
Irish Math. Soc. Bulletin
Number 86, Winter 2020, 114–116
ISSN 0791-5578

PROBLEMS

IAN SHORT

Problems

The first problem this issue is due to Yagub Aliyev of ADA University, Azerbaijan.
A similar problem attracted popular interest in Azerbaijan during 2020.

Problem 86.1. Find the nearest integer to

102021 −
√

(102021)2 − 102021.

The second problem was proposed by Seán Stewart of Bomaderry, Australia.

Problem 86.2. Evaluate ∫ 1

0

1

x
arctan

(
2rx

1 + x2

)
dx,

where r is a real constant.

The third problem comes from Finbarr Holland of University College Cork.

Problem 86.3. Prove that
∞∑
n=0

9n+ 5

9n3 + 18n2 + 11n+ 2
= 3 log 3.

Solutions

Here are solutions to the problems from Bulletin Number 84.
The first problem in Issue 84 was a corrected version of Problem 82.1, which was

missing some hypotheses. The problem uses the usual notation x1, x2, . . . , xn for the
components of a vector x in Rn. It was solved by the North Kildare Mathematics
Problem Club and the proposer, Finbarr Holland. We present a version of Finbarr’s
solution with modifications from the Problem Club.

Problem 84.1 . Suppose that u and v are linearly independent vectors in Rn with

0 < u1 6 u2 6 · · · 6 un and v1 > v2 > · · · > vn > 0.

Given x ∈ Rn, let y be the orthogonal projection of x onto the subspace spanned by u
and v; thus y = λu+ µv, for uniquely determined real numbers λ and µ. Prove that if

x1 > x2 > · · · > xn > 0,

then µ is positive.

Solution 84.1. A straightforward calculation shows that

µ =
x · w
|w|2

, where w = v − u · v
|u|2

u.

Thus it suffices to show that

|u|2(v · x) > (u · x)(u · v).
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Let us now define

ai =
xi
ui
, bi =

vi
ui
, ci = u2i , for i = 1, 2, . . . , n,

the coordinates of vectors a, b and c. Then

|u|2(v · x)− (u · x)(u · v) =
n∑

i=1

ci

n∑
j=1

ajbjcj −
n∑

i=1

aici

n∑
j=1

bjcj

=
n∑

i,j=1

cicj(ajbj − aibj)

= 1
2

n∑
i,j=1

cicj(ajbj − aibj + aibi − ajbi)

= 1
2

n∑
i,j=1

cicj(ai − aj)(bi − bj).

Observe that a1 > a2 > · · · > an > 0 and b1 > b2 > · · · > bn > 0. Hence

cicj(ai − aj)(bi − bj) > 0, for i, j = 1, 2, . . . , n,

with equality if and only if i = j. Thus |u|2(v · x)− (u · x)(u · v) > 0, as required. �

The next problem was solved by JP McCarthy of the Cork Institute of Technology,
the North Kildare Mathematics Problem Club and the proposer, Finbarr Holland. We
present JP’s solution.

Problem 84.2 . Given any finite collection L1, L2, . . . , Ln of infinite straight lines in the
complex plane, find a formula in terms of data specifying L1, L2, . . . , Ln for a differ-
entiable function f : R −→ C with the property that each line Li is tangent to the
curve f(R).

The following solution assumes that none of the lines Lj are vertical; it can easily be
adjusted to deal with the omitted special cases.

Solution 84.2. Each line Lj has a parametrization

`j(t) = t+ i(mjt+ cj), for t ∈ R.

For j = 2, 3, . . . , n and t ∈ R, we define

φj(t) = (1− t)3(1 + i(mj−1 + cj−1)) + 3(1− t)2t(2 + i(2mj−1 + cj−1))

+ 3(1− t)t2(−1 + i(−mj + cj)) + t3icj .

This is the cubic Bézier curve from the point on Lj−1 with real part 1 to the point on
Lj with real part 0. It uses the point on Lj−1 with real part 2 and the point on Lj with
real part −1 to match the slopes of Lj−1 and Lj at t = 0 and t = 1.

By construction, the function f : R→ C that, for j = 2, 3, . . . , n, satisfies

f(x) =


`1(x) if x < 1,

φj(x− (2j − 3)) if 2j − 3 6 x < 2j − 2,

`j(x− (2j − 2)) if 2j − 2 6 x < 2j − 1,

`n(x− (2n− 2)) if x > 2n− 1,

has the desired properties. �

The third problem was solved by the North Kildare Mathematics Problem Club, and
it is their solution presented here.
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Problem 84.3 . Suppose that each edge of a finite directed graph G is coloured in one of
some finite collection of different colours, with the property that for each colour c and
vertex v, there is precisely one directed edge with colour c and target vertex v. Prove
that for any infinite sequence of colours c1, c2, . . . there is an infinite walk e1, e2, . . . of
directed edges of G such that, for each index i, ei has colour ci and the target vertex of
ei equals the source vertex of ei+1.

Solution 84.3. (We assume G has a nonempty vertex set V and there is at least one
colour.) The finite edge set E is nonempty. We give it the discrete topology, give EN

the product topology, and give the set W ⊂ EN of infinite walks the relative topology.
Observe that W is compact, since it is a closed subset of the compact Hausdorff space
EN. Note also that EN is metrizable, and a sequence (wn) of walks converges if and only
if for each i ∈ N the sequence formed by taking the ith edge wn(i) of wn, n = 1, 2, . . . ,
is eventually constant.

Let c1, c2, . . . be a given sequence of colours. For any n ∈ N and each vertex v ∈ V
we see by working backwards that there is a finite walk e ∈ E{1,2,...,n} ending at v such
that ei has colour ci for 1 6 i 6 n. By taking n greater than the order |V | of V we see
that G contains a cycle.

If we remove terminal vertices and the edges to those vertices from G, we are left
with a nonempty graph having the same property – nonempty because it will contain
each loop. Repeating the process at most |V | times, we obtain a graph without terminal
vertices having the same property. Thus we may assume without loss in generality that
G has no terminal vertices. Then each finite walk may be continued to some infinite
walk. In particular, each set

Kn = {w ∈W : w(i) has colour ci, ∀i ≤ n}
is nonempty. Moreover Kn+1 ⊂ Kn for each n ∈ N, and each Kn is closed and hence
compact. Thus

K =

∞⋂
n=1

Kn 6= ∅,

and any element w ∈ K is an infinite walk having colour sequence c1, c2, . . . . �

We invite readers to submit problems and solutions. Please email submissions to
imsproblems@gmail.com in any format (we prefer Latex). Submissions for the summer
Bulletin should arrive before the end of April, and submissions for the winter Bulletin
should arrive by October. The solution to a problem is published two issues after the
issue in which the problem first appeared. Please include solutions to any problems you
submit, if you have them.

School of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA,
United Kingdom


