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Some nontrivial two-term dilogarithm identities

JOHN M. CAMPBELL

Abstract. In 2012, Lima introduced a remarkable two-term dilogarithm identity,
based on a proof for the Basel problem due to Beukers et al. Using a series transform
obtained very recently via Legendre polynomial expansions, we nontrivially extend
Lima’s identity, and offer a new proof of this same identity.

1. Introduction

The dilogarithm function is defined as Li2(z) :=
∑∞

k=1
zk

k2
, which converges for all

complex z with |z| ≤ 1. In this note, we derive new and nontrivial two-term dilogarithm
identities, improving upon remarkable discoveries due to Lima [11].

The natural logarithm function, as defined for positive values, is, of course, very fun-
damental in mathematics as an elementary classical function, apart from how frequently
the natural logarithm arises in science, technology, and engineering fields, outside of
pure mathematics. So, this begs the question as to what may be considered as an ap-
propriate way of extending or lifting this function, in the context of a given application,
or within a given discipline in mathematics, science, etc. In this regard, the study of
so-called higher logarithm functions forms a prominent area within the field of special
functions theory, with the above defined dilogarithm as something of a prototypical
instance of what is meant by a higher logarithm, in consideration as to above definition

for Li2 compared to the Maclaurin series expansion − ln(1− z) =
∑∞

k=1
zk

k . The prob-
lem of determining a closed form for Li2(1) is perhaps one of the most famous problems
throughout the history mathematics: This is referred to as the Basel problem, as solved

by Euler in 1734, with the closed form π2

6 = 1 + 1
22

+ 1
32

+ · · · . This is indicative of
the importance, historically and otherwise, about the subject of symbolically evaluating
expressions involving the dilogarithm mapping. This article introduces new results in
this area.

There are only eight known values z such that both Li2(z) and z may be expressed
in closed form [13, §1]. This motivates the development of techniques for symbolically
evaluating two-term linear combinations of dilogarithmic expressions (cf. [11]). For
the sake of brevity, we assume familiarity with basic Li2 identities, such as Li2(x) +
Li2(−x) = 1

2Li2(x
2) and Li2(1 − x) + Li2(1 − x−1) = −1

2 ln
2 x. The evaluation due to

Lima [11] whereby

Li2

(√
2− 1

)

− Li2

(

1−
√
2
)

=
π2

8
− 1

2
ln2
(

1 +
√
2
)

(1)
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does not follow from previously known two-term Li2 identities. This evaluation is proved
in [11] using an argument relying on an evaluation for

∫ ∞

ln(1+
√
2)/2

ln(tanh z) dz,

which, in turn, relies on a double integral evaluation due to Beukers et al. [3]. We offer a
simplified proof of (1), and extend (1) in nontrivial ways, using a series transform very
recently introduced in [5]. The evaluations given in this note, as in Examples 2.2–2.5
below, are nontrivial; Mathematica and Maple, in particular, are not able to obtain these
evaluations, even with the use of Mathematica commands such as FunctionExpand

and FullSimplify or Maple packages such as SumTools; the same holds for Lima’s
evaluation in (1).

Apart from Lima’s work in [11], there has been a considerable amount of previous
research devoted to two-term dilogarithm identities, as in with the work of Bytsko in
[4]. For example, two-term dilogarithm relations for Li2 evaluated at expressions as in
1
λ2 for λ = 2 cos π

7 are given in [4], and an earlier two-term Li2 evaluation due to Gordon
and McIntosh [7] involving

Li2

(
√

3 + 2
√
5− 1

2

)

is also reproduced in [4]. A main source of interest in the two-term dilogarithm identities
that we prove is due to Ramanujan’s two-term Li2 evaluations, as in the following
equation [2, p. 32] (cf. [10]):

Li2

(

1

3

)

− 1

6
Li2

(

1

9

)

=
π2

18
− ln2 3

6
.

Furthermore, two-term dilogarithm evaluations have been involved in applications per-
taining to differential geometry, making a particular note of the remarkable identity
due to Khoi [8] (cf. [12]) given as follows:

L

(

1

φ(φ+
√
φ)

)

− L

(

φ

φ+
√
φ

)

= −π
2

20
,

where the Rogers dilogarithm function is such that L(z) = Li2(z) +
1
2 ln(z) ln(1 − z),

and where φ = 1
2

(

1 +
√
5
)

denotes the famous golden ratio constant.

2. Main identity and applications

For the sake of brevity, we assume basic familiarity with the orthogonal family of

Legendre polynomials Pn(x) =
1
2n
∑n

k=0

(

n
k

)2
(x − 1)n−k(x + 1)k. The key idea behind

our improving upon Lima’s work in [11] is given by the following identity, which was
introduced in 2021 [5] using fractional calculus and Legendre polynomial expansions: If
f is an analytic function over (0, 1), and if

∑

n≥0

anx
n =

∑

m≥0

bmPm(2x− 1)

holds with respect to the usual norm for functions on (0, 1), then

∑

n≥0

an

(2n+ 1)2
(

( 1

2
)
n

n!

)2 =
∑

m≥0

(−1)mbm
(2m+ 1)2

, (2)

letting the Pochhammer symbol be defined and denoted as per usual, with (x)0 = 1
and (x)n = x(x + 1) · · · (x + n − 1) for a natural number n. We also recall the Euler
integral Γ(x) =

∫∞
0 ux−1e−u du used to define the Γ-function, along with the Legendre
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duplication formula: Γ
(

k + 1
2

)

=
√
π
(

1
4

)k (2k
k

)

Γ(k + 1). In our applying the series
transform indicated in (2), we need to make use of the famous generating function (g.f.)
formula given below:

1
√

1− 2yz + z2
=

∞
∑

n=0

Pn(y)z
n. (3)

As below, we let sgn(r) denote the sign function, so that, for a real value r, sgn(0) = 0,
sgn(r) = 1 if r is positive, and sgn(r) = −1 otherwise.

Theorem 2.1. The equality whereby

1

1 + z

∞
∑

n=0

(

16z
(1+z)2

)n

(2n+ 1)2
(

2n
n

) = sgn(z)
i
[

Li2
(

−
√
−z
)

− Li2
(√

−z
)]

2
√
z

(4)

holds if both sides converge for real z. Here i is the imaginary unit.

Proof. We rewrite the g.f. in (3) so that

1√
1 + 2z + z2

· 1
√

1− x 4z
1+2z+z2

=
∞
∑

n=0

Pn(2x− 1)zn

for suitably bounded x and z. On the other hand, rewriting the latter factor on the
left-hand side, as a function of x, with its Maclaurin series, we obtain that:

∞
∑

n=0

(−1)n
(− 1

2

n

)

(

4z
1+2z+z2

)n
xn

√
1 + 2z + z2

=
∞
∑

n=0

Pn(2x− 1)zn.

Through a direct application of (2) to the above equality, we obtain that

π

4
√

(z + 1)2

∞
∑

n=0

(

z
(z+1)2

)n
Γ(2n+ 1)

Γ2
(

n+ 3
2

) =

∞
∑

m=0

(−1)mzm

(2m+ 1)2
,

and we set |z + 1| > 0. Since
∑∞

m=0
(−1)my2mzm

2m+1 evaluates as
tan−1(y

√
z)

y
√
z

, and since the

antiderivative of this latter expression with respect to y is

i [Li2 (−iy
√
z)− Li2 (iy

√
z)]

2
√
z

,

this easily gives us the desired result. �

2.1. Applications. We begin by applying Theorem 2.1 so as to obtain a new and
simplified proof of Lima’s identity in (1).

Proof of (1): Setting, in Theorem 2.1, z = −
(√

2− 1
)2
, this gives us that:

∑∞
n=0

(−4)n

(2n+1)2(2n
n
)

1−
(√

2− 1
)2 =

Li2
(√

2− 1
)

− Li2
(

1−
√
2
)

2
(√

2− 1
) . (5)

So, it remains to evaluate the above infinite series. In this direction, by using the
Maclaurin series expansion

∞
∑

n=0

(−4)nt2n

(2n+ 1)
(

2n
n

) =
sinh−1(t)

t
√
1 + t2

,
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letting sinh−1(z) = ln(
√
z2 + 1+ z) denote the inverse hyperbolic sine, we find that we

may compute the antiderivative of the right-hand side of the above equality, as below:

Li2

(

−e− sinh−1(t)
)

− Li2

(

e− sinh−1(t)
)

+

sinh−1(t)
(

ln
(

1− e− sinh−1(t)
)

− ln
(

e− sinh−1(t) + 1
))

.

This is easily seen by differentiating this symbolic form. Setting t → 1 and t → 0, this
gives us the equality of

Li2
(

1−
√
2
)

− Li2
(√

2− 1
)

+ π2

4 +
(

ln(2)
2 − ln

(

2 +
√
2
)

)

sinh−1(1)

1−
(√

2− 1
)2

and

Li2
(√

2− 1
)

− Li2
(

1−
√
2
)

2
(√

2− 1
) .

Rearranging this equality, we obtain that

Li2

(√
2− 1

)

− Li2

(

1−
√
2
)

=
π2

8
+

1

2
sinh−1(1) ln

(√
2− 1

)

,

as desired. �

A relevant application of Lima’s evaluation in (1) concerns a pair of classic polylog-
arithmic ladders due to Lewin (cf. [9, §1.6]), as below, writing α in place of

√
2− 1:

4L(α)− L(α2) =
π2

4
, (6)

4L(α) + 4L(α2)− L(α4) =
5π2

12
. (7)

We see that: Thanks to Lima’s identity, as in (1), we may obtain two correponding
dilogarithm ladders with powers of −α in place of powers of α, since the powers of α
other than α itself in (6) and (7) are even. The identity in (6) was used in a prominent
way in [6] in a proof for a binomial-harmonic sum evaluation introduced in [6], using a
Legendre polynomial-based integration technique closely related to the key identity in
(2). The foregoing considerations strongly motivate further uses of Theorem 2.1 in the
determination of two-term dilogarithm identities.

In order to generalize our new proof of Lima’s identity shown in (1), we need to
generalize how we had proved our evaluation for the infinite series on the left-hand side
of (5), so as to be able to evaluate generating functions of the following form:

∞
∑

n=0

xn

(2n+ 1)2
(

2n
n

) . (8)

However, it is known that this is equal to:

2iLi2

(

−
√

1− x
4 − i

√
x

2

)

√
x

−
2iLi2

(

√

1− x
4 + i

√
x

2

)

√
x

+

iπ2

2
√
x
+

2 ln

(

−
√

1−x

4
− i

√

x

2
+1√

1−x

4
+ i

√

x

2
+1

)

csc−1
(

2√
x

)

√
x

.
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This is easily verifiable, by writing

∞
∑

n=0

xny2n

(2n+ 1)
(

2n
n

) =
4 sin−1

(√
xy
2

)

√
xy
√

4− xy2
,

and by then computing the antiderivative of the right-hand side.

Example 2.2. Setting z = 1
−9−4

√
5
in Theorem 2.1, we may, as explained below, obtain

the following identity:

Li2

(

1

φ3

)

− Li2

(

− 1

φ3

)

=
φ3
(

π2 − 18 ln2(φ)
)

3 (φ6 − 1)
. (9)

Inputting the above value for z into the left-hand side of the identity in Theorem 2.1,
it remains to evaluate the series in (8) for x = −1, making use of the classically known

values for Li2

(

1
φ

)

and Li2

(

− 1
φ

)

[13, §1]. As indicated above, Maple and Mathematica

are not able to evaluate the left-hand side of the equality in (9). For example, inputting

FunctionExpand[

PolyLog[2, GoldenRatio^(-3)] - PolyLog[2, -GoldenRatio^(-3)]]

into Mathematica, this CAS is not able to compute any evaluation for the above input.

Example 2.3. Setting z = 7−4
√
3 in Theorem 2.1, the left-hand side of this Theorem

involves, in this case, the series

∞
∑

n=0

1

(2n+ 1)2
(

2n
n

)

which we may easily evaluate according to the above identity for the generating function
in (8), giving us that:

Li2

(

i
(

2−
√
3
))

− Li2

(

−i
(

2−
√
3
))

=
2i
√

7− 4
√
3
(

8G− π ln
(

2 +
√
3
))

3
(

8− 4
√
3
) ,

letting G =
∑∞

k=0
(−1)k

(2k+1)2
denote Catalan’s constant.

Example 2.4. Setting z = 3−2
√
2 in Theorem 2.1, by again making use of the known

symbolic form for the power series in (8), we obtain that:

Li2

(

i
(√

2− 1
))

− Li2

(

−i
(√

2− 1
))

evaluates as

1

32
i

(√
2

(

ψ(1)

(

1

8

)

+ ψ(1)

(

3

8

))

+ 8π ln
(√

2− 1
)

− 4
√
2π2
)

,

writing ψ(1)(z) = d2

dz2
ln Γ(z) to denote the trigamma function.

Example 2.5. Setting z = 1
3 in Theorem 2.1, we obtain, again making use of the

evaluation for (8), that

Li2

(

i√
3

)

− Li2

(

− i√
3

)

equals:

i
(

3ψ(1)
(

1
6

)

+ 15ψ(1)
(

1
3

)

− 6
√
3π ln(3)− 16π2

)

36
√
3

.
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As indicated above, the left-hand side of (4) may be written as an expression involving
the difference

Li2

(

2i

√

z

(1 + z)2
+

√

1− 4z

(1 + z)2

)

− Li2

(

−2i

√

z

(1 + z)2
−
√

1− 4z

(1 + z)2

)

along with combinations of elementary functions. Let the above difference be written
as:

Li2(α(z))− Li2(−α(z)). (10)

So, according to (4), if both

Li2(
√
−z)− Li2(−

√
−z) (11)

and (10) are convergent, then one such expression admits a closed-form evaluation if
and only if the other such expression does.

Although the focus of this article has been on two-term Li2 identities, we may also
use Theorem 2.1 to obtain identities that bear a resemblance to the dilogarithmic ladder

π2 = 36Li2

(

1

2

)

− 36Li2

(

1

4

)

− 12Li2

(

1

8

)

+ 6Li2

(

1

64

)

given in [1]; for example, setting z = −1
4 gives us a closed form for a rational linear

combination of Li2
(

1
4

)

, Li2
(

−1
3

)

, and Li2
(

1
3

)

. Explicitly,

2Li2

(

−1

3

)

+ Li2

(

1

4

)

− 2Li2

(

1

3

)

= −π
2

6
− 2 ln2(2) + 2 ln(2) ln(3).

We encourage the exploration of further uses of Theorem 2.1.
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