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PROBLEMS

IAN SHORT

Problems

The first problem this issue was contributed by Peter Danchev of
Plovdiv University, Bulgaria.

Problem 79.1. Suppose that k and n are positive integers with
1 6 k 6 n. Find the largest integer m such that the binomial

coefficient

(
2n

k

)
is divisible by 2m.

The next problem was suggested by Prithwijit De of the Homi
Bhabha Centre for Science Education, Mumbai, India.

Problem 79.2. Let f be a function that is continuous on the inter-
val [0, π/2] and satisfies f(x) + f(π/2−x) = 1 for each x in [0, π/2].
Evaluate the integral∫ π/2

0

f(x)

(sin3 x+ cos3 x)2
dx.

We finish with an elegant identity involving sums of powers of
integers. It would be pleasing to see a simple geometric proof of this
classic identity, but perhaps that is asking too much.

Problem 79.3. Prove that, for any positive integer n,

(15 + · · ·+ n5) + (17 + · · ·+ n7) = 2(1 + · · ·+ n)4.

Solutions

Here are solutions to the problems from Bulletin Number 77. The
first problem was solved by the North Kildare Mathematics Problem
Club as well as the proposer, Finbarr Holland of University College
Cork. The two solutions were similar in spirit; we give the solution
of the problem club.

Received on 26-5-2017.

c©2017 Irish Mathematical Society

95



96 I. SHORT

Problem 77.1 . Suppose that f : [0, 1]→ R is a convex function and∫ 1

0 f(t) dt = 0. Prove that∫ 1

0

t(1− t)f(t) dt 6 0,

with equality if and only if f(t) = a(2t− 1) for some real number a.

Solution 77.1. Let

α = 1
2(f(1)− f(0)), g(t) = α(1− 2t), and h(t) = f(t) + g(t).

Then h is convex, h(0) = h(1), and∫ 1

0

h(t) dt = 0.

Let k(t) = h(t) + h(1− t). Then k is convex, k(t) = k(1− t), and∫ 1/2

0

k(t) dt =

∫ 1

0

k(t) dt = 0. (1)

Also, ∫ 1/2

0

t(1− t)k(t) dt =

∫ 1

0

t(1− t)f(t) dt.

It cannot be that k(0) < 0, because if that were so then k(1) < 0,
and hence (by convexity) k(t) < 0 on [0, 1], which contradicts (1).
Reasoning similarly, we see that if k(0) = 0, then k(t) = 0 for all t,
and ∫ 1/2

0

t(1− t)k(t) dt = 0.

The remaining possibility is that k(0) > 0. In this case, since k
is convex with integral zero, there must be exactly two zeros of k
between 0 and 1, and by symmetry they are at points β and 1−β for
some β ∈ (0, 12). Moreover, k is strictly decreasing on the interval

(0, 12) and t(1− t) is positive and increasing on (0, 12). Thus one can
check that the inequality t(1− t)k(t) < β(1− β)k(t) is satisfied on
both intervals (0, β) and (β, 1/2). Therefore∫ 1/2

0

t(1− t)k(t)dt < β(1− β)

∫ 1/2

0

k(t)dt = 0.

So the desired inequality holds, with equality only in the case
when k(t) is identically 0, that is, when h(t) = −h(1 − t). But in
that case h(0) = −h(1) = −h(0), so h(0) = h(1) = 0, and since h is
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convex with integral zero, we see that h is identically zero. Hence
f(t) = α(2t− 1). �

Finbarr points out that if f is twice continuously differentiable
and f ′′(t) ≥ 0 for all t, then there is a much shorter solution, which
follows immediately from the identity below, which can be proved
by integrating the left-hand integral by parts a couple of times:∫ 1

0

t2(1− t)2f ′′(t) dt = 2

∫ 1

0

(1− 6t+ 6t2)f(t) dt.

The second problem from Bulletin Number 77 was solved by Henry
Ricardo of the Westchester Area Math Circle, New York, USA, and
the North Kildare Mathematics Problem Club. The solution was
also known to the proposer. Many have pointed out that the prob-
lem is well known. Henry notes that the problem is usually ascribed
to Pierre Rémond de Montmort (1678–1719), and that The Prob-
lem of Coincidences by Lajos Takács (Archive for History of Exact
Sciences, 21, 1980) is an excellent survey on this problem and its
generalisations. We give Henry’s solution here, which coincides with
that of the problem club, and which apparently is essentially due to
Euler.

Problem 77.2 . Each member of a group of n people writes his or her
name on a slip of paper, and places the slip in a hat. One by one
the members of the group then draw a slip from the hat, without
looking. What is the probability that they all end up with a different
person’s name?

Solution 77.2. The problem is equivalent to counting the number
Dn of permutations P of {1, . . . , n} that satisfy P (k) 6= k for 1 6
k 6 n. Let us call such a permutation P a derangement. We use the
notation (j1, j2, . . . , jn) to represent a permutation, where jk denotes
the image of k.

For any derangement (j1, j2, . . . , jn), we have jn 6= n. Let jn = k,
where k ∈ {1, 2, . . . , n − 1}. Now we split the derangements on n
elements into two cases.
Case 1 : jk = n (so k and n map to each other). By removing

elements k and n from the permutation, we have a derangement on
n− 2 elements; and so, for fixed k, there are Dn−2 derangements in
this case.
Case 2 : jk 6= n. Swap the values of jk and jn, so that we have a

new permutation with jk = k and jn 6= n. By removing element k,
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we have a derangement on n− 1 elements; and so, for fixed k, there
are Dn−1 derangements.

Thus, with n− 1 choices for k, we have, for n > 2,

Dn = (n− 1) (Dn−1 +Dn−2) .

The probability Pn of a derangement is the number of derangements
divided by the number of all possible permutations of n objects:

Pn =
Dn

n!
=

(n− 1)

n!
(Dn−1 +Dn−2)

= (n− 1)

(
1

n
· Dn−1

(n− 1)!
+

1

n(n− 1)
· Dn−2

(n− 2)!

)
=

(
1− 1

n

)
Pn−1 +

1

n
Pn−2

= Pn−1 −
1

n
(Pn−1 − Pn−2) ,

or Pn− Pn−1 = −(1/n)(Pn−1− Pn−2), with P1 = 0 and P2 = 1/2. It
follows that

Pn − Pn−1 =
(−1)n

n!
,

so

Pn = P1 +
n∑
k=2

(Pk − Pk−1) =
n∑
k=2

(−1)k

k!
. �

The third problem was incorrectly labelled 76.3, rather than 77.3,
in issue 77. It was solved by Dixon Jones of the University of Alaska
Fairbanks, USA, Niall Ryan of the University of Limerick, and the
North Kildare Mathematics Problem Club. We give the solution of
the problem club.

Problem 77.3 . Evaluate

1 +
12

1 +
22

1 +
32

1 + · · ·

.

Solution 77.3. Consider the identity

1

x
− 1

y
=

1

x+
x2

y − x

, where x, y 6= 0 and x 6= y. (2)



PROBLEMS 99

Applying (2) with x = n and y = n+ 1, where n > 1, we obtain

1

n
− 1

n+ 1
=

1

n+
n2

1

.

Applying (2) with x = n−1 and y = n+n2, where n > 2, we obtain

1

n− 1
− 1

n
+

1

n+ 1
=

1

(n− 1) +
(n− 1)2

1 +
n2

1

.

Continuing in this manner, we obtain

1

1
− 1

2
+

1

3
− · · ·+ (−1)n

1

n+ 1
=

1

1 +
12

1 +
22

1 + · · ·+
n2

1

.

Then, taking limits, we see that

log 2 =
1

1 +
12

1 +
22

1 + · · ·

,

so the desired continued fraction is equal to 1/ log 2. �

The problem club point out that various generalisations of this
continued fractions formula appear in the literature. One such gen-
eralisation is

log(1 + x) =
x

1 +
12x

2− x+
22x

3− 2x+
32x

4− 3x+ · · ·
(and there are more). The problem club’s method comes from
Higher Algebra by Hall and Knight, and seems to be due to Frobe-
nius and Stickelberger (J. Reine Angew. Math., 88, 1880) originally.
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A similar idea to that given in the proof can be used to establish
that

π

4
=

1

1 +
12

2 +
32

2 +
52

2 + · · ·

.

We invite readers to submit problems and solutions. Please email
submissions to imsproblems@gmail.com in any format (we prefer
Latex). Submissions for the summer Bulletin should arrive before
the end of April, and submissions for the winter Bulletin should
arrive by October. The solution to a problem is published two issues
after the issue in which the problem first appeared. Please include
solutions to any problems you submit, if you have them.

School of Mathematics and Statistics, The Open University, Mil-
ton Keynes MK7 6AA, United Kingdom


