prop-

erty has order 12.

Proof. Suppose that G is a group, and |G| < 12. We consider the following two cases.
Case 1: |G| is a multiple of 4.

If |G| = 4, then G is isomorphic to Z4 or Z2 × Z2. If |G| = 8, then G is isomorphic
to one of the following,

Z8,Z4 × Z2,Z2 × Z2 × Z2, D8, Q8, (4.3)

where D8 is the dihedral group and Q8 is the quaternion group. Each of the above
groups has the square subgroup property.
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Case 2: |G| is not a multiple of 4.

In this case by Theorem 1.1 and Proposition 4.1, G has the square subgroup property.
We have shown that if |G| < 12, then G has the square subgroup property. On the

other hand |A4| = 12, and by Example 3.2, A4 does not have the square subgroup
property. This proves the theorem. �

As an application of our study on square subgroup property, it leads to the following
well-known result in finite group theory.

Corollary 4.3. If G is a non-abelian finite simple group, then |G| is a multiple of 4.

Proof. Since G is nonabelian, it cannot be cyclic. By Theorem 4.1(a), G does not have
the square subgroup property. By Theorem 1.1 and Proposition 3.4, 4 divides |G|. �

In view of Theorem 1.1 and Proposition 3.4, it remains to consider groups of order
divisible by 4. We focus on such groups for the rest of this section.

Proposition 4.4. There exists a finite group G of order 16 which does not have the

square subgroup property.

Proof. Let G = 〈a, b ; a4 = b4 = e, ba = a−1b〉. Here G is a nonabelian group of order
16, and G ∼= Z4 ⋊ Z4.

We claim that

G2 = {e, a2, b2}. (4.4)

It is clear that {e, a2, b2} ⊂ G2, and it remains to prove the opposite inclusion. From
ba = a−1b, we have bai = a−ib for all i ∈ Z. By induction,

bjai = a(−1)jibj (4.5)

for all i, j ∈ Z. Suppose that x ∈ G2. Then x = g2 for some g ∈ G. Assume that
g = arbs for some r, s ∈ Z. By (4.5),

x = g2 = (arbs)2 = arbsarbs = ara(−1)srbsbs = ar+(−1)srb2s =

{

a2r if s is even,
b2s if s is odd.

Hence x ∈ {e, a2, b2}, which proves (4.4). By (4.4), |G2| = 3, which is not a factor of
16. So G2 is not a subgroup of G. �

The finite 2-groups form a family of groups whose orders are divisible by 4. The next
proposition constructs finite 2-groups that do not have the square subgroup property.

Proposition 4.5. For any n ≥ 4, there exists a finite group G of order 2n such that

G2 is not a subgroup of G.

Proof. Let n ≥ 4. Let H be the group of order 16 constructed in Proposition 4.4. Let
G = H × Z2n−4 . By Proposition 3.1(b), G2 is not a subgroup of G. �

We note that Proposition 4.5 fails for n = 3. Up to isomorphism, there are exactly
five groups of order 23 = 8 (see (4.3)), and they all have the square subgroup property.
Therefore, the smallest 2-group which does not have the square subgroup property has
order 16.

Let n ≥ 2. We define the dicyclic group of order 4n by

Dicn = 〈a, x ; a2n = e, x2 = an, x−1ax = a−1〉.

Every element of Dicn is uniquely of the form akxj , where k = 0, 1, ...2n−1 and j = 0, 1.

Theorem 4.6. Let n ≥ 2. Then Dicn has the square subgroup property if and only if

n is even.
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Proof. Let G = Dicn. We first claim that

G2 = {a2m ; m = 0, 1, ..., n− 1} ∪ {an}. (4.6)

Let T = {a2m ; m = 0, 1, ..., n− 1} ∪ {an}. Clearly a2m ∈ G2 for all m = 0, 1, ..., n− 1.
Also, an = x2 ∈ G2. Hence T ⊂ G2. Conversely, we consider g2 ∈ G2. Write g = akxj ,
where k = 0, 1, ..., 2n − 1 and j = 0, 1. If j = 0, then g2 = a2k ∈ T . If j = 1, then
g2 = akxakx = aka−kx2 = x2 = an ∈ T . Hence G2 ⊂ T . This proves (4.6) as claimed.

If n is even, then by (4.6), (Dicn)
2 = 〈a2〉, so (Dicn)

2 is a subgroup of Dicn.
Suppose that n is odd. Let n = 2k+ 1. By (4.6), a2k, an ∈ (Dicn)

2, but an(a2k)−1 =
a /∈ (Dicn)

2. Hence (Dicn)
2 is not a subgroup of Dicn. �

Proof of Theorem 1.4:

We want to show that conditions (a) and (b) of Theorem 1.4 are equivalent. We first
show that (b) implies (a). Suppose that n ≤ 8 or 4 does not divide n. If n ≤ 8, then by
Theorem 4.2, every group of order n has the square subgroup property. If 4 does not
divide n, then by Theorems 1.1 and 4.1, every group of order n has the square subgroup
property.

Next we show that (a) implies (b). Suppose that n > 8 and 4 divides n. Then n = 4k
for some k ≥ 3. We want to construct a group G of order 4k and does not have the
square subgroup property. For k = 3, we let G = A4, see Example 3.2. For k = 4, we let
G be the group constructed in Proposition 4.4. For k ≥ 5 and odd, we take G = Dick
and apply Theorem 4.6. For k ≥ 5 and even, we write

k = 2tr , t, r ∈ N and r is odd.

If r = 1, we let G be the group in Proposition 4.5. If r > 1, we let G = Dicr × Z2t . By
Proposition 3.1(b) and Theorem 4.6, G = Dicr×Z2t does not have the square subgroup
property. This proves Theorem 1.4. �

5. General Linear Groups

In this section, we prove Theorem 1.5. For any square matrix A, we let Aij denote
its (i, j)-th entry. We make the convention that empty spots in a matrix denote the
entry 0.

Lemma 5.1. Let A be an n× n upper-triangular complex matrix with entries 1 along

the diagonal, and Aij = xj−i for all i < j, namely

A =



















x0 x1 x2 . . . xn−2 xn−1

x0 x1 . . . xn−3 xn−2

x0
...

...
. . . x1 x2

x0 x1
x0



















. (5.1)

Then (A2)ij =

{
∑j

k=i xk−ixj−k for i ≤ j
0 for i > j.

Proof. For i > j, it is clear that (A2)ij = 0. For i ≤ j, we have (A2)ij =
∑n

k=1AikAkj =
∑j

k=i xk−ixj−k. �

Recall that a Jordan block is a square matrix with diagonal entries λ ∈ C, entries 1
above the diagonal, and 0 elsewhere. Let C× denote the multiplicative group consisting
of nonzero complex numbers.
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Lemma 5.2. Let λ ∈ C
×, and consider the n× n Jordan block

J =















λ 1
λ 1

λ
. . .

. . . 1
λ















.

There exists an n× n complex matrix B such that B2 = J .

Proof. Pick α ∈ C such that α2 = λ. Then J = α2M , where

M =

















1 1
λ

1 1
λ

1
. . .
. . . 1

λ

1

















.

Let A be the matrix in (5.1). By Lemma 5.1, A2 = M holds if

2x1 =
1

λ
and

j
∑

k=0

xkxj−k = 0 for all j = 2, ..., n− 1. (5.2)

We note that (5.2) has a unique solution for x1, x2, ..., xn−1. It starts with x1 = 1
2λ ,

then inductively with x2 = −1
2x

2
1 = − 1

8λ2 , x3 = −1
2(x1x2 + x2x1) = 1

16λ3 , and more
generally

xj = −
1

2

j−1
∑

k=1

xkxj−k for all j = 2, ..., n− 1.

In this way, A2 = M .
Let B = αA. Then J = α2M = α2A2 = B2. This proves the lemma. �

Recall that GLn(C) is the multiplicative group of all n × n nonsingular complex
matrices. We now show that (GLn(C))

2 = GLn(C).

Proof of Theorem 1.5:

Let X ∈ GLn(C). There exists P ∈ GLn(C) such that J = PXP−1 is the Jordan
form of X, namely

J =











J1
J2

. . .

Jr











where each Ji is a Jordan block. By Lemma 5.2, there exist B1, ..., Br such that B2
i = Ji

for all i = 1, ..., r. Let

B =











B1

B2

. . .

Br











Clearly B2 = J . Then

X = P−1JP = P−1B2P = (P−1BP )2 ∈ (GLn(C))
2.

This proves the theorem. �
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