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Prior to introducing a new subject certain questions always arise, such as what should
be emphasized, and where should the presentation begin? In the preface to the book
under review the author identifies four points of view each central to the subject, and as-
sociated with Cauchy, Weierstrass, Riemann, and Runge, respectively. Each individual
point of view offers a possible starting point where the emphasis would be on:

1. Cauchy: functions having a complex derivative, and integral formulas;

2. Weierstrass: functions locally expressible as a power series;

3. Riemann: functions or mappings which preserve angles, a more geometric view-
point;

4. Runge: functions that can be expressed as the limits of rational functions.

As indicated by the author, the seminal text in this area was written by Ahlfors [1]
and stresses Cauchy’s viewpoint, while most subsequent texts have followed that lead.
Marshall, on the other hand has chosen Weierstrass’ point of view and to begin with
functions locally expressible as a power series. That approach leads almost immediately
to a feature of complex analytic functions not found anywhere in real function theory;
namely, to the distinctive property of unique continuation.

Prior to engaging in such such details there is a nice introduction to complex numbers,
and the historical events that led to these seemingly imaginary quantities being taken
seriously. The initial impetus was the publication of the Ars Magna by Cardano in 1545
in which a complete algebraic solution of the depressed cubic

x3 + px+ q = 0

was presented for the first time, the roots being given by the formula
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The first anomaly appeared about 30 years later when Bombelli drew attention to the
fact that the equation x3 − 15x − 4 = 0 has threes distinct real roots (x = 4 is one),
but in terms of Cardano’s formula they are expressed as

x = (2 + 11i)1/3 + (2− 11i)1/3 ,

which clearly involves complex quantities. Here one might have thought that there
should be another formula that avoids this difficulty, but almost 270 years elapsed until
in 1891 Hölder, making use of Galois theory and the concept of a normal field extension,
proved that there can be no formula expressing the roots of the general cubic that does
not pass through the complex domain (cf. [2, pp. 450-453]). I have always felt due to its
impact on the subsequent development of complex function theory that this is at least as
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important and interesting as the fact that there can be no similar formula expressing the
roots of an equation of degree 5 or higher. Other texts mention Bombelli’s example as
providing evidence that complex numbers must be taken seriously, but to my knowledge
Marshall’s is the first to acknowledge Hölder’s contribution to closing the door on any
possibility of avoiding complex numbers. There is another oddity in connection with
Cardano’s formula that needs to be considered. In particular if the cube roots appearing
in the formula are allowed to be specified in all possible ways, then the formula predicts
more roots than a cubic can have. This is dealt with in exercise 1.9 on p. 11 in which
the student is carefully led in a series of steps to rederive Cardano’s formula, where in
that process of doing so it becomes clear how the appropriate branch is to be selected.
There are a number of such exercises where the student is encouraged with guidance to
experience a bit of the joy of discovery.

Before turning to the study of analytic functions proper, Chapter 2 opens with an
elegant proof of the fundamental theorem of algebra, a subject usually taken up much
later in most texts, and is then based on Lioville’s theorem to the effect that a bounded
entire function is constant. The proof presented here, however, was first suggested by
d’Alembert in 1746 and depends on the fact that a continuous positive function on a
compact set attains a minimum, a fact unproven at the time. Since then, of course,
the gap in d’Alembert’s proof has been filled (cf. [6, p. 266]). At this point an analytic
function is formally defined as a function locally expressible as a convergent power
series, and the principle of unique continuation is established, along with certain basic
properties such as the sum, product and composition of analytic functions are again
analytic. Evidentally, certain functions such as ex, sinx, and cosx can be extended
analytically to the entire complex plain, but the question remains as to how (or whether)
other elementary functions such as

log x,
√
x, x4/3, . . .

can be extended analytically from the real line into the plane. That question is first
addressed on p. 29 (Ex. 2.10) along with some hints in connection with extending the

function x1/n provided that n is a positive integer. Although it is not mentioned in
the text, there is at this point sufficient information available to proceed directly to
extending log x from the interval {x : |x−1| < 1} to the disc {z : |z−1| < 1} by setting

log z = −
∞
∑

n=1

(−1)n

n
(z − 1)n.

Since it has already been established that the composition of analytic functions is also
analytic one can simply set z1/n = e(1/n) log z, and this is the desired unique analytic
extension since equality is clearly satisfied on an interval in the real line.

Having begun from the point of view of power series, within 30 pages there is already
a rich collection of analytic functions which can serve as examples from which to infer
what might be true in more general situations. From here the discussion moves quickly
into the heart of complex function theory to such topics as: the maximum principle,
the local behavior of analytic functions, contour integration, Cauchy’s theorem, Runge’s
theorem on rational approximation, the argument principle, and so forth. Along the
way it is shown that if a function is continuously differentiable in an open set Ω, then
it is in fact analytic. Goursat’s theorem to the effect that continuity can be dropped
and that the mere existence of a derivative throughout an open set is sufficient for
analyticity is another of those instances where the student is encouraged in an exercise,
along with hints, to fill in an important gap (cf. p. 62, Ex. 4.12). As a kind of sequel
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on p. 121 a function f is defined to be weakly-analytic in a region Ω if
∫

Ω
f
∂ϕ

∂z̄
dA = 0

for all continuously differentiable functions ϕ defined on Ω, where dA denotes two-
dimensional Lebesgue (or area) measure. The problem for the student is to verify
Weyl’s lemma, which states that a function is weakly-analytic if, and only if, it is
analytic, and to state a similar result for harmonic functions replacing ∂/∂z̄ by the
Laplacian.

Another example of this particular teaching device occurs earlier on p. 61, where the
student is asked to show that the Riemann zeta function
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converges and is analytic in the half-plane {s : Re s > 1}, to prove that whenever
Re s > 1

ζ(s)− 1

s− 1
=

∞
∑

n=1

∫ n+1

n

(

n−s − t−s
)

dt

and to conclude from this that ζ(s) can be continued analytically to {Re s > 0} \
{1}. Although this is not as strong as Riemann’s proof that the zeta function can be
continued analytically to C\{1}, it is sufficient, however, to establish the prime number
theorem which is presented much later on p. 191 as an exercise with hints.

These are marvelous problems, but I do not want to leave the impression that all
exercises are of the same difficulty as those I have chosen to highlight. Throughout
the text exercises are arranged in groups designated A, B and C. Those in group A
are meant to be routine and intended to be solved as the student is reading the text.
Problems in the other two groups are more challenging, the groups being listed in the
order of increasing difficulty. In some cases, as in the preceding two paragraphs, a
problem assigned at one stage will reappear later in a more challenging context.

Finally, there are certain features of this book that distinguish it from other texts
currently available. Here are two examples:

First, normal families are treated in the context of the chordal metric, a concept
introduced on p. 10. Based on Marty’s theorem from 1931 characterizing normal families
of meromorphic functions on plane domains (cf. [1, p. 226]) together with a lemma of
Zalcman (cf. [7, p. 216]), both the great and little theorems of Picard are obtained in a
short efficient manner (cf. Marshall pp.162-166). Marty’s work is mentioned in Ahlfors,
but not in Stein and Shakarchi, while Zalcman’s lemma appears in neither.

Second, there is a strong emphasis on conformal mapping beyond what one usually
encounters in an introductory text. There is an extensive discussion concerning the
actual construction conformal maps. Moreover, Marshall presents two different proofs
of the Riemann mapping theorem. One is somewhat constructive and based on what
the author refers to as the zipper algorithm. The other is based on normal families and
is usually associated with Koebe. And, in the end there is a beautiful exposition of the
uniformization theorem for simply connected Riemann surfaces, not found in either of
the texts mentioned above.

When I entered Brown University in 1961 as a graduate in mathematics I had the
great pleasure of being introduced to complex analysis through a masterful series of
lectures delivered by John Wermer, and starting from the point of view of power series.
Whenever I have had the opportunity to teach the subject I have always taken that
point of view, and begun in the same way. Although Cartan [3] also begins from the
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point of view of power series, I never felt that there was a suitable text to assign that
students could follow in connection with the course lectures. THERE IS NOW!
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