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PROBLEMS

IAN SHORT

Problems

The first problem is a corrected version of Problem 82.1, which was missing some
hypotheses. The problem uses the usual notation x1, x2, . . . , xn for the components of
a vector x in Rn.

Problem 84.1. Suppose that u and v are linearly independent vectors in Rn with

0 < u1 6 u2 6 · · · 6 un and v1 > v2 > · · · > vn > 0.

Given x ∈ Rn, let y be the orthogonal projection of x onto the subspace spanned by u
and v; thus y = λu+ µv, for uniquely determined real numbers λ and µ. Prove that if

x1 > x2 > · · · > xn > 0,

then µ is positive.

The second problem was contributed by Finbarr Holland, of University College Cork.

Problem 84.2. Given any finite collection L1, L2, . . . , Ln of infinite straight lines in
the complex plane, find a formula in terms of data specifying L1, L2, . . . , Ln for a dif-
ferentiable function f : R −→ C with the property that each line Li is tangent to the
curve f(R).

For the third problem, we use the definition of a directed graph that allows loops
and multiple directed edges with the same source and target vertex.

Problem 84.3. Suppose that each edge of a finite directed graph G is coloured in one
of some finite collection of different colours, with the property that for each colour c and
vertex v, there is precisely one directed edge with colour c and target vertex v. Prove
that for any infinite sequence of colours c1, c2, . . . there is an infinite walk e1, e2, . . . of
directed edges of G such that, for each index i, ei has colour ci and the target vertex of
ei equals the source vertex of ei+1.

Solutions

Here are solutions to the problems from Bulletin Number 82.
Problem 82.1 was false. It is replaced by Problem 84.1. Thanks to Omran Kouba

of the Higher Institute for Applied Sciences and Technology, Damascus, Syria and the
North Kildare Mathematics Problem Club for providing examples to demonstrate the
falsehood of Problem 82.1.

The next problem was solved by Omran Kouba, the North Kildare Mathematics
Problem Club and the proposer, Finbarr Holland. We present the solution of the
Problem Club.
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Problem 82.2 . Prove that ∫ ∞
0

sinhx− x
x2 sinhx

dx = log 2.

Solution 82.2. Let

f(z) =
sinh z − z
z2 sinh z

,

and observe that f is an even function, so∫ ∞
0

f(x) dx =
1

2

∫ ∞
−∞

f(x) dx.

Let N be a positive integer and let ε be a positive constant, less than 1. Let C be the
contour shown in the figure, traversed once anticlockwise.

N−N ε

N +
(
2N + 1

2

)
πi−N +

(
2N + 1

2

)
πi

C

One can check that the integral of f along the semicircle of radius ε tends to 0 as ε→ 0.
Next, we wish to show that the integral of f along the vertical edges and top edge of C
tends to 0 as N →∞. By writing

f(z) =
1

z2
− 1

z sinh z

we see that the main task is to check that the integral of 1/(z sinh z) along these contours
tends to 0 as N → ∞. This is easily done for the two vertical contours of C by using
the inequality |sinh z| ≥ sinhN for any point z on one of the vertical contours.

Now consider a point z = x+
(
2N + 1

2

)
πi on the top contour Γ of C. Observe that

sinh z = i coshx. Hence∣∣∣∣∫
Γ

1

z sinh z

∣∣∣∣ ≤ 1(
2N + 1

2

)
π

∫ N

−N

1

coshx
dx ≤ 1

2N + 1
2

,

so the integral of 1/(z sinh z) along this contour tends to 0 as N →∞ also.
Hence, by applying the residue theorem and then taking limits, we see that∫ ∞

−∞
f(x) dx

is equal to 2πi times the sum of the residues of f in the upper half-plane. The poles of
f in the upper half-plane occur at πni, for each positive integer n, and the residue of f
at πni is (−1)n+1/(πni). Hence∫ ∞

0
f(x) dx =

1

2
× 2πi

∞∑
n=1

(−1)n+1

πni
=

∞∑
n=1

(−1)n+1

n
= log 2. �
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No solutions were received for the extended version of Problem 82.2, which asks for
a proof of the integral formula∫ ∞

0

sinhx− x
x2 sinhx

e−x dx = log π − 1.

The third problem was solved by Omran Kouba, the North Kildare Mathematics
Problem Club, and Henry Ricardo of the Westchester Area Math Circle, New York,
USA. Solutions also appeared in Issue 255 of the M500 Society of the Open University,
from which the problem was taken. The solution we present is an amalgamation of
these solutions.

Problem 82.3 . Prove that
∞∑
n=1

1

(5n− 3)(5n− 2)
=
π

5

√
1− 2√

5
.

Solution 82.3. Recall the well-known result that
∞∑
n=1

1

n2 − a2
=

1

2a

(
1

a
− π cotπa

)
, (∗)

for 0 < a < 1. This can be proved by methods of contour integration, or by taking the
logarithm and differentiating each side of the equation

sinπa

πa
=
∞∏
n=1

(
1− a2

n2

)
with respect to a. Now observe that

∞∑
n=1

1

(2n− 1)2 − a2
=

∞∑
n=1

1

n2 − a2
−
∞∑
n=1

1

(2n)2 − a2

=
∞∑
n=1

1

n2 − a2
− 1

4

∞∑
n=1

1

n2 − (a/2)2
.

By applying (∗) and simplifying we can check that
∞∑
n=1

1

(2n− 1)2 − a2
=

π

4a
tan(πa/2).

Next, we have

1

(5n− 3)(5n− 2)
=

1

25(n− 1/2)2 − (1/2)2
=

4

25((2n− 1)2 − (1/5)2)
.

Hence
∞∑
n=1

1

(5n− 3)(5n− 2)
=

4

25
× 5π

4
tan(π/10) =

π

5

√
1− 2√

5
. �

We invite readers to submit problems and solutions. Please email submissions to
imsproblems@gmail.com in any format (we prefer Latex). Submissions for the summer
Bulletin should arrive before the end of April, and submissions for the winter Bulletin
should arrive by October. The solution to a problem is published two issues after the
issue in which the problem first appeared. Please include solutions to any problems you
submit, if you have them.
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