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Some shorter proofs for p-groups

ROBERT HEFFERNAN AND DESMOND MACHALE

Abstract. We give short proofs of elementary results about groups of prime power
order.

One of the prettiest results in elementary group theory is the following:
Theorem 1. If p is a prime number and G is a group with |G| = p2, then G is abelian.

The usual proof of this result runs like this:

Proof. |Z(G)|, being a divisor of |G| is either 1, p of p2. By a well-known result, since
G is a p-group, |Z(G)| is non-trivial, so |Z(G)| = 1 is ruled out. Next, if |Z(G)| = p,
then |G/Z(G)| = p, so G/Z(G) is cyclic. But, if G/Z(G) is cyclic, then G is abelian,
a contradiction. [Alternatively, if |Z(G)| = p, choose a ∈ G, a 6∈ Z(G). Then CG(a) ⊇
〈Z(G), a〉 = G, so a ∈ Z(G), a contradiction.]

Thus |Z(G)| must be p2 and G is abelian. �

However, there is a shorter proof using group representation theory. We use the facts
that

|G| =
k∑

i=1
d2

i

where the di are the degrees of the irreducible complex representations of G; each di is
a divisor of |G|, and the number of representations of degree 1 is (G : G′), where G′ is
the commutator subgroup of G.

The degree equation |G| =
∑k

i=1 d2
i gives

p2 = (G : G′) + tp2

for some integer t. This is impossible unless t = 0 and G′ = {1}, forcing G to be abelian.
We remark that groups of order n2 are not necessarily abelian if n is not a prime. A

minimal counterexample for n = 4 is given by D8, the dihedral group of order 16. For
p odd, there are non-abelian groups of order 81 = 92, for example G(27) × C3, where
G(27) is a non-abelian group of order 27.

In general, the degree equation is in many ways a dual of the class equation of a
group. Just as the class equation can be used to show that the centre of a p-group is
non-trivial, the degree equation can be used to show that the commutator subgroup of
a non-abelian p-group cannot have index 1 or p.
Theorem 2. If G is a non-abelian p-group, then (G : G′) = 1 or (G : G′) = p are not
possible.
Proof. (i) Suppose that (G : G′) = 1. Then, for n > 2, pn = (G : G′) +

∑
p2i, for

i > 0. So, pn = 1 +
∑

p2i, which is a contradiction. [The usual method of proof of
this is to show that G has a normal subgroup H with (G : H) = p. Thus, G/H is
abelian, so H ⊇ G′, a contradiction.]
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(ii) Suppose that (G : G′) = p. Then, for n > 2, we have pn = (G : G′) +
∑

p2i, for
i > 0 or pn = p +

∑
p2i and pn−1 = 1 +

∑
p2i−1, a contradiction.

�

We note that D4, the dihedral group of order 8, and G(27) show that (G : G′) = p2

is possible and that the above results can be extended to finite nilpotent groups, which
are the direct product of p-groups.
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