
Irish Mathematical Society

Cumann Matamaitice na hÉireann
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EDITORIAL

Patrick D. Barry, Professor Emeritus of Mathematics at University
College Cork, has had significant influence on the development of
Mathematics in Ireland. He did brilliant research work on complex
analysis. In his autobiography, Walter Hayman wrote that Barry
was “the only student I ever had who came to me with a PhD prob-
lem already prepared. It was on the minimum modulus of small
integral and subharmonic functions, a subject on which Barry be-
came the world expert.” Barry was Hayman’s second research stu-
dent, and succeeded the first, Paddy Kennedy, in the chair at UCC.
Thereafter he led the Department effectively for many years, as well
as contributing in a major way to the university administration.
Possessed of deep learning, and a strong sense of duty, he took se-
riously the responsibility of university mathematicians to monitor
and assist with developments in the schools’ programme. He was
particularly concerned about changes to the geometry syllabus that
took place in the nineteen-sixties. These changes were seriously
misguided. The whole sorry story is almost unbelievable, and is
documented in the 2007 Maynooth PhD thesis of Susan McDonald.
Barry was tireless and relentless over a long period in his efforts
to correct the problem. Of his writings about school geometry, the
most significant is his book Geometry with Trigonometry. This text
was eventually adopted by the NCCA as the bedrock underlying the
geometry programme in the Project Maths syllabus. It was a fully
rigorous text on Euclidean geometry, going substantially beyond the
schools’ programme, and suitable for study by university undergrad-
uates. It has been out of print, and members will be glad to know
that a second edition appeared last year, with extra material (ISBN:
978-0-12-805066-8). We hope to publish a review in the near future.

In the meantime, this dean of Irish mathematicians continues to
flourish, and a digital copy of a draft of Barry’s second book, Gener-
alization of Geometry, has been uploaded under his name on a UCC
website. The link is http://euclid.ucc.ie/pbarry/SGiG2.pdf.
Barry writes that it is a ‘second book’ on geometry. He writes:
“Down the centuries many adults have studied as a hobby further
material on the geometry they learned at school, and derived great
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pleasure from this. With the decline in study of geometry over the
last fifty years, this pool is probably greatly reduced but I have a
strong hope that persons of this type will notice this book and be
encouraged to study it. A major objective of the approach is to mo-
tivate in the familiar context of Euclidean geometry basic concepts
of projective geometry.” The book has almost 500 pages, and is a
treasure-trove.

The 2017 Annual Scientific Meeting will be held at Sligo Institute
of Technology, and the 2018 meeting will be held at UCD.

Links for Postgraduate Study

The following are the links provided by Irish Schools for prospec-
tive research students in Mathematics:

DCU: (Olaf Menkens)

http://www.dcu.ie/info/staff_member.php?id_no=2659

DIT: mailto://chris.hills@dit.ie

NUIG: mailto://james.cruickshank@nuigalway.ie

NUIM: http://www.maths.nuim.ie/pghowtoapply

QUB: http://www.qub.ac.uk/puremaths/Funded_PG_2016.html

TCD: http://www.maths.tcd.ie/postgraduate/

UCC: http://www.ucc.ie/en/matsci/postgraduate/

UCD: mailto://nuria.garcia@ucd.ie

UU: http://www.compeng.ulster.ac.uk/rgs/

The remaining schools with Ph.D. programmes in Mathematics are
invited to send their preferred link to the editor, a url that works.
All links are live, and hence may be accessed by a click, in the
electronic edition of this Bulletin1.

AOF. Department of Mathematics and Statistics, Maynooth Uni-
versity, Co. Kildare

E-mail address : ims.bulletin@gmail.com

1http://www.irishmathsoc.org/bulletin/



Irish Mathematical Society Bulletin 79, Summer 2017

CONTENTS

Notices from the Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Articles:

Andreas Arvanitoyeorgos:
Homogeneous manifolds whose geodesics are orbits.
Recent results and some open problems . . . . . . . . . . . . . . . . . . . . . . . 5

Samuel S. Gross, Joshua Harrington and Laurel Minott:
Sums of Polynomial Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Ching-I Hsin:
Real Lie Algebras with Equal Characters . . . . . . . . . . . . . . . . . . . . 39

Colm Mulcahy:
An interview with Vincent Hart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Pat Muldowney:
Beyond Dominated Convergence:
Newer methods of Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Elke Wolf:
Composition operators between weighted Bergman spaces and
weighted Banach spaces of holomorphic functions . . . . . . . . . . . . 75

Book Reviews:

The Construction of Mathematics, by Klaus Truemper
reviewed by Peter Lynch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Singular Perturbations. Introduction to System Order Reduction
Methods with Applications, by Elena Shchepakina, Vladimir Sobolev
and Michael P. Mortell

reviewed by Dmitrii Rachinskii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Problem Page
Edited by Ian Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

iii



iv



NOTICES FROM THE SOCIETY

Officers and Committee Members 2017

President Prof S. Buckley Maynooth University
Vice-President Dr Pauline Mellon University College

Dublin
Secretary Dr D. Malone Maynooth University
Treasurer Prof G. Pfeiffer NUI Galway

Dr P. Barry, Prof J. Gleeson, Dr B. Kreussler, Dr R. Levene, Dr
M. Mac an Airchinnigh, Dr D. Mackey, Dr A. Mustata, Dr J. O’Shea
.

Local Representatives

Belfast QUB Dr M. Mathieu
Carlow IT Dr D. Ó Sé
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Homogeneous manifolds whose geodesics are orbits.
Recent results and some open problems

ANDREAS ARVANITOYEORGOS

Abstract. A homogeneous Riemannian manifold (M = G/K, g)
is called a space with homogeneous geodesics or a G-g.o. space if
every geodesic γ(t) of M is an orbit of a one-parameter subgroup
of G, that is γ(t) = exp(tX) · o, for some non zero vector X in the
Lie algebra of G. We give an exposition on the subject, by present-
ing techniques that have been used so far and a wide selection of
previous and recent results. We discuss generalization to two-step
homogeneous geodesics. We also present some open problems.

1. Introduction

The aim of the present article is to give an exposition on devel-
opments about homogeneous geodesics in Riemannian homogeneous
spaces, to present various recent results and discuss some open prob-
lems. One of the demanding problems in Riemannian geometry is
the description of geodesics. By making some symmetry assump-
tions one could expect that certain simplifications may accur. Let
(M, g) be a homogeneous Riemannian manifold, i.e. a connected
Riemannian manifold on which the largest connected group G of
isometries acts transitively. Then M can be expressed as a homo-
geneous space (G/K, g), where K is the isotropy group at a fixed
point o of M .

Motivated by well known facts such that, the geodesics in a Lie
group G with a bi-invariant metric are the one-parameter subgroups

2010 Mathematics Subject Classification. 53C25, 53C30.
Key words and phrases. Homogeneous geodesic, g.o. space, invariant met-

ric, geodesic vector, geodesic lemma, naturally reductive space, generalized flag
manifold, generalized Wallach space, M -space, δ-homogeneous space, pseudo-
Riemannian manifold, two-step homogeneous geodesic,

Received on 10-8-2016; revised 28-1-2017.
The author was supported by Grant # E.037 from the research committee of

the University of Patras (programme K. Karatheodori). He had useful discussions
with Zdenek Dušek and Giovanni Calvaruso (during his visit in Lecce via the
Erasmus+ programme, May 2016).

c©2017 Irish Mathematical Society
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6 ARVANITOYEORGOS

of G, or that the geodesics in a Riemannian symmetric space G/K
are orbits of one-parameter subgroups in G/K, it is natural to search
for geodesics in a homogeneous space, which are orbits. More pre-
cisely, a geodesic γ(t) through the origin o of M = G/K is called
homogeneous if it is an orbit of a one-parameter subgroup of G, that
is

γ(t) = exp(tX) · o, t ∈ R, (1)

where X is a non zero vector in the Lie algebra g of G. A non zero
vector X ∈ g is called a geodesic vector if the curve (1) is a geodesic.
A homogeneous Riemannian manifold M = G/K is called a g.o.
space if all geodesics are homogeneous with respect to the largest
connected group of isometries Io(M). Since their first systematic
study by O. Kowalski and L. Vanhecke in [45], there has been a lot
of research related to homogeneous geodesics and g.o spaces and in
various directions.

Homogeneous geodesics appear quite often in physics as well. The
equation of motion of many systems of classical mechanics reduces
to the geodesic equation in an appropriate Riemannian manifold M .
Homogeneous geodesics in M correspond to “relative equilibriums”
of the corresponding system (cf. [6]). For further information about
relative equilibria in physics we refer to [36] and references therein.
In Lorentzian geometry in particular, homogeneous spaces with the
property that all their null geodesics are homogeneous, are candi-
dates for constructing solutions to the 11-dimensional supergravity,
which preserve more than 24 of the available 32 supersymmetries.
In fact, all Penrose limits, preserving the amount of supersymmetry
of such a solution, must preserve homogeneity. This is the case for
the Penrose limit of a reductive homogeneous spacetime along a null
homogeneous geodesic ([35], [50], [55]). For a recent mathematical
contribution in this topic see [28].

All naturally reductive spaces are g.o. spaces ([41]), but the con-
verse is not true in general. In [39] A. Kaplan proved the existence of
g.o. spaces that are in no way naturally reductive. These are gen-
eralized Heisenberg groups with two dimensional center. Another
important class of g.o. spaces are the weakly symmetric spaces.
These are homogeneous Riemannian manifolds (M = G/K, g) in-
troduced by A. Selberg in [57], with the property that every two
points can be interchanged by an isometry of M . In [15] J. Berndt,
O. Kowalski and L. Vanhecke proved that weakly symmetric spaces
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are g.o. spaces. In [42] O. Kowalski, F. Prüfer and L. Vanhecke
gave an explicit classification of all naturally reductive spaces up
to dimension five, and in [1] the authors classified naturally reduc-
tive homogeneous spaces up to dimension six. The classification in
dimensions seven and eight was recently completed ([58]).

The term g.o. space was introduced by O. Kowalski and L. Van-
hecke in [45], where they gave the classification of all g.o. spaces
up to dimension six, which are in no way naturally reductive. Con-
cerning the existence of homogeneous geodesics in a homogeneous
Riemannian manifold, we recall the following. In ([38]) V.V. Ka-
jzer proved that a Lie group endowed with a left-invariant metric
admits at least one homogeneous geodesic. O. Kowalski and J. Szen-
the extended this result to all homogeneous Riemannian manifolds
([44]). An extension of this result to reductive homogeneous pseudo-
Riemannian manifolds was obtained ([31], [55]).

In [37] C. Gordon described g.o. spaces which are nilmanifolds
and in [63] H. Tamaru classified homogeneous g.o. spaces which are
fibered over irreducible symmetric spaces. In [26] and [30] O. Kowal-
ski and Z. Dušek investigated homogeneous geodesics in Heisenberg
groups and some H-type groups. Examples of g.o. spaces in dimen-
sion seven were obtained by Dušek, O. Kowalski and S. Nikčević in
[32].

In [3] the author and D.V. Alekseevsky classified generalized flag
manifolds which are g.o. spaces. Further, D.V. Alekseevsky and Yu.
G. Nikonorov in [4] studied the structure of compact g.o. spaces and
gave some sufficient conditions for existence and non existence of
an invariant metric with homogeneous geodesics on a homogeneous
space of a compact Lie group. They also gave a classification of
compact simply connected g.o. spaces of positive Euler characteris-
tic.

In [40] O. Kowalski, S. Nikčević and Z. Vlášek studied homoge-
neous geodesics in homogneous Riemannian manifolds, and in [49],
[20] G. Calvaruso and R. Marinosci studied homogeneous geodesics
in three-dimensional Lie groups. Homogeneous geodesics were also
studied by J. Szenthe in [59], [60], [61], [62]. Also, D. Latifi stud-
ied homogeneous geodesics in homogeneous Finsler spaces ([46]),
and the first author investigated homogeneous geodesics in the flag
manifold SO(2l + 1)/U(l −m)× SO(2m+ 1) ([7]).
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Homogeneous geodesics in the affine setting were studied in [26]
and [33] (and in particular for any non reductive pseudo-Riemannian
manifold).

Finally, a class of homogeneous spaces which satisfy the g.o. prop-
erty are the δ-homogeneous spaces, which were introduced by V.
Berestovskǐi and C. Plaut in [14]. These spaces have interesting ge-
ometrical properties, but we will not persue here. We refer to the
paper [13] by V. Berestovskǐi and Yu.G. Nikonorov for more infor-
mation in this direction. Further useful information about geodesic
orbit spaces can be found in the recent work [53].

The paper is organized as follows. In Section 2 we present the
basic techniques for finding homogeneous geodesics and detecting if
a homogeneous space is a space with homogeneous geodesics (g.o.
space). In Section 3 we present the classification up to dimension
6 and give examples in dimension 7. In Section 4 we discuss ho-
mogeneous g.o. spaces which are fibered over irreducible symmetric
spaces and in Section 5 we present the classification of generalized
flag manifolds which are g.o. spaces. In Section 6 we present results
about another wide class of homogeneous spaces, the generalized
Wallach spaces, and in Section 6 we discuss results related to M -
spaces. These are homogeneous spaces G/K1 so that G/(S×K1) is
a generalized flag manifold, where S a torus in a compact simple Lie
group G. The pseudo-Riemannian setting is presented in Section 8.
In Section 9 we discuss a generalization of homogeneous geodesics
which we call two-step homogeneous geodesics. These are orbits of
the product of two exponential factors. Finally, in Section 10 we
present some open problems.

2. Homogeneous geodesics in homogeneous Riemannian
manifolds - Techniques

A homogeneous Riemannian manifold is a Riemannian manifold
M for which there exists a connected Lie group G ⊂ I0(M) which
acts transitively on M as a group of isometries. Let p ∈ M be a
fixed point. If we denote by K the isotropy group at p, then M can
be identified with the homogeneous space G/K. Note that there
may exist more than one transitive isometry groups G ⊂ I0(M) so
that M is represented as a coset space in more than one ways. For
any fixed choice M = G/K, G acts effectively on G/K from the
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left. A G-invariant metric g on M = G/K is a Riemannian metric
so that the diffeomorphism p 7→ a · p is an isometry.

It is known ([41]) that a Riemannian homogeneous space is always
reductive. This means that if g, k are the Lie algebras of G and K
respectively, then there is a direct sum decomposition

g = k⊕m, (2)

with Ad(K)(m) ⊂ m. The canonical projection π : G → G/K in-
duces an isomorphism between the subspace m of g and the tangent
space ToM at the identity o = eK.

A G-invariant Riemannian metric g defines a scalar product 〈·, ·〉
on m which is Ad(K)-invariant and vice-versa. If G is semisim-
ple and compact and B denotes the negative of the Killing form
of g, then any Ad(K)-invariant scalar product 〈·, ·〉 on m can be
expressed as 〈x, y〉 = B(Λx, y) (x, y ∈ m), where Λ is an Ad(K)-
equivariant positive definite symmetric operator on m. Conversely,
any such operator Λ determines an Ad(K)-invariant scalar product
〈x, y〉 = B(Λx, y) on m, which in turn determines a G-invariant
Riemannian metric g on m. A Riemannian metric generated by the
scalar product product B is called standard metric.

Definition 1. A homogeneous Riemannian manifold (M = G/K, g)
is called a space with homogeneous geodesics, or G-g.o. space if every
geodesic γ of M is an orbit of a one-parameter subgroup of G, that
is γ(t) = exp(tX)·o, for some non zero vector X ∈ g. The invariant
metric g is called G-g.o. metric. If G is the full isometry group, then
the G-g.o. space is called a manifold with homogeneous geodesics,
or a g.o. manifold.

Notice that if all geodesics through the origin o = eK are of the
form γ(t) = exp(tX) · o, then the geodesics through any other point
a · p (a ∈ G, p ∈M) is of the form aγ(t) = exp(tAd(a)X) · (a · p).
Definition 2. A non zero vector X ∈ g is called a geodesic vector
if the curve (1) is a geodesic.

All calculations for a g.o. space G/K can be reduced to algebraic
computations using geodesic vectors. These can be computed by
using the following fundamental result of the subject, still call it
“lemma” by tradition:

Lemma 2.1 (Geodesic Lemma [45]). A non zero vector X ∈ g is a
geodesic vector if and only if
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〈[X, Y ]m, Xm〉 = 0, (3)

for all Y ∈ m. Here the subscript m denotes the projection into
m.

A useful description of homogeneous geodesics (1) is provided by
the following :

Proposition 2.2. ([3]) Let (M = G/K, g) be a homogeneous Rie-
mannian manifold and Λ be the associated operator. Let a ∈ k and
x ∈ m. Then the following are equivalent:

(1) The orbit γ(t) = expt(a+ x) · o of the one-parameter subgroup
expt(a+ x) through the point o = eK is a geodesic of M .

(2) [a+ x,Λx] ∈ k.
(3) 〈[a, x], y〉 = 〈x, [x, y]m〉 for all y ∈ m.
(4) 〈[a+ x, y]m, x〉 = 0 for all y ∈ m.

As a consequence, we obtain the following characterization of g.o.
spaces:

Corollary 2.3 ([3]). Let (M = G/K, g) be a homogeneous Rie-
mannian manifold. Then (M = G/K, g) is a g.o. space if and only
if for every x ∈ m there exists an a(x) ∈ k such that

[a(x) + x,Λx] ∈ k.

Therefore, the property of being a g.o. space G/K, depends only
on the reductive decomposition and the G-invariant metric metric
g on m. That is, if (M = G/H, g) is a g.o. space, then any locally
isomorphic homogeneous Riemannian space (M = G/H, g′) is a g.o.
space. Also, a direct product of Riemannian manifolds is a manifold
with homogeneous geodesics if and only if each factor is a manifold
with homogeneous geodesics.

In order to find all homogeneous geodesics in a homogeneous Rie-
mannian manifold (M = G/K, g) it suffices to find a decomposition
of the form (2) and look for geodesic vectors of the form

X =
s∑

i=1

xiei +
l∑

j=1

ajAj. (4)

Here {ei : i = 1, 2, . . . , s} is a convenient basis of m and {Aj : j =
1, 2, . . . , l} is a basis of k. By substituting X = ei (i = 1, . . . , s) into
equation (3) we obtain a system of linear algebraic equations for the
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variables xi and aj. The geodesic vectors correspond to those solu-
tions for which x1, . . . , xs are not all equal to zero. For some applica-
tions of this method we refer to [40] and [49]. Also, (M = G/K, g) is
a g.o. space if and only if for every non zero s-tuple (x1, . . . , xs) there
is an l-tuple (a1, . . . , al) satisfying all quadratic equations. A useful
technique used for the characterization of Riemannian g.o. spaces
is based on the concept of the geodesic graph, originally introduced
in [59]. We first need the following definition.

Definition 3. A Riemannian homogeneous space (G/K, g) is called
naturally reductive if there exists a reductive decomposition (2) of g
such that

〈[X,Z]m, Y 〉+ 〈X, [Z, Y ]m〉 = 0, for all X, Y, Z ∈ m . (5)

It is well known that condition (5) implies that all geodesics in
G/K are homogeneous (e.g. [54]).

Definition 4. A homogeneous Riemannian manifold (M, g) is nat-
urally reductive if there exists a transitive group G of isometries for
which the correseponding Riemannian homogeneous space (G/K, g)
is naturally reductive in the sense of Definition 3.

Therefore, it could be possible that a homogeneous space M =
G/K is not naturally reductive for some group G ∈ I0(M) (the
connected component of the full isometry group of M), but it is
naturally reductive if we write M = G′/K ′ for some larger group of
isometries G′ ⊂ I0(M).

Let (M = G/K, g) be a g.o. space and let g = k⊕m be an
Ad(K)-invariant decomposition. Then

(1) There exists an Ad(H)-equivariant map η : m→ k (a geodesic
graph) such that for any X ∈ m \{0}, the curve exp t(X + η(X)) · o
is a geodesic.

(2) A geodesic graph is either linear (which is equivalent to natu-
ral reductivity with respect to some Ad(K)-invariant decomposition
g = k⊕m′) or it is non differentiable at the origin o.

It can be shown ([43]) that a geodesic graph (for a g.o. space)
is uniquely determined by fixing an Ad(H)-invariant scalar product
on k. Examples of g.o. spaces by using geodesic graphs are given in
[29], [32], and [43]. Conversely, the property (1) implies that G/K
is a g.o. space.
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Another technique for producing g.o. metrics was given by C.
Gordon as shown below:

Proposition 2.4. ([37], [63]) Let G be a connected semisimple Lie
group and H ⊃ K be compact Lie subgroups in G. Let MF and MC

be the tangent spaces of F = H/K and C = G/H respectively. Then
the metric ga,b = aB |MF

+bB |MC
, (a, b ∈ R+) is a g.o. metric on

G/K if and only if for any vF ∈ MF , vC ∈ MC there exists X ∈ k
such that

[X, vF ] = [X + vF , vC ] = 0.

Actually, Gordon proved a more general result based on descrip-
tion of naturally reductive left-invariant metrics on compact Lie
groups given by J.E. D’Atri and W. Ziller in [24].

3. Low dimensional examples

The problem of a complete classification of g.o. manifolds is open.
Even the classification all g.o. metrics on a given Riemannian ho-
mogeneous space is not trivial (cf. for example [51]). A complete
classification is known up to dimesion 6, given by O. Kowalski and
L. Vanhecke:

Theorem 3.1. ([45]) 1) All Riemannian g.o. spaces of dimension
up to 4 are naturally reductive.

2) Every 5-dimensional Riemannian g.o. space is either naturally
reductive, or of isotropy type SU(2).

3) Every 6-dimensional Riemannian g.o. space is either naturally
reductive or one of the following:

(a) A two-step nilpotent Lie group with two-dimensional center,
equipped with a left-invariant Riemannian metric such that the max-
imal connected isotropy subgroup is isomorphic to SU(2) or U(2).
Corresponding g.o. metrics depend on three real parameters.

(b) The universal covering space of a homogeneous Riemannian
manifold of the form (M = SO(5)/U(2), g) or (M = SO(4, 1)/U(2), g),
where SO(5) or SO(4, 1) is the identity component of the full isom-
etry group, respectively. In each case, all corresponding invariant
metrics g.o. metrics g depend on two real parameters.

As pointed out by the authors in [45, p. 190], the g.o. spaces (a)
and (b) are in no way naturally reductive in the following sence:
whatever the representation of (M, g) as a quotient of the form
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G′/K ′, where G′ is a connected transitive group of isometries of
(M, g), and whatever is the Ad(K)-invariant decomposition g′ =
k′⊕m′, the curve γ(t) = exp(tX) · o is never a geodesic (for any
X ∈ m \{0}).

The first 7-dimensional example of a g.o. manifold was given by C.
Gordon in [37]. This is a nilmanifold (i.e. a connected Riemannian
manifold admitting a transitive nilpotent group of isometries), and
it was obtained under a general construction of g.o. nilmanifolds.
It took some time until some more 7-dimensional examples were
given. In [32] Z. Dušek, O. Kowalski and S. Nikčević gave families
of 7-dimensional g.o. metrics. Their main result is the following:

Theorem 3.2. ([32]) On the 7-dimensional homogeneous space G/K
= (SO(5)×SO(2))/U(2) (or G/H = (SO(4, 1)×SO(2))/U(2)) there
is a family gp,q of invariant metrics depending on two parameters p, q
(where the pairs (p, q) fill in an open subset of the plane) such that
each homogeneous Riemannian manifold (G/H, gp,q) is a locally ir-
reducible and not naturally reductive Riemannian g.o. manifold.

4. Fibrations over symmetric spaces

In the work [63] H. Tamaru classified homogeneous spaces M =
G/K satisfying the following properties: (i) M is fibered over irre-
ducuble symmetric spaces G/H and (ii) certain G-invariant metrics
on M are G-g.o. metrics. More precisely, for G connected and
semisimple, and H,K compact with G ⊃ H ⊃ K, he considered the
fibration

F = H/K →M = G/K → B = G/H

and the G-invariant metrics ga,b on M determined by the scalar
products

〈 , 〉 = aB|f + bB|b , a, b > 0.

Here f and b are the tangent spaces of F and B respectively, so
that the tangent space of M at the origin is identified with f ⊕ b.
By using results from polar representations, he classifed all triplets
(G,H,K) so that the metrics ga,b are G-g.o. metrics. The triplets
of Lie algebras (g, h, k) so that (g, h) is a symmetric pair and (g, k)
corresponds to a G-g.o. space G/K, are listed in Table 1.
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g h k
1 so(2n+ 1), n ≥ 2 so(2n) u(n)
2 so(4n+ 1), n ≥ 1 so(4n) su(2n)
3 so(8) so(7) g2
4 so(9) so(8) so(7)
5 su(n+ 1), n ≥ 2 u(n) su(n)
6 su(2n+ 1), n ≥ 2 u(2n) u(1)⊕ sp(n)
7 su(2n+ 1), n ≥ 2 u(2n) sp(n)
8 sp(n+ 1), n ≥ 1 sp(1)⊕ sp(n) u(1)⊕ sp(n)
9 sp(n+ 1), n ≥ 1 sp(1)⊕ sp(n) sp(n)
10 su(2r + n), r ≥ 2, n ≥ 1 su(r)⊕ su(r + n)⊕ R su(r)⊕ su(r + n)
11 so(4n+ 2), n ≥ 2 u(2n+ 1) su(2n+ 1)
12 e6 R⊕ so(10) so(10)
13 so(9) so(7)⊕ so(2) g2 ⊕ so(2)
14 so(10) so(8)⊕ so(2) spin(7)⊕ so(2)
15 so(11) so(8)⊕ so(3) spin(7)⊕ so(3)

Table 1. Riemannian g.o. spaces G/K fibered over
irreducible symmetric spaces G/H ([63]).

5. Generalized flag manifolds

In the work [3] D.V. Alekseevsky and the author classified gen-
eralized flag manifolds with homogeneous geodesics. Recall that a
generalized flag manifold is a homogeneous space G/K which is an
adjoint orbit of a compact semisimple Lie group G. Equivalently,
the isotropy subgroup K is the centralizer of a torus (i.e. a maximal
abelian subgroup) in G. We assume that G acts effectively on M . A
flag manifold M = G/K is simply connected and has the canonically
defined decomposition M = G/K = G1/K1×G2/K2×· · ·×Gn/Kn,
where G1, . . . , Gn are simple factors of the (connected) Lie group G.
This decomposition is the de Rham decomposition of M equipped
with a G-invariant metric g. In particular, (M, g) is a g.o. space
if and only if each factor (Mi = Gi/Ki, gi = g|Mi

) is a g.o. space.
This reduces the problem of the description of G-invariant metrics
with homogeneous geodesics in a flag manifold M = G/K to the
case when the group G is simple.

Flag manifolds M = G/K with G a simple Lie group can be
classified in terms of their painted Dynkin diagrams. It turns out
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that for each classical Lie group there is an infinite series of flag
manifolds, and for each of the exceptional Lie groups G2, F4, E6, E7,
and E8 there are 3, 11, 16, 31, and 40 non equivalent flag manifolds
respectively (eg. [2], [16]). An important invariant of flag manifolds
is their set of T -roots RT . This is defined as the restriction of the
root system R of g to the center t of the stability subalgebra k of K.
In [3] we defined the notion of connected component of RT , namely
two T -roots are in the same component if they can be connected by
a chain of T -roots whose sum or difference is also a T -root. The set
RT is called connected if it has only one connected component.

Theorem 5.1. ([3]) If the set of T -roots is connected then the stan-
dard metric on M = G/K is the only G-invariant metric (up to
scalar) which is a g.o. metric.

Hence, for a flag manifold M = G/K (G simple), a G-invariant
g.o. metric may exist, only when RT is not connected, so we only
need to study those flag manifolds. It turns out that the system of
T -roots is not connected only for three infinite series of a classical
Lie group (namely the spaces SO(2` + 1)/U(` −m) · SO(2m + 1),
Sp(`)/U(`−m) · Sp(m), and SO(2`)/U(`−m) · SO(2m)), and for
10 flag manifolds of an exceptional Lie group. An perpective of the
above theorem is given by the following theorem:

Theorem 5.2. ([3]) Let M = G/K be a flag manifold of a simple
Lie group. Then the set of T -roots is not connected if and only if
the isotropy representation of M consists of two irreducible (non-
equivalent) components.

Therefore, the problem of the description of G-invariant metrics on
flag manifolds with homogeneous geodesics reduces substantially to
the study of this short list of prospective flag manifolds. To this end,
we used the classification Table 1 of the work of H. Tamaru ([63]).
Since any flag manifold can be fibered over a symmetric space ([17]),
then by using Theorem 5.2 we obtain that the only flag manifolds
which are in Table 1 are SO(2`+1)/U(`) and Sp(`)/U(1) ·Sp(`−1).

On the other hand, in [5] D.N. Akhiezer and E.B. Vinberg classi-
fied all compact weakly symmetric spaces. Their classification shows
that the only flag manifolds which are weakly symmetric spaces are
SO(2` + 1)/U(`) and C(1, ` − 1) = Sp(`)/U(1) · Sp(` − 1). This
implies that any SO(2`+ 1)-invariant metric gλ on SO(2`+ 1)/U(`)
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(depending, up to scale, on one real parameter λ) is weakly sym-
metric, hence it has homogeneous geodesics. Similarly for any Sp(`)-
invariant metric gλ on Sp(`)/U(1) · Sp(`− 1). In fact, the action of
the group SO(2` + 1) on SO(2` + 1)/U(`) can be extended to the
action of the group SO(2` + 2) with isotropy subgroup U(` + 1),
which preserves the complex structure and the standard invariant
metric g0 (which corresponds to λ = 1). Hence, the Riemannian
flag manifold (SO(2` + 1)/U(`), g0) is isometric to the Hermitian
symmetric space Com(R2`+2) = SO(2` + 2)/U(` + 1) of all com-
plex structures in R2`+2. Similarly, the action of the group Sp(`) on
Sp(`)/U(1) · Sp(` − 1) can be extended to the action of the group
SU(2`) with isotropy subgroup S(U(1) × U(2` − 1)). As a conse-
quence of the above we obtain the following:

Theorem 5.3. ([3]) The only flag manifolds M = G/K of a simple
Lie group G admiting a non naturally reductive G-invariant metric
g with homogeneous geodesics are the manifolds SO(2` + 1)/U(`)
and Sp(`)/U(1) ·Sp(`−1) (` ≥ 2), which admit (up to scale) a one-
parameter family of SO(2` + 1) (resp. Sp(`))-invariant metrics gλ.
Moreover, these manifolds are weakly symmetric spaces for λ > 0,
and they are symmetric spaces with respect to Isom(gλ) if and only
if λ = 1, i.e. gλ is a multiple of the standard metric.

Note that for ` = 2 we obtain Sp(2)/U(1) · Sp(1) ∼= SO(5)/U(2),
where the second quotient is an example of g.o. space in [45] which
is not naturally reductive.

Finally, we mention a remarkable coincidence between Theorem
5.3 and a result by F. Podestà and G. Thorbergsson in [56], where
they studied coisotropic actions on flag manifolds. One of their
theorems states that if M = G/K is a flag manifold of a simple Lie
group then the action of K on M is coisotropic, if and only if M is
up to local isomorphic either a Hermitian symmetric space, or one
of the spaces obtained in Theorem 5.3.

6. Generalized Wallach spaces

Let G/K be a compact homogeneous space with connected com-
pact semisimple Lie group G and a compact subgroup K with re-
ductive decomposition g = k⊕m. Then G/K is called generalized
Wallach space (known before as three-locally-symmetric spaces, cf.
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[47]) if the module m decomposes into a direct sum of three Ad(K)-
invariant irreducible modules pairwise orthogonal with respect to
B, i.e. m = m1 ⊕ m2 ⊕ m3, such that [mi,mi] ⊂ k i = 1, 2, 3. Ev-
ery generalized Wallach space admits a three parameter family of
invariant Riemannian metrics determined by Ad(K)-invariant inner
products 〈·, ·〉 = λ1B(·, ·) |m1

+λ2B(·, ·) |m2
+λ3B(·, ·) |m3

, where
λ1, λ2, λ3 are positive real numbers. The classification of generalized
Wallach spaces was recently obtained by Yu.G. Nikoronov ([52]) (G
semisimple) and Z. Chen, Y. Kang, K. Liang ([18]) (G simple) as
follows:

Theorem 6.1 ([52]). Let G/K be a connected and simply connected
compact homogeneous space. Then G/K is a generalized Wallach
space if and only if it is one of the following types:

1) G/K is a direct product of three irreducible symmetric spaces
of compact type.

2) The group is simple and the pair (g, k) is one of the pairs in
Table 2.

3) G = F ×F ×F ×F and K = diag(F ) ⊂ G for some connected,
compact, simple Lie group F , with the following description on the
Lie algebra level:

(g, k) = (f⊕ f⊕ f⊕ f, diag(f)) = {(X,X,X,X) | X ∈ f},
where f is the Lie algebra of F , and (up to permutation) m1 =
{(X,X,−X,−X) | X ∈ f}, m2 = {(X,−X,X,−X) | X ∈ f},
m3 = {(X,−X,−X,X) | X ∈ f}.

g k g k

so(k + l +m) so(k)⊕ so(l)⊕ so(m) e7 so(8)⊕ 3sp(1)
su(k + l +m) su(k)⊕ su(l)⊕ su(m) e7 su(6)⊕ sp(1)⊕ R
sp(k + l +m) sp(k)⊕ sp(l)⊕ sp(m) e7 so(8)
su(2l), l ≥ 2 u(l) e8 so(12)⊕ 2sp(1)
so(2l), l ≥ 4 u(l)⊕ u(l − 1) e8 so(8)⊕ so(8)

e6 su(4)⊕ 2sp(1)⊕ R f4 so(5)⊕ 2sp(1)
e6 so(8)⊕ R2 f4 so(8)
e6 sp(3)⊕ sp(1)

Table 2. The pairs (g, k) corresponding to generalized Wallach spaces G/K

with G simple ([52]).
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In [10] Yu Wang and the author investigated which of the families
of spaces listed in Theorem 6.1 are g.o. spaces. By applying the
method of searching for geodesics vectors shown at the end of Section
2 we obtained the following:

Theorem 6.2. ([10]) Let (G/K, g) be a generalized Wallach space
as listed in Theorem 6.1. Then

1) If (G/K, g) is a space of type 1) then this is a g.o. space for
any Ad(K)-invariant Riemannian metric.

2) If (G/K, g) is a space of type 2) or 3) then this is a g.o. space
if and only if g is the standard metric.

However, in order to find all homogeneous geodesics in G/K it suf-
fices to find all the real solutions of a system of dimm1 + dimm2 +
dimm3 quadratic equations. By Theorem 6.2 we only need to con-
sider homogeneous geodesics for spaces of types 2) and 3) given
in Theorem 6.1, for the metric (λ1, λ2, λ3), where at least two of
λ1, λ2, λ3 are different. This is not easy in general. We obtained
all homogeneous geodesics (for various values of the parameters
λ1, λ2, λ3 for the generalized Wallach space SU(2)/{e}, hence recov-
ering a result on R.A. Marinosci ([49, p. 266]), and for the Stiefel
manifolds SO(n)/ SO(n− 2), (n ≥ 4).

7. M-spaces

Let G/K be a generalized flag manifold with K = C(S) = S×K1,
where S is a torus in a compact simple Lie group G and K1 is the
semisimple part of K. Then the associated M-space is the homo-
geneous space G/K1. These spaces were introduced and studied by
H.C. Wang in [64].

In the works [11] and [12]Y. Wang, G. Zhao and the author investi-
gated homogeneous geodesics in a class of homogeneous spaces called
M -spaces. We proved that for various classes of M -spaces, the only
g.o. metric is the standard metric. For other classes of M -spaces we
give either necessary or necessary and sufficient conditions so that a
G-invariant metric on G/K1 is a g.o. metric. The analysis is based
on properties of the isotropy representation m = m1 ⊕ · · · ⊕ ms of
the flag manifold G/K, in particular on the dimension of the sub-
modules mi. We summarize these results below.

Let g and k be the Lie algebras of the Lie groups G and K respec-
tively. Let g = k⊕m be an Ad(K)-invariant reductive decomposition
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of the Lie algebra g, where m ∼= To(G/K). This is orthogonal with
respect to B = −Killing from on g. Assume that

m = m1 ⊕ · · · ⊕ms (6)

is a B-orthogonal decomposition of m into pairwise inequivalent ir-
reducible ad(k)-modules.

Let G/K1 be the corresponding M -space and s and k1 be the Lie
algebras of S and K1 respectively. We denote by n the tangent
space To(G/K1), where o = eK1. A G-invariant metric g on G/K1

induces a scalar product 〈·, ·〉 on n which is Ad(K1)-invariant. Such
an Ad(K1)-invariant scalar product 〈·, ·〉 on n can be expressed as
〈x, y〉 = B(Λx, y) (x, y ∈ n), where Λ is the Ad(K1)-equivariant
positive definite symmetric operator on n.

The main results are the following:

Theorem 7.1. ([11]) Let G/K be a generalized flag manifold with
s ≥ 3 in the decomposition (6). Let G/K1 be the corresponding
M-space.

1) If dimmi 6= 2 (i = 1, . . . , s) and (G/K1, g) is a g.o. space, then

g = 〈·, ·〉 = µB(·, ·) |s +λB(·, ·) |m1⊕m2⊕···⊕ms
, (µ, λ > 0).

2) If there exists some j ∈ {1, . . . , s} such that dimmj = 2, then
(G/K1, g) is a g.o. space if and only if g is the standard metric.

Theorem 7.2. ([12]) Let G/K be a generalized flag manifold with
two isotropy summands given by (6), and (G/K1, g) be the corre-
sponding M-space. Then

1) If dimm2 = 2, then the standard metric is the only g.o. metric
on M-space (G/K1, g), unless G/K1 = SO(5)/SU(2) or
Sp(n)/Sp(n− 1), (n ≥ 2).

2) If dimm2 6= 2 and the M-space (G/K1, g) is a g.o. space,
then g = 〈·, ·〉 = µB(·, ·) |s +λB(·, ·) |m1⊕m2

, (µ, λ > 0), unless
G/K1 = SO(2n+ 1)/SU(n), (n > 2).

However, the spaces SO(5)/ SU(2) and Sp(n)/ Sp(n − 1) are in-
cluded in Tamaru’s Table 1, therefore they admit g.o. metrics. For
the generalized flag manifolds with s = 1 or 2 in the decomposition
(6) we use Theorem 6.2 and Tamaru’s results in [63] to prove exis-
tence of non naturally reductive g.o. metrics in certain M -spaces,
including the three isolated classes listed in parts 1) and 2) of The-
orem 6.2.
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We prove the following:

Theorem 7.3. ([12]) The M-spaces SU(n + 1)/SU(n), (n ≥ 2),
SU(2r+n)/SU(r)×SU(r+n), (r ≥ 2, n ≥ 1), SO(4n+1)/SU(2n),
(n ≥ 1), Sp(n)/Sp(n−1), (n ≥ 2), SO(4n+2)/SU(2n+1), (n ≥ 2)
and E6/SO(8) admit non naturally reductive g.o. metrics.

Finally, by using techniques from [11] we can prove the following:

Theorem 7.4. ([11]) Let G/K be a generalized flag manifold with
corresponding M-space (G/K1, g).

1) If G = G2, then (G2/K1, g) is a g.o. space if and only if g is
the standard metric.

2) If G = F4, then the standard metric is the only g.o. metric on
F4/K1, unless K1 = SU(2)× SU(3), or K1 = SO(7).

3) If G = E6, then the standard metric is the only g.o. metric on
E6/K1, unless K1 is one of SU(3)×SU(3)×SU(2), SU(5)×SU(2),
SU(2)× SU(2)× SU(3), SO(8), or SO(10).

By a result of H. Tamaru [63] it follows that the M -space
E6/SO(10) admits non-naturally reductive g.o. metrics.

8. Homogeneous geodesics in pseudo-Riemannian
manifolds

It is well known that any homogeneous Riemannian manifold is re-
ductive, but this is not the case for pseudo-Riemannian manifolds in
general. In fact, there exist homogeneous pseudo-Riemannian man-
ifolds which do not admit any reductive decomposition. Therefore,
there is a dichotomy in the study of geometrical problems between
reductive and non reductive pseudo-Riemannian manifolds. Due to
the existence of null vectors in a pseudo-Riemannian manifold the
definition of a homogeneous geodesic γ(t) = exp(tX) · o needs to be
modified by requiring that ∇γ̇γ̇ = k(γ)γ̇ (see also relevant discus-
sion in [48, pp. 90-91]). It turns out that k(γ) is a constant function
(cf. [31]. Even though an algebraic characterization of geodesic vec-
tors (that is an analogue of the geodesic Lemma 2.1) was known to
physicists ([35], [55]), a formal proof was given by Z. Dušek and O.
Kowalski in [31].

Lemma 8.1 ([31]). Let M = G/H be a reductive homogeneous
pseudo-Riemannian space with reductive decomposition g = m ⊕ h,
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and X ∈ g. Then the curve γ(t) = exp(tX) · o is a geodesic curve
with respect to some parameter s if and only if

〈[X,Z]m, Xm〉 = k〈Xm, Zm〉, for all Z ∈ m,

where k is some real constant. Moreover, if k = 0, then t is an
affine parameter for this geodesic. If k 6= 0, then s = ekt is an affine
parameter for the geodesic. This occurs only if the curve γ(t) is a
null curve in a (properly) pseudo-Riemannian space.

For applications of this lemma see [28]. The existence of homo-
geneous geodesics in homogeneous pseudo-Riemannian spaces (for
both reductive and non reductive) was answered positively only re-
cently by Z. Dušek in [27].

Two-dimensional and three-dimensional homogeneous pseudo Rie-
mannian manifolds are reductive ([19], [34]). Four-dimensional non
reductive homogeneous pseudo-Riemannian manifolds were classi-
fied by M.E. Fels and A.G. Renner in [34] in terms of their non
reductive Lie algebras. Their invariant pseudo-Riemannian metrics,
together with their connection and curvature, were explicitly de-
scribed in by G. Calvaruso and A. Fino in [22].

The three-dimensional pseudo-Riemannian g.o. spaces were clas-
sified by G. Calvaruso and Marinosci in [21]. In the recent work
[23], G. Calvaruso, A. Fino and A. Zaeim obtained explicit ex-
amples of four-dimensional non reductive pseudo-Riemannian g.o.
spaces. They deduced an explicit description in coordinates for all
invariant metrics of non reductive homogeneous pseudo-Riemannian
four-manifolds. For those four-dimensional non reductive pseudo-
Riemannia spaces which are not g.o., they determined the homoge-
neous geodesics though a point.

9. Two-step homogeneous geodesics

In the work [9] N.P. Souris and the author considered a generali-
sation of homogeneous geodesics, namely geodesics of the form

γ(t) = exp(tX) exp(tY ) · o, X, Y ∈ g, (7)

which we named two-step homogeneous geodesics. We obtained suf-
ficient conditions on a Riemannian homogeneous space G/K, which
imply the existence of two-step homogeneous geodesics in G/K. A
Riemannian homogeneous spaces G/K such that any geodesic of
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G/K passing through the origin is two-step homogeneous is called
two-step g.o. spaces.

Geodesics of the form (7) had appeared in the work [65] of H.C.
Wang as geodesics in a semisimple Lie group G, equipped with a
metric induced by a Cartan involution of the Lie algebra g of G.
Also, in [25] R. Dohira proved that if the tangent space To(G/K)
of a homogeneous space splits into submodules m1,m2 satisfying
certain algebraic relations, and if G/K is endowed with a special
one parameter family of Riemannian metrics gc, then all geodesics
of the Riemannian space (G/K, gc) are of the form (7). The main
result of [9] is the following:

Theorem 9.1. ([9]) Let M = G/K be a homogeneous space admit-
ting a naturally reductive Riemannian metric. Let B be the corre-
sponding inner product on m = To(G/K). We assume that m admits
an Ad(K)-invariant orthogonal decomposition

m = m1 ⊕m2 ⊕ · · · ⊕ms, (8)

with respect to B. We equip G/K with a G-invariant Riemann-
ian metric g corresponding to the Ad(K)-invariant positive definite
inner product 〈·, ·〉 = λ1 B|m1

+ · · · + λs B|ms
, λ1, . . . , λs > 0. If

(ma,mb) is a pair of submodules in the decomposition (8) such that

[ma,mb] ⊂ ma, (9)

then any geodesic γ of (G/K, g) with γ(0) = o and γ̇(0) ∈ ma⊕mb, is
a two-step homogeneous geodesic. In particular, if γ̇(0) = Xa+Xb ∈
ma ⊕mb, then for every t ∈ R this geodesic is given by

γ(t) = exp t(Xa + λXb) exp t(1− λ)Xb · o, where λ = λb/λa.

Moreover, if either λa = λb or [ma,mb] = {0} holds, then γ is a
homogeneous geodesic, that is γ(t) = exp t(Xa + Xb) · o, for any
t ∈ R.

The following corollary provides a method to obtain many exam-
ples of two-step g.o. spaces.

Corollary 9.2. Let M = G/K be a homogeneous space admitting
a naturally reductive Riemannian metric. Let B be the correspond-
ing inner product of m = To(G/K). We assume that m admits an
Ad(K)-invariant, B-orthogonal decomposition m = m1 ⊕ m2, such
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that [m1,m2] ⊂ m1. Then M admits an one-parameter family of
G-invariant Riemannian metrics gλ, λ ∈ R+, such that (M, gλ) is
a two-step g.o. space. Each metric gλ corresponds to an Ad(K)-
invariant positive definite inner product on m of the form 〈 , 〉 =
B|m1

+ λ B|m2
, λ > 0.

The above Corollary 9.2 is a generalisation of Dohira’s result [25].
The main tool for the proof of Theorem 9.1 is the following propo-

sition.

Proposition 9.3. ([8])Let M = G/K be a homogeneous space and
γ : R → M be the curve γ(t) = exp(tX) exp(tY ) exp(tZ) · o, where
X, Y, Z ∈ m. Let T : R→ Aut(g) be the map given by
T (t) = Ad(exp(−tZ) exp(−tY )). Then γ is a geodesic in M through
o = eK if and only if for any W ∈ m, the function GW : R → R
given by

GW (t) = 〈 (TX)m + (TY )m + Zm, [W,TX + TY + Z]m 〉
+ 〈 W, [TX, TY + Z]m + [TY, Z]m 〉,

is identically zero, for every t ∈ R.

The above proposition is a new tool towards the study of geodesics
consisting of more than one exponential factors. In fact, for X =
Y = 0 we obtain Lemma 2.1 of Kowalski and Vanhecke.

A natural application of Corollary 9.2 is for total spaces of homo-
geneous Riemannian submersions, as shown below.

Proposition 9.4. Let G be a Lie group admitting a bi-invariant
Riemannian metric and let K,H be closed and connected subgroups
of G, such that K ⊂ H ⊂ G. Let B be the Ad-invariant positive
definite inner product on the Lie algebra g corresponding to the bi-
invariant metric of G. We identify each of the spaces To(G/K),
To(G/H) and To(H/K) with corresponding subspaces m,m1 and m2

of g, such that m = m1⊕m2. We endow G/K with the G-invariant
Riemannian metric gλ corresponding to the Ad(K)-invariant posi-
tive definite inner product 〈 , 〉 = B|m1

+ λ B|m2
, λ > 0. Then

(G/K, gλ) is a two-step g.o. space.

Example 9.5. ([8]) The odd dimensional sphere S2n+1 can be con-
sidered as the total space of the homogeneous Hopf bundle S1 →
S2n+1 → CP n. Let g1 be the standard metric of S2n+1. We equip
S2n+1 with an one parameter family of metrics gλ, which “deform”
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the standard metric along the Hopf circles S1. By setting G =
U(n+ 1), K = U(n) and H = U(n)× U(1), the Hopf bundle corre-
sponds to the fibration H/K → G/K → G/H.

Since U(n + 1) is compact, it admits a bi-invariant metric corre-
sponding to an Ad(U(n+ 1))-invariant positive definite inner prod-
uct B on u(n + 1). We identify each of the spaces ToS2n+1 =
To(G/K), ToCP n = To(G/H), and ToS1 = To(H/K) with corre-
sponding subspaces m,m1, and m2 of u(n + 1). The desired one
parameter family of metrics gλ corresponds to the one parameter
family of positive definite inner products 〈 , 〉 = B|m1

+ λ B|m2
,

λ > 0 on m = m1⊕m2. Then Proposition 9.4 implies that (S2n+1, gλ)
is a two-step g.o. space. In particular, let X ∈ ToS2n+1. Then the
unique geodesic γ of (S2n+1, gλ) with γ(0) = o and γ̇(0) = X, is
given by γ(t) = exp t(X1 +λX2) exp t(1−λ)X2 ·o, where X1, X2 are
the projections of X on m1 = ToCP n and m2 = ToS1 respectively.
Note that if λ = 1 + ε, ε > 0, then the metrics g1+ε are Cheeger
deformations of the natural metric g1.

By using Proposition 9.2 it is possible to construct various classes
of two-step g.o spaces. The recipe is the following:
(i) Let G/K be a homogeneous space with reductive decomposition
g = k ⊕ m admitting a naturally reductive metric corresponding to
a positive definite inner product B on m.
(ii) We consider an Ad(K)-invariant, orthogonal decomposition m =
n1 ⊕ · · · ⊕ ns with respect to B.
(iii) We separate the submodules ni into two groups as m1 = ni1 ⊕
· · · ⊕ nin and m2 = nin+1

⊕ · · · ⊕ nis, so that [m1,m2] ⊂ m1. The
decomposition m = m1⊕m2 is Ad(K)-invariant and orthogonal with
respect to B.
(iv) Then Corollary 9.2 implies that G/K admits an one parameter
family of metrics gλ so that (G/K, gλ) is a two-step g.o. space.

In [9] we applied the above recipe to the following classes of ho-
mogeneous spaces:
1) Lie groups with bi-invariant metrics, equipped with an one pa-
rameter family of left-invariant metrics.
2) Flag manifolds equipped with certain one parameter families of
diagonal metrics.
3) Generalized Wallach spaces equipped with three different types
of diagonal metrics (thus recovering some results from [8]).
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4) k-symmetric spaces where k is even, endowed with an one pa-
rameter family of diagonal metrics.

10. Some open problems

It seems that the target for a complete classification of homoge-
neous g.o. spaces in any dimension greater than seven is far for
being accomplished. In dimension seven there are several examples
but a complete classification is still unknown. However, as shown in
the present paper, for some large classes of homogeneous spaces it is
possible to obtain some necessary conditions for the g.o. property.
These conditions are normally imposed by the special Lie theoretic
structure of corresponding homogeneous space. Also, the problem
of an explicit description of homogeneous geodesics for spaces which
are not g.o., is not trivial either. Eventhough it is mathematically
simple, it requires high computational complexity. A more tractable
problem could be to classify g.o. spaces with two or three irreducible
isotropy summands.

Further, it is not usually an easy matter to show that the g.o.
property of (M = G/K, g) does not depend on the representation as
a coset space and on the Ad(K)-invariant decomposition g = k⊕m.
Therefore, we often stress that we study G-g.o. spaces.

Also, it would be interesting to see how various results about Rie-
mannian manifolds could be adjusted to pseudo-Riemannian mani-
folds, such as Propositions 2.2, 9.3.

Concerning generalizations of the g.o. property, we have intro-
duced the concept of a two-step homogeneous geodesic and two-step
g.o. space. We conjecture that a search for three-step (or more)
homogeneous geodesics reduces to two-step homogeneous geodesics.
Also, it would be interesting to study two-step homogeneous geodes-
ics in pseudo-Riemannian manifolds (formulate corresponding geo-
desic lemma etc.).
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Sums of Polynomial Residues

SAMUEL S. GROSS, JOSHUA HARRINGTON AND LAUREL MINOTT

Abstract. In an article in the Monthly from 1904, Orlando Stet-
son studied the sums of distinct residues of triangular numbers mod-
ulo a prime. Rather curiously, this sum is always the same residue
class independent of the prime chosen. We extend Stetson’s theorem
to all polygonal numbers and find similar phenomenon. Extensions
to sums of residues of general polynomials are also discussed.

1. Introduction

Recall that the nth s-gonal number is the number of points that
are needed to create a regular polygon with s sides, each of length
n− 1 (see figure 1).

1 7 18 34 55

Figure 1. Heptagonal Numbers1

We denote these numbers by Ps(n). Alternatively, we can use the
algebraic description used by Stetson [5] and characterize these se-
quences with the recursions

Ps(1) = 1

Ps(n+ 1)− Ps(n) = n(s− 2) + 1.
(1)

For example, in the triangular numbers, or 3-gonal numbers, the
difference of consecutive terms follow the pattern 2, 3, 4, . . ., while
the difference of consecutive squares (4-gonal) follows the sequence
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1Figure 1 created by Erica Maciejewski.
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of odd numbers 3, 5, 7, . . .. Residues of squares, known as quadratic
residues, have been well understood beginning as far back as the
arithmeticae of Gauss [2].

Theorem 1.1 (Gauss, 1801). For an odd prime p, there are (p−1)/2
distinct quadratic residues modulo p. The sum of these residues is
divisible by p.

A similar property was discovered by Stetson [5] for the triangular
numbers.

Theorem 1.2 (Stetson, 1904). For a prime p ≥ 5, there are (p −
1)/2 distinct triangular residues. The sum of these residues is con-
gruent to −1/16 modulo p.2

It is widely known that the sequence (1) of s-gonal numbers is
generated by the function

Ps(n) =
n2(s− 2)− n(s− 4)

2
. (2)

We therefore observe that 2P2s+1(x) and P2s(x) are quadratic poly-
nomials in Z[x]. It is natural to then ask about the residues of other
quadratics, or about the residues of even more general polynomials.
In Section 2 we revisit Stetson’s work and in Section 3 we pick up
where he left off in 1904 by investigating the more general sets of
polygonal numbers and quadratics modulo a prime.

The question of sums of residues of more general polynomials is
much more difficult. Although the results of the present work are
mostly focused on sums of distinct residues of polygonal numbers, in
Section 4 we provide conjectural result for a certain class of cubics,
as well as a brief historical account of the complexity that arises in
studying the residues of an arbitrary polynomial.

2. Stetson’s Theorem

Being that Stetson’s original work is over a century old, in this
section we introduce our general notation, and reproduce the proof
of Theorem 1.2 for completeness.

2We have adopted the convention of using fractions modulo p where it is under-
stood that a number in the denominator represents the modular inverse of that
number. For example, in Stetson’s theorem above we mean the inverse of −16
modulo p.
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Definition 2.1. Let p be a prime and s ≥ 3 be an integer. The
integer k is called an s-gonal residue modulo p if k 6≡ 0 (mod p)
and k ≡ Ps(n) (mod p) for some positive integer n < p. If no
such n exists, we say that k is an s-gonal non-residue modulo p.
Additionally, we define Ss(p) as the sum of the distinct s-gonal
residues modulo p.

The following formulas can be found in most calculus texts, or
obtained by induction.

Lemma 2.2. Let n be a positive integer. Then
n∑

k=1

k =
n(n+ 1)

2
,

n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

n∑

k=1

k(k + 1)

2
=
n(n+ 1)(n+ 2)

6
.

Proof of Theorem 1.2. Let p ≥ 5 be a prime. Notice that P3(p−1) ≡
0 (mod p). For the remaining integers n satisfying 0 < n < p − 1
we have

P3(n) ≡ P3(p− n− 1) (mod p).

Since 0 ≤ p− n− 1 ≤ p− 1, we deduce that the triangular residues
in the interval [1, p − 1) come in pairs, except for the case when
n = (p− 1)/2. It follows that the set

{P3(1), P3(2), . . . , P3 ((p− 1)/2)}
is the complete set of (p− 1)/2 distinct triangular residues modulo
p. Using the formulas given in (2) and Lemma 2.2 we may calculate
S3(p) and obtain S3(p) ≡ − 1

16 (mod p). �

3. Generalizing Stetson’s Theorem

Notice that the generating function for the s-gonal numbers given
in (2) is a quadratic polynomial in n. With this observation, we
prove an analogous result for all quadratic polynomials, and then
apply this generalization to the polygonal numbers.

Definition 3.1. Let p be a prime and let f(x) be a polynomial with
integer coefficients. The integer k is called an f -polynomial residue
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modulo p if k 6≡ 0 (mod p) and k ≡ f(n) (mod p) for some integer
n. Additionally, we define Sf(p) to be the sum of the distinct f -
polynomial residues modulo p.

Theorem 3.2. Let f(x) = ax2 + bx + c be a quadratic polynomial
with integer coefficients. For a prime p ≥ 5 not dividing a we have

Sf(p) ≡ −
b2 − 4ac

8a
(mod p).

Proof. Let f(x) = ax2+bx+c be a quadratic polynomial with integer
coefficients and let p ≥ 5 be a prime not dividing a. For integers m
and n we have that f(n) ≡ f(m) (mod p) if and only if

0 ≡ an2 + bn− am2 − bm

≡ (n−m)

(
n+m+

b

a

)
,

if and only if n ≡ m (mod p) or n ≡ −m − b
a (mod p), with both

conditions occurring whenever n ≡ − b
2a (mod p). Therefore outside

of this last case the f -polynomial residues come in pairs. Using the
equations from Lemma 2.2 we deduce that

Sf(p) ≡

(∑p−1
i=0 f(i)

)
− f

(
− b

2a

)

2
+ f

(
− b

2a

)
(mod p)

≡ 1

2

(
− b

2

4a
+ c+

p−1∑

i=0

ai2 + bi+ c

)
(mod p)

≡ 1

2

(
− b

2

4a
+ c+ a · p(p− 1)(2p− 1)

6
+ b · p(p− 1)

2
+ cp

)

≡ −b
2 − 4ac

8a
(mod p).

�
In the case of polygonal numbers, one may observe that the s-gonal

residues still come in pairs. However, we no longer have the sym-
metry in the distribution of residues as in the 3-gonal case, where
the residues occurred in pairs - one below (p− 1)/2 and one above.
For example, with the pentagonal numbers, P5(2) ≡ P5(4) (mod 17)
with (p − 1)/2 = 8. It is not even the case that the residues will
come in pairs below and pairs above (p− 1)/2, e.g. P5(7) ≡ P5(15)
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(mod 17). Nonetheless, Theorem 3.2 provides an immediate corol-
lary for polygonal numbers whenever s is even. In the case that s is
odd and Ps(n) has rational coefficients, it is enough to notice that
the argument in Theorem 3.2 only requires that 2−1 (mod p) exists,
which it does, and that s 6≡ 2 (mod p) in order to avoid division by
0.

Corollary 3.3. Let p ≥ 5 be a prime and s ≥ 3 be an integer. If
s 6≡ 2 (mod p), then there are (p − 1)/2 distinct s-gonal residues
modulo p, and

Ss(p) ≡ −
1

16

(s− 4)2

(s− 2)
(mod p).

Remark 3.4. The special cases of s = 2 or p dividing a can be
handled trivially. In the former, the 2-gonal numbers are simply
1, 2, 3, . . .. As such, the sum of distinct resudes modulo a prime p
is 0. If p divides a, then f(x) ≡ bx + c (mod p). If p also divides
b, then Sf(p) ≡ c (mod p) as c is the only residue. On the other
hand, if gcd(b, p) = 1 then 0, b, 2b, . . . , (p− 1)b is a complete system
of distinct residues, with sum 0 modulo p.

The case for higher degree polynomials is much more complicated,
for reasons discussed in the next section. We have, however, at-
tempted to investigate several classes of cubics, and we close this
section with our most promising heuristic.

Conjecture 3.5. Let a, b be integers and let f(x) = ax3 + bx2. For
a prime p ≥ 5 not dividing a,

Sf(p) =





2b3

81a2
if p ≡ 1 (mod 6)

− 2b3

81a2
if p ≡ 5 (mod 6).

In the context of this Conjecture, it is easy to see that without loss
of generality gcd(a, b) = 1 with 0 < a ≤ p − 1 and 0 ≤ b ≤ p − 1.
Moreover, if x, y are distinct integers in [0, p− 1], then f(x) ≡ f(y)
(mod p) if and only if (x, y) is a root modulo p of a(x2 + xy+ y2) +
b(x + y). We have not yet found a closed form solution for these
roots, however we have computationally verified [4] Conjecture 3.5
for all primes ≤ 1500.
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4. General Polynomials

The difficulty in extending to more general polynomials lies in the
complexity of listing, or even just counting the number of distinct
f polynomial residues. This latter problem has a rich history in the
literature in a variety of forms, and effectively remains unsolved to
this day. We conclude with a summary of the work in this area to
date.

Let Vn(f) denote the number of distinct residues of f(x) modulo n.
In 1915 Kantor [3] computed Vp(f) for all primes p and deg f = 3.
Precise values for Vp(f) for degrees ≥ 4 are unknown at present,
although partial solutions have been given for a specific class of
quartics. In particular, Sun [6] determines the value of Vp(x

4 +
ax2 + bx). The counting method of Kantor does not appear to lend
itself to results on the sums of residues of cubics, and neither does
the technique of Sun extend to sums of residues of x4 + ax2 + bx.

In the most general case, a complex generating function [7] for
Vn(f) is given by

Vn(f) = n

n−1∑

u=0

(
n−1∑

t=0

n−1∑

v=0

exp

{
2πi

t

n
(f(u)− f(v))

})−1
, (3)

which naturally lends itself to asymptotic estimates of Vn(f). In
1954, Uchiyama [7] extended Weil’s famous 1948 proof [11] of the
Riemann Hypothesis for function fields and proved that if q = pk

and f ∗(u, v) = (f(u) − f(v))/(u − v) is absolutely irreducible then
Vq(f) > q/2. The example f(x) = x4 − x2 + 1 shows that the
hypothesis on f ∗(u, v) cannot be dropped. However, a year later
Carlitz proved [1] that on average Vq(f) is indeed > q/2. A series of
results followed [8, 9, 10] concerning the asymptotics for Vq(f) over
unitary polynomials and over polynomials of a fixed degree. We note
that the main result of [10] depends on the Riemann Hypothesis.
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Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945).
Hermann et Cie., Paris, 1948.

Samuel S. Gross is a mathematician and the Senior Cryptographer at Noblis,

Inc. in Reston, Virginia. His research interests, apart from his day job as a

cryptographer, lie in Number Theory, and especially connections between prime

numbers and irreducible polynomials.

Joshua Harringon has been an Assistant Professor at Cedar Crest College for

three years. His research interests are in number theory. His primary research

interests are in the area of covering systems of the integers and studying the

reducibility properties of polynomials.

Laurel Minott is an undergraduate student at Cedar Crest College. She is a

biology and mathematics major and is currently in her junior year.

(S. Gross) Noblis Inc., Reston, Virginia

(J. Harrington and L. Minott) Cedar Crest College, Allentown, Penn-
sylvania

E-mail address, S. Gross: samuel.gross@noblis.org
E-mail address, J. Harrington: joshua.harrington@cedarcrest.edu
E-mail address, L. Minott: ldminott@cedarcrest.edu



38



Irish Math. Soc. Bulletin
Number 79, Summer 2017, 39–42
ISSN 0791-5578

Real Lie Algebras with Equal Characters

CHING-I HSIN

Abstract. We recall Cartan’s definition of characters of real forms
of complex simple Lie algebras, based on Cartan decomposition.
For a given complex simple Lie algebra, its real forms are uniquely
determined by their characters in almost all cases. We work out the
exceptions where non-isomorphic real forms have the same charac-
ter.

1. Introduction

Let g be a real form of a complex simple Lie algebra L. Let
g = k+p be a Cartan decomposition, namely k is a maximal compact
subalgebra of g. In É. Cartan’s classification of real simple Lie
algebras, he defines the character of g as

character(g) = dim p− dim k.

He observes that non-isomorphic real forms of exceptional Lie alge-
bras have distinct characters [1, p.263-265], and uses them to denote
these exceptional real forms. For example e6(δ) denotes the real form
of E6 with character δ [2, p.518]. For the classical Lie algebras, Hel-
gason notes that non-isomorphic real forms with equal character
occur only in types A and D, and provides two examples [2, p.517]

(a) su∗(14), su(9, 5) ⊂ sl(14,C),
(b) so∗(18), so(12, 6) ⊂ so(18,C).

(1)

The following theorem determines all non-isomorphic real forms with
equal character.

Theorem 1.1. All the cases of real forms g, g′ ⊂ L such that g 6∼= g′

and g, g′ have the same character are given as follows:
(a) su(2r2 + r− 1, 2r2− r− 1), su∗(4r2− 2) ⊂ sl(4r2− 2,C), where
1 < r ∈ N;
(b) so(r2 + r, r2 − r), so∗(2r2) ⊂ so(2r2,C), where 2 < r ∈ N.
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We see that su∗(14) and su(9, 5) of (1)(a) are obtained by setting
r = 2 in Theorem 1.1(a), while so∗(18) and so(12, 6) of (1)(b) are
obtained by setting r = 3 in Theorem 1.1(b).

If g and g′ are real forms of L, then clearly dim g = dim g′.
Hence the condition character(g) = character(g′) is equivalent to
dim k = dim k′. It is known that g is determined by k and L [2,
Ch.X-6,Thm.6.2]; and Theorem 1.1 says that g is in fact determined
by dim k and L except for the indicated cases.

2. Proof of Theorem 1.1

We now prove Theorem 1.1. We study sl(n,C) in the proof of
Theorem 1.1(a), and study so(2n,C) in the proof of Theorem 1.1(b).

Proof of Theorem 1.1(a):
The Lie algebra sl(n,C) has three classes of real forms g, whose

maximal compact subalgebras k are indicated in (2) (see for instance
[2, p.518]). In (2)(a),

dim k = dim u(p) + dim u(n− p)− 1
= p2 + (n− p)2 − 1 = 2p2 − 2np+ n2 − 1.

g k dim k
(a) su(p, n− p) s(u(p) + u(n− p)) 2p2 − 2np+ n2 − 1
(b) su∗(n), n even sp(n2 ,R) 1

2(n2 + n)
(c) sl(n,R) so(n) 1

2(n2 − n)

(2)

If g is a split form of L (i.e. g has a Cartan subalgebra contained
in p; also known as a normal form), then its character is strictly
larger than that of other real forms of L [2, p.517]. Therefore, we
can ignore the split form sl(n,R), and consider only (2)(a,b). We
recall the elementary fact

ap2 + bp+ c = 0 =⇒ p =
−b±

√
b2 − 4ac

2a
. (3)

It is easier to compare dim k instead of the characters. Suppose
that (2)(a) and (2)(b) have equal dim k. Then

0 = (2p2−2np+n2−1)− 1

2
(n2+n) = 2p2−2np+

1

2
(n2−n−2). (4)

By (3) and (4),

p =
2n±

√
(−2n)2 − 4(n2 − n− 2)

4
=

1

2
(n±

√
n+ 2). (5)
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This implies that n + 2 is a perfect square. Furthermore since n is
even in (2)(b), condition (5) also says that

√
n+ 2 is even, namely

n+2 = (2r)2 for some r ∈ N. Then (5) becomes p = 2r2±r−1. For
r = 1, (2)(a,b) gives su(2) ∼= su∗(2). Hence we assume that r > 1.
This leads to the pairs of real forms in Theorem 1.1(a).

It remains to compare (2)(a) with itself for different values of p.
If su(p, n− p) and su(q, n− q) have equal dim k, then

0 = (2p2−2np+n2−1)−(2q2−2nq+n2−1) = 2(p2−np+(nq−q2)).
By (3),

p =
n±

√
(−n)2 − 4(nq − q2)

2
=

1

2
(n± (n− 2q)) ∈ {q, n− q}.

This implies that su(p, n − p) ∼= su(q, n − q). We conclude that
Theorem 1.1(a) gives all the cases of non-isomorphic real forms of
sl(n,C) with equal character. �
Proof of Theorem 1.1(b):

The Lie algebra L = so(2n,C) has two classes of real forms g,
with k and dim k indicated in (6).

g k dim k
(a) so(p, 2n− p) so(p) + so(2n− p) p2 − 2np+ 2n2 − n
(b) so∗(2n) u(n) n2

(6)

Suppose that (6)(a) and (6)(b) have equal dim k. Then

p2 − 2np+ n2 − n = 0.

By (3),

p =
2n±

√
(−2n)2 − 4(n2 − n)

2
= n±√n.

It implies that n is a perfect square, say n = r2 for some r ∈ N.
Then p = r2± r. For r = 1, (6)(a,b) gives so(2) ∼= so∗(2). Similarly
for r = 2, it gives so(6, 2) ∼= so∗(8). Hence we assume that r > 2.
This leads to the pairs of real forms in Theorem 1.1(b).

We also compare (6)(a) with itself for different values of p. If
so(p, 2n− p) and so(q, 2n− q) have equal dim k, then

0 = (p2−2np+2n2−n)−(q2−2nq+2n2−n) = p2−2np+(2nq−q2).
By (3),

p =
2n±

√
(−2n)2 − 4(2nq − q2)

2
= n± (n− q) ∈ {2n− q, q}.
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This implies that so(p, 2n − p) ∼= so(q, 2n − q). We conclude that
Theorem 1.1(b) gives all the cases of non-isomorphic real forms of
so(2n,C) with equal character. �

Since non-isomorphic real forms with equal character may occur
only in typesA andD [2, p.517], this completes the proof of Theorem
1.1.
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An interview with Vincent Hart

COLM MULCAHY

Abstract. An interview with Vincent Hart, a very early Irish
mathematics doctorate, who has spent half a century in Brisbane
after starting his career at Cork and at the DIAS.

1. Introduction

Vincent Gerald Hart was born in Hull in 1930, and later brought
up in Cork. He attended UCC, and taught there from 1951 to 1966,
with forays to DIAS, MIT and the University of Queensland along
the way. His January 1958 PhD, earned under the guidance of John
L. Synge, seems to have made him the third Irish person to complete
a doctorate by research in the mathematical sciences in the Republic
of Ireland. (Maynooth’s James McMahon and UCD’s Cormac Smith
had earned theirs in 1952 and 1954, respectively, under J. L. Synge
and J. R. Timoney.)

Now, half a century after he resettled in Australia—where his
career included serving as department head, supervising research,
and collaborating in Diarmuid Ó Mathúna’s book Integrable Systems
in Celestial Mechanics (Birkäuser, 2008)—Vincent Hart looks back
on seven decades of scholarship and life in academia.
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2. Interview

1. Where did you grow up, what background did your parents have,
and what schools did you go to?

I was born in Hull, Yorkshire, England in 1930, and would proba-
bly still be there were it not for the second World War. My mother
was a primary school teacher, and my father was an accountant in
a shipping office. After primary school, I attended Marist College
in Hull, and then, for one term, Wyggeston Grammar School in
Leicester—whence we had moved due to the bombing. This lasted
until December, 1940, Leicester having been bombed even closer to
us in November. My father, who was in the Army by then, decided
that my mother, myself, and two younger brothers, should move to
family members in Cork, in neutral Ireland. And there I grew up
very happily. In Cork I attended the Christian Brothers’ College
until 1947.

2. What first drew you to maths, and how old were you when you
realized it was something you wanted to pursue above other options?

At Christians’ I received a sound education, my best subject be-
ing Latin. I could do mathematics also, but was not enthused by
it—until at age seventeen, I read a book explaining how the Bohr
atom was described by mathematics applicable also to the solar
system: George Gamow’s Mr Tompkins Explores the Atom (Cam-
bridge, 1945). Then the scales fell from my eyes, and I became, and
remained, very interested in the application of mathematics to the
problems of the real world.

3. Tell us about your days as a student at UCC, including notewor-
thy teachers and fellow students?

At University College Cork, to which I was admitted on a schol-
arship in October, 1947, I enrolled for an Honours BSc in Experi-
mental Physics and Mathematical Physics. This meant that I had
to attend also the lectures in Mathematics—which gave me about
20 hours per week of contact. I graduated in 1950, with a medal,
and took an MSc in Mathematics in 1951. I had good teachers: In
Experimental Physics: J J McHenry, C Ó Ceallaigh, D J Stevens. In
Mathematics: T M Carey, H St J Atkins. In Mathematical Physics:
M D McCarthy for the first two years, and P M Quinlan for the
third year.
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Fellow students were T M Cronin, P J Donohoe, and P B Kennedy.
All were very able, particularly Kennedy who won the 1951 Travel-
ling Studentship in Maths; he was a year ahead of our group of three
only. He was in a class by himself in every way (he was the only
BSc student in maths who graduated in 1949). We caught up with
him for the MSc in 1951. He had two years to prepare for the Stu-
dentship; we had but one year to prepare. All four of us (Kennedy,
Cronin, Donohoe, me) obtained our MSc (or MA for Donohoe) on
our answering on the Studentship examination. P B Kennedy later
became Professor of Mathematics, first in Cork, and then in York.
I learned a lot from my contemporaries and enjoyed their company
very much.

UCC graduation, 1951 1

Tim Cronin was a very good mathematician, who had been widely
educated. I shared accommodation with him in Dublin, and was
impressed by the large number of books on English poetry on his
bookshelf. His health was not very good I believe. A very congenial
colleague.

1(Photo courtesy V G Hart) Front row: Professor H St J Atkins, P B Kennedy,
Dr Tadhg (T M) Carey. Back row : T M Cronin, P J Donohoe, V G Hart, one
unknown person. PBK is in the honour position since he has just been awarded
the 1951 Travelling Studentship.
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P J Donohoe had a chequered career. On winning the studentship
in 1954 he went to M J Lighthill in Manchester, and was given a
project in fluid dynamics. After some months he just gave up with-
out notification and retired to home in Rathmore, County Kerry, to
everyone’s consternation. After temporary jobs in UCC he obtained
a lectureship in QUB—after which he seemed to have returned to
the straight and narrow. He was ebullient and brilliant, but erratic.
He was outgoing, with a quick intelligence coupled with erudition.
But having brought this formidable apparatus to bear, and having
achieved something—studentship, DIAS scholarship—he seemed to
lose interest, with the obvious consequences. I don’t think he pub-
lished anything, but I’m sure his PhD [QUB, 1966] was good work.
He was probably under some pressure to complete it. He probably
had too many interests, and the period when he was at QUB was
certainly anything but restful for academics.

After the 1950 group, the next maths and maths physics grad-
uates were Kevin O’Donnell and Siobhán O’Shea in 1952. Kevin
became an actuary, worked in London for a stockbroker, and moved
to Dublin to head a big Irish Insurance Company. I know Kevin
well. He and his brother, Des, swept all before them in the 1947 En-
trance Scholarship examinations at UCC. At that time, in a College
of about 1000 students, there were only about 8 or 10 scholarships
offered yearly. Both O’Donnell brothers declined their awards, with
Des (who died a few years ago) going to a bank, and Kevin to the
Jesuits. After the two year novitiate, Kevin left and came back to
maths and maths physics at UCC. I believe he is still happily retired
at Ballybride, County Dublin. Both are Cork boys.

Siobhán was a worthy colleague. The stimulus needed to get her
moving in research was provided by P B Kennedy after he became
Professor in Cork.

4. After your masters, in 1951, you taught for a while at UCC and
began your association with DIAS. How did that come about?

After BSc graduation in October, 1950, I was offered a teaching
post (as Assistant I believe) at UCC. This I held for nearly two
years until I applied for and was granted a position as Scholar at
DIAS. This was a research position which I held for two years, being
supervised by J L Synge, until I was offered a Temporary Lectureship



Vincent Hart 47

back at UCC in mid 1954. This became a Statutory Lectureship in
1958, which I held until resignation in 1966.

5. You were a DIAS Scholar from 1952 to 1954, studying with
John Lighton Synge, and then you returned to UCC. Your PhD was
conferred in early 1958. What was it like working with Synge, and
what was the nature of that research? Did you visit DIAS a lot to
do more work with Synge in the period 1954-1957?

Professor Synge was impressive in various ways. He was an excel-
lent lecturer with a very clear style, as a supervisor he was excellent,
very experienced and understanding. I was fortunate to have him
as my PhD supervisor: by contrast to the experience of a friend,
who was given a problem much too difficult for him by a different
supervisor.

From October 1954 I worked at UCC at Lecturer level. And I
mean worked: I had 14 lectures per week for a long period of years-
with one memorable term when I was asked to give McHenry’s lec-
tures while he was in hospital. That gave me 17 lectures per week.
All the while I was trying to complete my PhD thesis—with frequent
letters to J L Synge. There were only a few visits to Dublin, and
those for seminars or lectures.

My research was entirely personal in Cork–except for letters to
and fro with JLS. The topic concerned the Hypercircle method;
I had previously assisted in the production of Synge’s book: The
Hypercircle Method in Mathematical Physics (Cambridge, 1957).

Mercifully, the lecture load dropped to 11 per week after about
half my years as Lecturer at UCC had expired. And I should add
that I got away to MIT for the calendar year 1959, and to the Uni-
versity of Queensland for another year, 1964/65. At MIT, I worked
with Professor Eric Reissner on problems involving solid mechan-
ics. Two papers on the bending of an annular plate resulted–with D
J Evans who contributed numerical skills. I benefited from contact
with Professor L N Howard (who we subsequently invited to the Uni-
versity of Queensland). I enjoyed meeting some very able graduate
students, including Charles Conley. And my former student Diar-
muid Ó Mathúna was pleasant company, since he was there doing
a PhD under Reissner. Norbert Wiener’s office was two doors away
from mine, and we had several chats. There were some excellent
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lecture courses, particularly one by Jürgen Moser, which broadened
my knowledge base considerably. A very fruitful year for me.

6. Who else did you know at DIAS?

At DIAS I met Schrödinger, Synge and Cornelius Lanczos, three
Senior Professors, of course. And there was a constant stream of emi-
nent people passing through the Institute: Dirac, Polanyi, Kilmister,
Heitler, for example—all very good for us young students. Nearer
to my level were Jim Pounder, John Roche, Paddy Donohoe, Fr
McHugh, and as postdoc visitors, Martin J Klein from USA, Ernesto
Corinaldesi from Italy and Daykin from Canada.

I also knew Henry Sandham [(1917-1963), another PhD student of
Synge’s]; he was not a well man. He was recovering from a lung prob-
lem, probably TB which was not unusual for the time, and one could
hear his laboured breathing across the room. Nevertheless he was a
very pleasant man, always very helpful in discussing mathematics—
of which he had a wide knowledge particularly in analysis. He was
a mine of information on integrals, series, etc.

7. Who were your UCC colleagues in the period 1950-1966?

P M Quinlan (Prof of Math Phys), George Kelly, P B Kennedy,
P D Barry, Siobhán O’Shea, Finbarr Holland, Tadhg Carey; all
colleagues of varying qualities–mostly good to excellent.

8. What notable students were at UCC in the period 1950-1966?

Many. Matt McCarthy, Michael Mortell, Tony Hollingsworth,
Brendan McWilliams, Finbarr Holland, Jim Flavin, P D Barry, Di-
armuid Ó Mathúna, Richard Scott. M Mortell became President of
UCC. P Barry became Head of Mathematics at UCC after Kennedy,
and F Holland later a professor there. J Flavin became professor
and HOD at UCG, and M McCarthy professor and Registrar there.
R Scott became professor at Caltech after PhD there, and D Ó
Mathúna , after PhD at MIT, served with NASA in its heroic moon
landing stage.

Frank Hodnett became Head of Department at University of Lim-
erick, and Michael J O’Callaghan became Head of Department at
UCC—after P M Quinlan’s retirement. Tony Hollingsworth and
Brendan McWilliams became notable meteorologists, Hollingsworth
being chief of the Reading research institute in England. McWilliams
remained in the Irish Met service, contributed lively and topical
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regular columns to the Irish Times. Sadly both have died, but
McWilliams’s wife has compiled her late husband’s columns into an
excellent book: The Book of Weathereye (Gill and Macmillan, 2008).

Both men were in my Honours BSc class in 1964, which I partic-
ularly remember since the students gave me a parting present of six
Waterford sherry glasses—still in constant use!

9. Was there any “institutional memory” of George Boole’s legacy?

Not really, except for a talk by Sir Geoffrey Taylor in mid 1964.
He was a descendant of Boole.

10. You spent the academic year 1964-5 in Brisbane, were you test-
ing the waters for your permanent move there in 1966? What at-
tracted you to the University of Queensland?

No. I met in UCC by chance the Head of the Maths Department
at the University of Queensland, Clive Davis. He came to Britain
and Ireland in February 1964 on a recruiting expedition. My wife
and I went to Queensland in mid 1964 for a year, and came back to
Cork in mid 1965. Then in late 1965, I got the Readership offer to
go back to Queensland—which we did in mid 1966.

11. How was the adjustment from academia in UCC? It must have
been a big culture shock in general?

Yes, it was a culture shock—but a very agreeable one. The Uni-
versity of Queensland department was much bigger and more diverse
than the two departments at UCC (maths and maths physics). The
Queensland department comprised Pure Maths, Applied Maths and
Statistics, and later Numerical Analysis sections, and had about 15
academics in the mid 1960s. This compared with just Maths and
Maths Physics Depts at UCC with a total of just four staff between
them.

And conditions at Queensland were better, allowing more time for
research and construction of new courses. Another welcome feature
was the provision of paid study leave overseas at the rate of three
months every three years. Bozhe moi!2

12. Did you know you were going to spend the rest of your life there?

No. I enjoyed the break as an excursion from my normal job at
UCC. However it was a most favourable time for academics, with

2A Tom Lehrer reference.
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Universities expanding everywhere, and by late 1965 I had three
offers of jobs, one in Canada, and two in Australia. And so our
minds tended to favour perhaps a three year stint overseas—with the
acceptance of a Readership offer at the Uiniversity of Queensland.
But this three year period expanded irrevocably. . . .

13. How did your research interests develop down under? You’ve
had several PhD students?

Very well. Our department expanded to about 50 academics by
the 1970s, and there were excellent opportunities for designing new
courses and for engaging with able students. Also the overseas study
leave periods, six of which I enjoyed during my 28 years, were very
fruitful in generating new contacts and ideas for research. They were
taken in Universities of East Anglia (twice), UCD (twice), Notting-
ham, Auckland and Leeds, the last two on the same leave in 1992.

I had several PhD students, one of whom, J M Hill, became very
prolific in research. He has produced a great deal of work, and has
held professorial positions at Wollongong and Adelaide Universities.

In administration, I spent eleven years as Head of Department,
during which I had a very able Chinese research assistant, Jingyu
Shi. He and I turned out ten papers on the stresses in grafted
arteries under pulsatile flow. I also spent 16 years as Treasurer of
the Australian Mathematical Society. So, all in all, I was very happy
with our serendipitous decision to move to Queensland in 1966.

14. Tell us about your brothers.
Like me, Julian (1938-2012) and Ian (1939-1980) were born in

Hull and moved to Ireland in 1940. Julian preferred the old form
of surname: MacAirt. Both both won keenly contested entrance
scholarships to UCC: Julian won a Honan entrance scholarship, and
Ian won a Keliher entrance. In comparison I won only a College
entrance scholarship, after the named awards were distributed. They
were bright boys.

Julian also received the gold medal of the UCC Graduates’ Club
as the most distinguished graduate of 1959—as I did in for 1950—he
drowned tragically at The Meeting of the Waters, Wicklow. Julian
got BSc (Maths and Stats) and PhD (Economics) at UCC), and a
Dunlop Fellowship in Economics at Oxford (1960-63), then worked
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at Aer Lingus before becoming Lecturer and Senior Lecturer in Sta-
tistics at TCD (1967-95). He wrote two books and 25 papers in
statistics.

Ian got his BA, MA, and PhD (in Psychology) at UCC, and a
HDip. He worked at the Economic and Social Research Institute in
Dublin (1967-80), and wrote 16 papers in clinical psychology. He
was regarded as one of pioneers in social work in Ireland on prisoners,
deprived children, and drugs, and was one of the early workers in
the Simon community for homeless people.

15. Have you been back to Cork (or Yorkshire) much over the years?
What do you miss most about those places?

Yes. We had six visits to Yorkshire and Ireland to see relatives
before retirement in 1995, and three trips after retirement. Having
grown up in both England and Ireland I have always been interested
in the history, literature and development of both countries. There
is a lively conversational style in each that is hard to equal.

16. What was your role in the book Integrable Systems in Celestial
Mechanics (Birkäuser, 2008) by Diarmuid Ó Mathúna of the DIAS?

This book achieves the complete analytic solution to the problem
of a body moving in the gravitational field of two fixed centres, thus
completing Euler’s solution. Also, by a simple change of sign in
the governing equations, it provides the solution of a quite different
dynamical problem—that of Vinti, which concerns the motion of a
body in a realistic model of the earth’s gravitational field. I showed
the need to expand the range of parameters that was at first consid-
ered in Chapter 3, and I wrote the Appendix, in which illustrations
are given of the various orbits occurring. Maple codes were supplied
by Sean Murray of the DIAS; he helped to get the formulae involv-
ing Jacobian Elliptic functions into suitable form. Not many items
can improve on the great Euler; I think that is its great strength,
and I’m very pleased to have contributed to it.

17. What have been your favourite courses to teach?

I liked the small honours classes best I think; special functions,
asymptotic methods, fluid mechanics, elasticity.

18. What course did you create that you are most pleased with?
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I think fourth year honours non-linear elasticity. This started Jim
Hill up on his research career, to considerable effect.

19. What advice do you have for today’s students who are interested
in applying maths to the real world?

I think they have to read widely, and, if possible, study the ap-
proach of some able applier of mathematics. I think that I benefited
by following Synge’s geometrical method rather than an alternative
abstract one. But people differ of course. The Study Groups for
Industry I attended in Oxford and Australia were fruitful-and these
are now widespread of course.

20. You’ve seen applications of maths change a lot in your lifetime.
What has surprised or excited you the most?

Both surprise and excitement come from the great facility the
computer gives us to research the literature from home. Together
with the fine packages such as Maple and Matlab, which enable much
more powerful computation than in the past. This is heartfelt from
one who struggled with the Facit, Marchant, and Brunsvigas of the
1960s.

Excitement is not quite the word when I contemplate the change in
delivery of instruction. The mode of delivery of courses has changed
greatly. Nowadays perhaps only thirty percent of students attend
the contact period, the details being available on the screen. This
means that the students miss interaction with each other and with
the instructor. This is surely a serious detriment. And whatever
the educationalists say about self instruction, study of the careful
exposition of the great mathematical works is still the only way to
learn one’s trade.
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Beyond Dominated Convergence: Newer Methods of
Integration

PAT MULDOWNEY

Abstract. Lebesgue’s dominated convergence theorem is a crucial
pillar of modern analysis, but there are certain areas of the subject
where this theorem is deficient. Deeper criteria for convergence of
integrals are described in this article.

1. What Is Integration?

We learn calculus in secondary school: first, differentiation of func-
tions, and later integration as the inverse or opposite of differentiation—
the integral is the anti-derivative or primitive function, from which
definite integrals can be easily deduced.

In more advanced mathematics courses we learn Riemann’s defi-
nition of definite integrals which enables us to integrate more func-
tions. The Riemann method does not make use of differentiation; it
is similar to the ancient method of finding areas and volumes “by
exhaustion”—that is, estimating the area or volume by dividing it
up into pieces which are more easily estimated, and then taking the
aggregate of the pieces.

Specialists in mathematical analysis go on from this to study the
Lebesgue method of integration. Why? Again, one of the stock
answers to this question is that the Lebesgue method enables us
to integrate functions which cannot be integrated by more familiar
methods such as the calculus integral and the Riemann integral.

The Dirichlet function is sometimes mentioned. In the unit inter-
val [0, 1] this function takes value one at the rational points, and
zero at the other points. The Dirichlet function is not the derivative
of some other function, so it cannot be integrated by the method
we learn at school in calculus lessons. Also, it cannot be integrated
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by Riemann’s method. But the Lebesgue integral of the Dirichlet
function exists: the definite integral of the Dirichlet function on the
unit interval is 0.

But—so what? Apart from some specialists and experts, is there
anybody else who has any real use for the Dirichlet function, and
who really cares whether or not it is amenable to calculus? It cannot
be pictured as lines in a graph, it does not have a straightforward
formulation in polynomial, trigonometric or exponential terms. Un-
like the area and volume calculations of antiquity, and unlike the
calculus of Newton and Leibnitz which explained the world in me-
chanical terms, what difference does the Dirichlet function make to
anyone outside the narrow and rarified world of a tiny number of
people in pure mathematics?

The same can be said of many of the other arcane and exotic
functions, such as the Devil’s Staircase, invented during the long
nineteenth century gestation of Lebesgue integration, measure the-
ory and set theory. Such functions have counter-intuitive and chal-
lenging qualities that we can admire and wonder at. But they were
described by Hermite and Poincaré as unwelcome monsters causing
mayhem in the rich and fertile garden of mathematics.

“Does anyone believe that the difference between the Lebesgue and
the Riemann integrals can have physical significance, and that whether,
say, an airplane would or would not fly could depend on this differ-
ence? If such were claimed, I should not care to fly in that plane.”
(Richard W. Hamming [5]).

This critique is understandable, but unhistorical. By the early
nineteenth century, the rich and fertile garden was on the verge of
becoming a barren and dangerous wilderness—and not because of
trespassing monster-functions.

2. Monstrous Functions

In the tradition of Newton and Leibnitz, Fourier series represen-
tation of functions had opened up the analysis of wave motion, cru-
cial to an understanding of sound, light, electricity and so on. But
strange and paradoxical things could happen when the integral of a
function was obtained by integrating its Fourier series term by term.
Certain questions could no longer be avoided. To what extent, and
under what conditions, is a function identical to its corresponding
Fourier series representation? When is the integral of a function
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equal to the series obtained by integrating the terms of the corre-
sponding Fourier series?

This boils down to whether a convergent series of integrable func-
tions has integrable limit, and whether the integral of the limit is
equal to the limit of the integrals whenever the latter limit exists.

Such issues motivated decades of investigation of the notion of
integration, until a satisfactory resolution was found in the conver-
gence theorems—uniform, monotone, and dominated convergence—
of Lesbesgue integration theory. In particular the dominated con-
vergence theorem tells us that if a sequence of integrable functions
fj converges to f , and if the sequence satisfies |fj| < g for all j,
where g is integrable, then f is integrable and

∫
fj converges to

∫
f

as j →∞.
The integral here is the definite Lebesgue integral on some domain.

But the theorem holds for functions which are integrable in the older
and more familiar senses of Riemann, Cauchy, and Newton/Leibnitz,
since, broadly speaking, functions which are integrable in the latter
senses are, a fortiori, integrable in the Lebesgue sense.

From this point onwards somebody—not necessarily expert in
Lebesgue’s integration—who is contentedly doing some familiar inte-
gral operations, and who encounters some issue of convergence such
as term-wise integration of a Fourier series, can proceed in safety if
a dominant integrable function g can be found for the convergence.

This is the practical significance of Lebesgue’s theory. It is a
reason why “it is safe to fly in airplanes”, so to speak. It is why
the fertile garden did not turn into a barren wilderness. And the
“monster-functions” were in reality guard dogs that played their
part in protecting the garden.

3. A Non-monstrous Function

But is this the end of the story? Did Lebesgue’s 1901 and 1902
papers [12, 13] give the last word on the subject?

Here is a sequence of non-monstrous functions formed by com-
bining some familiar polynomial with trigonometric functions. For
j = 2, 3, 4, . . ., let fj(x) = 2x sin 1

x2 − 2
x cos 1

x2 if 1
j ≤ x ≤ 1 and = 0

if 0 ≤ x < 1
j .

An impression of function fj can be obtained from Figure 3 below,
which contains the graph of f(x) = 2x sin 1

x2− 2
x cos 1

x2 for 0 < x ≤ 1.
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Figure 2 resembles Figure 3 in the neighbourhood of x = 0. The
difference between the two is 2x sinx−2, whose graph is in Figure 1.

But the values of the latter function are very small in the neigh-
bourhood of x = 0. Figure 1 demonstrates its “visual insignifi-
cance”, so to speak. Note that the vertical scale of Figure 1 is much
more magnified than the vertical scales of Figures 2 and 3.

Figure 4 is the graph of the primitive function or anti-derivative
of f , which will play a big part in our discussion.

Each fj has a single discontinuity (at x = 1
j ), but is differentiable

at every other point. Each fj is integrable (in the sense of Riemann
and Lebesgue), and the sequence fj is convergent at each x to f(x) =
2x sin 1

x2 − 2
x cos 1

x2 , f(0) = 0, whose graph is Figure 3.
The limit function f has a single discontinuity (from the right) at

x = 0; and it has a primitive function F (x) = x2 sinx−2 (x > 0),
F (0) = 0 (Figure 4); so in fact f has a definite integral F (1)−F (0) =
sin 1 on the domain [0, 1] provided the Newton-Leibnitz definition
of the integral is used.

But f is unbounded on [0, 1] and therefore is not Riemann in-
tegrable on [0, 1]. And, though clearly non-monstrous, and under-
standable to a beginning calculus student, the function f is not
Lebesgue integrable. See below for discussion of this point.

On the face of it, this example indicates a step backwards, as it
were, where the old school method of Newton/Leibnitz is actually
more effective than more modern methods. Lebesgue’s theory of the
integral threw up anomalies of this kind, and accordingly investig-
ation of the theory continued through the twentieth century.

To recapitulate, Lebesgue’s dominated convergence theorem can
be said to be the cutting edge of modern integration theory. But
it fails to capture the convergence of sequences such as fj and∫ 1

0 fj(x) dx. The graph in Figure 3 suggests 2x−2 as a conceivable
candidate for dominating function g for the terms |fj|, j = 1, 2, 3, . . .,
at least in a neighbourhood of the critical point x = 0. But 2x−2

is not integrable in a neighbourhood of 0, and it seems that the
dominated convergence theorem is not applicable here.

This failure must sound some alarm bells, because while many
working mathematicians can get by without the Lebesgue integral,
we cannot really do without convergence theorems which allow us,
for instance, to perform routine operations on Fourier series; or,
more generally, to safely find the integral of the limit of a sequence
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of integrable functions by taking the limit of the corresponding se-
quence of integrals.

The purpose of this essay is to dip into some aspects of modern
integration theory in order to introduce Theorems 5.1, 5.2, and 5.3
below, which are delicate enough to deal with, for instance, the
convergence of the functions fj above and their integrals; while also
covering the ground already captured by the convergence theorems
of Lebesgue’s theory.

For ease of reference, here again are the sequence fj and related
functions, j = 1, 2, 3, . . .:

f(x) =

{
2x sin 1

x2 − 2
x cos 1

x2 if 0 < x ≤ 1,
0 if x = 0,

(1)

fj(x) =

{
2x sin 1

x2 − 2
x cos 1

x2 if 1
j ≤ x ≤ 1,

0 if 0 ≤ x < 1
j ,

(2)

F (x) =

{
x2 sin 1

x2 if 0 < x ≤ 1,
0 if x = 0,

(3)

Fj(x) =

{
x2 sin 1

x2 if 1
j ≤ x ≤ 1,

0 if 0 ≤ x < 1
j .

(4)

Figures 3 and 4 are, respectively, the graphs of the functions f
and F . The graphs of fj and Fj are easily substituted—just insert
a horizontal line segment at height 0 from x = 0 to x = 1

j .
The function f has a single discontinuity at x = 0, while F is con-

tinuous. The reader should verify that F is differentiable, including
at the point x = 0 (from the right), and that F ′(0) = 0 = f(0). The
fact that F ′(x) = f(x) for x > 0 is easily verified.

This establishes that f , = lim fj, has a primitive or anti-derivative,
and F is the calculus- or Newton-indefinite integral of f . Also the
calculus- or Newton-definite integral on [0, 1] is

∫ 1

0

f(x) dx = F (1)− F (0) = sin 1− 0 = sin 1.

For each j both fj and Fj have a discontinuity at x = 1/j, but
provided x 6= 1/j, we have F ′(x) = fj(x). Thus, for each j, fj
is Riemann and Lebesgue integrable on [0, 1], but not calculus- or
Newton-integrable on [0, 1]. However fj is calculus-integrable on
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[j−1, 1] for each j, and
∫ 1

0

fj(x) dx =

∫ 1

1
j

fj(x) dx = F (1)− F
(

1

j

)
= sin 1− 1

j2
sin j2,

provided we interpret
∫ 1

0 as a Riemann (or Lebesgue) integral. Thus,
as j →∞, ∫ 1

0

fj(x) dx→
∫ 1

0

f(x) dx (5)

provide we interpret the left hand integrals in the sense of Rie-
mann or Lebesgue, and the right hand one as a calculus or New-
ton/Leibnitz integral.

Unless we can interpret it in some other way, (5) is deficient as it

stands, since we cannot ascribe the same meaning to the symbol
∫ 1

0
in the left- and right-hand terms. In fact we will establish later that
(5) is valid for an adapted1 version of the Riemann integral; and
that the convergence—including integrability of the limit function
f—though unrelated to any kind of dominated convergence, satisfies
a new kind of Riemann sum convergence criterion which goes beyond
the Lebesgue dominated convergence theorem.

To recapitulate, for 0 ≤ x ≤ 1 the function fj is bounded and
continuous—except for a discontinuity at x = j−1. Also it is differ-
entiable except at x = j−1. It has anti-derivative Fj(x)—except at
x = j−1.

By familiar standard results, fj is Riemann integrable and Lebesgue
integrable on domain [0, 1]. But, as discussed above, its limit func-
tion f is not Lebesgue (or Riemann) integrable.

There are theorems which tell us when to expect Lebesgue inte-
grability of the limit function of Lebesgue integrable functions. If
the convergence of the functions fj to the function f is uniform,
monotone, or dominated by a Lebesgue integrable function, then
Lebesgue integrability of the functions fj implies Lebesgue integra-
bility of their limit function f , with

lim
j→∞

(∫ 1

0

fj(x)dx

)
=

∫ 1

0

(
lim
j→∞

fj(x)

)
dx =

∫ 1

0

F (x)dx.

Inspection of the graphs indicates that convergence of functions
fj is not uniform, monotone or dominated. And, even though

1That is, the Riemann-complete integral, also known as the generalized Rie-
mann or Henstock-Kurzweil integral.
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Figure 1. 2x sinx−2

Figure 2. 2x−1 cosx−2

Figure
3. 2x sinx−2 −
2x−1 cosx−2

Figure 4. x2 sinx−2

each fj is Lebesgue integrable, the limit function f is not Lebesgue
integrable—as demonstrated below.

Is this a big problem for the garden of mathematics, or is it just a
minor incursion by, not a monster, but an atypical creature which is
easily contained? This article attempts to provide some perspective.

The names of Denjoy, Perron, Kolmogorov and others are associ-
ated with twentieth century efforts [4] to pursue the implications of
problems such as the convergence of functions fj and their integrals.
This article will examine the Riemann sum approach of R. Henstock
and J. Kurzweil.
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4. Riemann-complete Integration

Kurzweil came to this subject through his investigations of differ-
ential equations. Henstock was interested in convergence issues in
integration. Independently, each of them focussed on careful con-
struction of Riemann sums for integrands f .

Here is a broad outline of Riemann sum construction. A partition
P of a domain such as [0, 1] is a set of points u0 < u1 < u2 < · · · <
un = 1. Identify P with the corresponding set of disjoint intervals
Ii:

P = {[u0, u1], ]u1, u2], ]u2, u3], . . . , ]un−1, un]} = {Ii : i = 1, 2, . . . , n}.

For each Ii ∈ P let |Ii| denote the length ui − ui−1 of Ii. Given a
function f(x) defined for x ∈ [0, 1], evaluation points xi are selected
for the intervals Ii ∈ P in accordance with certain rules (such as
ui−1 ≤ xi < ui), and then a Riemann sum for f is

n∑

i=1

f(xi)× |Ii|, or, more briefly, (P)
∑

f(x)|I|.

The integral
∫ 1

0 f(x) dx of f on the domain [0, 1], denoted by α,
exists if α satisfies a condition which is broadly of the following
form. Given ε > 0, partitions P can be chosen such that
∣∣∣∣∣α−

n∑

i=1

f(xi)|Ii|
∣∣∣∣∣ < ε for specified choices of xi and Ii, 1 ≤ i ≤ n.

(6)
This inequality is reminiscent of the Riemann integral of f , but it
is not the full definition that is required here. There must be some
rule (sometimes called a gauge) for selecting the elements {(xi, Ii)}
(corresponding to the partition P = {Ii} or {(xi, Ii)}) that can be
admitted in the inequality.

For Riemann integration, the rule is that, given ε > 0 there exists
a constant δ > 0 such that, for every partition P = {(xi, Ii)} for
which |Ii| = ui − ui−1 < δ and ui−1 ≤ xi ≤ ui for each Ii ∈ P , the
above2 inequality (6) holds. Denote such a rule by γ, and denote a
partition P which satisfies an appropriate instance of the rule γ by
Pγ.

2If f is continuous on [0, 1] then its Riemann integral exists there.
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An integral constructed from such a rule can be identified by no-
tation γ

∫
. Then the definition of the integral α = γ

∫ 1

0 f(x) dx is
as follows. There is a number α for which, given any ε > 0, there
exists a corresponding3 instance γ(ε) of γ such that every partition
Pγ(ε) satisfies

∣∣∣α− (Pγ(ε))
∑

f(x)|I|
∣∣∣ < ε. (7)

We will omit the γ in γ
∫

, and allow the context to demonstrate which
version of the integral is being discussed.

While the Riemann sum rule for ordinary Riemann integration is
“|I| < δ”, the primary innovations of Kurzweil and Henstock were:

(1) to replace selection of intervals {Ii} by selection of linked
pairs {(xi, Ii)} in constructing Riemann sums,4 and

(2) to replace the constant δ by variable δ(x) > 0, where x = xi
is the evaluation point in the term f(xi)|Ii| of the Riemann
sum in (7).

To distinguish this from the Riemann integral, call it5 the Riemann-
complete integral. Clearly, every Riemann integrable function is also
integrable in the Riemann-complete sense.

A Stieltjes-type definition of the integral of a function f can be
expressed as follows. Suppose f(x) and g(x) are point functions
defined on the domain [0, 1]. The Riemann-Stieltjes integral of f
with respect to g is got by replacing the length function |I| by the
increment function g(I) = g(ui)−g(ui−1) in the above definitions. A
standard result is that if f is continuous and g is monotone (or has

bounded variation), then the Riemann-Stieltjes integral
∫ 1

0 f(x) dg
exists. If the constant δ > 0 in the definition is replaced by the
function δ(x) > 0 of the Riemann-complete construction, call the
resulting integral the Stieltjes-complete integral of f with respect to
g.

3For the ordinary Riemann integral, read “there exists a corresponding number
δ > 0”.

4The familiar condition ui−1 ≤ xi ≤ xi is sometimes altered. Also the new
approach often gives priority to the evaluation points xi; and then it can be a
more subtle and difficult task to determine the linked partitioning elements Ii.
See [9] and [14].

5It is also called the Henstock-Kurzweil integral, generalized Riemann integral,
and gauge integral.
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To see how the Riemann-complete integral matches the calculus or
Newton/Leibnitz integral, suppose a point function f(x) has an anti-
derivative or primitive function F (x) for 0 ≤ x ≤ 1, so its definite
integral in the Newton/Leibnitz sense is F (1)−F (0). Proceeding as
follows, it is easy to deduce that f is Riemann-complete integrable.

If P is a partition of [0, 1] with partition points ui, 0 = u0 < u1 <
· · · < un = 1, and if ui−1 ≤ xi ≤ ui, then

(P)
∑
f(x)|I| =

∑n
i=1 f(xi)(ui − ui−1)

=
∑n

i=1 (f(xi)(xi − ui−1) + f(xi)(ui − xi)) ,
F (1)− F (0) =

∑n
i=1 F (ui)− F (ui−1)

=
∑n

i=1 ((F (xi)− F (ui−1) + (F (ui)− F (xi)))

Let ε > 0 be given. Then, for each x, 0 < x < 1, there exists a
number δ(x) > 0 such that, for |x− a| < δ(x),

∣∣∣∣
F (x)− F (a)

x− a − f(x)

∣∣∣∣ < ε. (8)

Now choose a partition P so that each term f(xi)(ui−ui−1) satisfies

xi − ui−1 < δ(xi), ui − xi < δ(xi).

The existence of such partitions is a consequence of the Heine-Borel
theorem. For such a partition (8) implies

|(F (xi)− F (ui−1))− f(xi)(x− ui−1)| < ε(xi − ui−1), (9)

|(F (ui)− F (xi))− f(xi)(ui − xi)| < ε(ui − xi); (10)

with corresponding inequalities for x = 0 and x = 1. Writing α =
F (1)− F (0) and R = (P)

∑
f(x)|I|,
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|α−R| =

∣∣∣∣∣
n∑

i=1

(F (ui)− F (xi)) + (F (xi)− F (ui−1)) −

−
n∑

i=1

(f(xi)(xi − ui−1) + f(xi)(ui − xi))
∣∣∣∣∣

≤
n∑

i=1

{|(F (xi)− F (ui−1)− f(xi)(xi − ui−1)| +

+ |(F (ui)− F (xi))− f(xi)(ui − xi)|}

<

n∑

i=1

{ε(xi − ui−1) + ε(ui − xi)}

= ε

n∑

i=1

(xi − ui−1 + ui − xi) = ε.

Thus the Riemann-complete integral of f exists and equals the New-
ton/Leibnitz definite integral F (1)− F (0).

In the case that f is given by (1), while the Newton/Leibnitz and
Riemann-complete integrals exist, it has been asserted above that
the Lesbesgue integral does not exist.6 This assertion remains to be
demonstrated.

The definition of the Lebesgue integral of a function can be ad-
dressed in various equivalent ways, e.g. [18]. For instance, given a
real-valued, measurable function f defined on an arbitrary measur-
able space S, with measure µ defined on the family of measurable
subsets of S, [15] shows how to define the Lebesgue integral of f on
S as a Riemann-Stieltjes integral in R, the set of real numbers. In
fact, writing

g(x) = µ
(
f−1(]−∞, x])

)
,

the Lebesgue integral
∫
S f dµ is the Riemann-Stieltjes integral∫∞

−∞ f dg. If S ⊆ R and µ is Lebesgue measure in R, and if the
Lebesgue integral of f exists, then the Riemann-complete integral of
f exists and the two integrals are equal. Every Lebesgue integrable
function is integrable in the Riemann-complete sense (see [14]).

A key point is that the Lebesgue integral is an absolute integral,
while the Riemann-complete is non-absolute. Writing f+(x) = f(x)

6In that case the Riemann integral of f does not exist either.



64 MULDOWNEY

if f(x) ≥ 0, with f+(x) = 0 otherwise, and f−(x) = f(x) − f+(x),
absolute integrability implies that f is Lebesgue integrable if and
only if both f+ and f− are Lebesgue integrable.7 We use this point
to demonstrate that the function f defined by (1) is not Lebesgue
integrable.

With that in mind, Figure 3 provides an indication of how the
function f defined by (1)

• fails to be Lebesgue integrable, while
• its Riemann-complete integral exists.

In fact Figure 3 shows that, in neighbourhoods of x = 0, the graph
of f oscillates increasingly rapidly, in positive (f+, above the x-axis)
loops and negative (f−, below the x-axis) loops whose amplitude
(or height/depth) increases without limit as x → 0. This creates
the suspicion, or expectation, that the sum of areas of the positive
loops diverges to +∞, while the sum of areas of the negative loops
diverges to −∞.

But if, instead of treating positive and negative loops separately,
we add up their areas in their natural sequence, then positive and
negative areas will tend to cancel each other out, and the resulting
sequence of net values may converge.8 The latter is what happens
in the Riemann sum construction of the Riemann-complete integral
of f .

The following discussion seeks to add substance to these specu-
lations. In any interval, not including zero, but with small values
of x, Figure 1 shows that the contribution from the term 2x sinx−2

to the area under the graph of f is vanishingly small in neighbour-
hoods of x = 0, while the corresponding contribution from the term
2x−1 cosx−2 in f is relatively large. Therefore, disregarding the term
2x sinx−2, the zeros of (1) can, for present purposes, be estimated
approximately as

x =

√
2

(2n+ 1)π
as x→ 0 (or integer n→∞).

7This restriction does not apply to the Riemann-complete integral of f , which
does not require the Riemann-complete integrability of f+ and f−.

8For example, with bi = (−1)ii−1, the series
∑∞

i=1 bi converges, but the series
consisting of only the positive terms (or only negative terms) diverges; so

∑∞
i=1 |bi|

diverges.
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Accordingly we may estimate that, for large, even values of n,

∫ √
2

(2n+1)π

√
2

(2n+3)π

f+(x) dx is approximately
2

π

(
1

2n+ 1
+

1

2n+ 3

)

while for large and odd values of n

∫ √
2

(2n+1)π

√
2

(2n+3)π

f−(x) dx is approximately
2

π

(
1

2n+ 1
+

1

2n+ 3

)
.

Writing

an =
2

π

(
1

2n+ 1
+

1

2n+ 3

)
,

each of the two series

a2 + a4 + a6 + · · · , a1 + a3 + a5 + · · ·
diverges, so it is clear that f is not Lebesgue integrable in [0, 1]. But
it is easy to see that the series

−a1 + a2 − a3 + a4 − · · ·
is non-absolutely convergent, even if we did not already know, from
existence of the primitive function F (x) for 0 ≤ x ≤ 1, that f is
Riemann-complete integrable.

This is because the Riemann-complete convergence is obtained
from the cancellation effects produced by successively summing the
positive and negative parts in their natural sequence.

We can ensure this by choosing δ(x) as follows. When x lies be-

tween adjacent roots
√

2
(2n+1)π and

√
2

(2n+3)π let

δ(x) < min

{
x−

√
2

(2n+ 3)π
,

√
2

(2n+ 1)π
− x
}

;

and if x is one of the roots
√

2
(2n+1)π , take

δ(x) < min

{√
2

(2n+ 1)π
,

√
2

(2n+ 1)π
−
√

2

(2n+ 3)π

}
;

and when x = 0 let δ(0) > 0 be arbitrary. Any partition corre-
sponding to this definition of δ(x) (0 ≤ x ≤ 1) will contain a term
with f(0) = 0, and the terms for non-zero x will each contain an
arbitrarily close estimate of the area of the corresponding positive



66 MULDOWNEY

or negative loop in Figure 3. This provides the required cancellation
and convergence of Riemann sums, since the alternating loops are
monotone decreasing in area as x approaches 0.

In the case of the Lebesgue integral this cancellation effect is ab-
sent, and convergence fails.

This establishes that, just as there are Lebesgue integrable func-
tions that are not Riemann integrable, there are Riemann-complete
integrable functions that are not Lebesgue integrable.

5. Convergence Criteria

Anybody experienced in the theory of integration will be aware
that most of the preceding discussion covers fairly well-worn ground
which has already been worked through in many excellent publica-
tions, such as [2].

But at the outset of this article it was stated that, while Lebesgue’s
dominated convergence theorem is a crucial pillar of modern analy-
sis, there are certain areas of the subject where this theorem is de-
ficient. The sequence {fj} of (2) demonstrates that the dominated
convergence theorem provides no illumination in this particular in-
stance of converging non-absolute integrals. This section addresses
the deficit.

There are convergence conditions and criteria which encompass
and surpass the dominated convergence, monotone and uniform con-
vergence theorems of standard integration theory. These are the
convergence criteria of Theorems 5.1, 5.2, and 5.3 below. They are
valid for Riemann-complete integrals (which include integrals of the
Newton/Leibnitz, Riemann, and Lebesgue kinds). Measurability of
the integrand functions is not assumed.

Theorem 5.1. Suppose fj is integrable on [0, 1] and fj(x) converges
to g(x) for x ∈ [0, 1]. Suppose, given arbitrary ε > 0, there exist
a number α1 and, for x ∈ [0, 1], a gauge δ(x), and integers p =
p(x) depending on ε, so that, for every partition {Ii} of [0, 1] with
linked elements {(xi, Ii)} satisfying |Ii| < δ(xi) (i = 1, . . . , n), the
condition

∣∣∣∣∣α1 −
n∑

i=1

fj(xi)(xi)× |Ii|
∣∣∣∣∣ < ε
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holds for all choices of j = j(xi) > p(xi) (i = 1, . . . , n) in the
Riemann sum. Then the limit function g(x) is integrable on [0, 1],

with
∫ 1

0 g(x) dx = α1.

Theorem 5.2. Suppose fj is integrable on [0, 1] and fj(x) converges
to g(x) for x ∈ [0, 1]. Suppose, given arbitrary ε > 0, there exist a
number α2 and a positive integer q = q(ε) depending only on ε, so
that, for every partition {Ii} of [0, 1] with linked elements {(xi, Ii)}
satisfying |Ii| < δ(xi) (i = 1, . . . , n), the condition

∣∣∣∣∣α2 −
n∑

i=1

fj(xi)× |Ii|
∣∣∣∣∣ < ε

holds for every choice of j > q(ε) with j constant for each term of

the Riemann sum. Then
∫ 1

0 fj(x)dx converges as j →∞.

Theorems 5.1 and 5.2 can be expressed in converse form (see [14]),
so they are criteria for their respective conclusions. Apart from the
opening sentence of each they apply independently of each other; in
the sense that either one of them may hold for particular integrands
while the other one does not hold.

Theorem 5.3. If both of Theorems 5.1 and 5.2 hold (so both of
∫ 1

0 g

and limj→∞
∫ 1

0 fj exist), then
∫ 1

0

g(x) dx = lim
j→∞

∫ 1

0

fj(x) dx

if and only if α1 = α2.

For anybody more familiar with the classical integration theorems
on passage to a limit, these theorems or criteria may appear some-
what indigestible at first sight.

Their starting point is that a convergent sequence of functions fj
is given. These function are assumed to be Riemann-complete in-
tegrable, which is a weaker assumption than Lebesgue integrability.
There is no assumption of properties like continuity or measurability.

To answer questions about convergence of the corresponding se-
quence of Riemann-complete integrals, and about the Riemann-
complete integrability of the limit function, from previous experience
of integration we might be led to expect some condition, not about
Riemann sums, but only about the functions fj—such as monotonic-
ity, domination by a fixed integrable function g; or the like. But
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nothing like this appears in the above convergence criteria. Instead
we have various statements about Riemann sums.

However, setting aside for a moment the conception of integral as
primitive function, or anti-derivative, the original and more durable
meaning of integral involves slicing up (partitioning), followed by
summation, followed by taking a limit of the sums.

From this perspective, it may be less of a surprise that Riemann
sums appear in the formulation of conditions for limits of integrals,
since Riemann sums are central to the concept of integral.

Consider Theorem 5.1. Given integrability of the terms fj in the
sequence, this theorem addresses the integrability of the limit func-
tion f , which, essentially, involves the question of convergence of
Riemann sums

∑
f(x)|I|.

To make an initial stab at this question, we might consider se-
quences of Riemann sums

∑
fj(x)|I|, j = 1, 2, 3, . . .. We know that,

for each x, the sequence of values fj(x) converges to f(x) as j →∞.
We also know that, for each j, Riemann sums of the form

∑
fj(x)|I|

converge to the integral of fj. Can we somehow put these two facts
together to deduce, as an immediate consequence, convergence of
Riemann sums

∑
f(x)|I| to the integral of f?

Of course, we know that the answer to this is no. The answer is
yes if the terms fj satisfy some conditions such as |fj| < g where g
is integrable. But if we want a condition expressed in the form of a
condition on Riemann sums, clearly something more delicate than
convergence of

∑
fj(x)|I| is required.

For instance, with ε > 0 given, the condition we need is not that,
for all j greater than some j0 = j0(ε), every Riemann sum

∑
fj(x)|I|

will be contained within some ball B(ε) of the form ]β − ε, β + ε[.
This is too crude for our purpose. All it says is that fj is integrable—

which we already know. The convergence of fj(x) to f(x) may be
very fast at some points x, and very slow at other points x. This be-
haviour is provided for in Theorem 5.1, by choosing, not j0 = j0(ε),
but j0 = j0(ε, x) different for each x.

This formulation is sufficient, and necessary, for integrability of
the limit function f . Once this point is established, the criteria of
Theorems 5.2 and 5.3 are fairly obvious, and less subtle. But are
these conditions of Theorems 5.1, 5.2 and 5.3 “workable” in the way
that the dominated convergence condition |fj| < g is?
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After all, Riemann sums are fine for defining the meaning of the
integral of a function. But when we actually want to find the value
of an integral we do not typically work with Riemann sums. Instead
we revert to the integral as primitive or anti-derivative, using the
substitution method or integration by parts. Or we use some less
direct method, such as solving a related differential equation; or a
myriad of other9 ad hoc methods.

To respond to such questions, and to demonstrate that Riemann
sums can actually be of use here, we can as an example take the se-
quence fj defined in (2). Remember, for each j the function fj is Rie-
mann integrable and Lebesgue integrable, but not Newton/Leibnitz
integrable, and their limit function f is Newton/Leibnitz integrable
but not Riemann or Lebesgue integrable. For each j, fj is Riemann-
complete integrable.10 This discussion of the convergence criteria of
Theorems 5.1, 5.2 and 5.3 is set in the context of Riemann-complete
integrability.

The subject of the first criterion is the (Riemann-complete) inte-
grability of the limit function f , and it is established by examining
Riemann sums of the form

n∑

i=1

fj(xi)(x)× |Ii|, or
n∑

i=1

fj(xi)(x)(ui − ui−1).

We already know, by various means, including a direct investigation
of the Riemann sums

∑
f(x)|I|, that f(x) is (Riemann-complete)

integrable on [0, 1].
The function f(x) is the limit of functions fj(x). Is it possible to

confirm further the integrability of f by direct examination, not just
of
∑
f(x)|I|, but of Riemann sums

∑
fj(x)(x)|I| involving functions

fj instead of f , where the factor fj in the sum has variable index
j = j(x), depending on the element x of the division D = {(x, I)}
used to construct the Riemann sum?

This is the essence of Theorem 5.1. And according to Theorem
5.1 the answer to this question should be yes. Given ε > 0, and

9Which is not to say that Riemann sums are “merely” a device of fundamental
theory, and nothing else. Versions of them have had other uses; such as the ancient
techniques of quadrature; or computer programs for estimating numerical values
of an integral. Simpson’s rule is another example.

10As is f , from earlier discussion. But for present purposes we wish to deduce
Riemann-complete integrability of f from Theorem 5.1.
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with a suitable gauge δ(x), provided factors fj(x)(x) are chosen ap-
propriately we should be able to demonstrate that the value of each
corresponding Riemann sum

∑
fj(x)(x)|I| will lie within some ball

B of radius ε where ε is arbitrarily small.
Since we are already convinced of the integrability of f in this

case, what we are really trying to do here is to get a sense of the
behaviour of sums

∑
fj(x)(x)|I|. So, given the integrability of f ,

write α1 =
∫
]0,1] f(x)dx and choose a gauge δ so that, for every

δ-fine partition {(xi, Ii)} of ]0, 1],
∣∣∣∣∣α1 −

n∑

i=1

f(xi)|Ii|
∣∣∣∣∣ < ε, or

n∑

i=1

f(xi)|Ii| ∈ B(α1, ε),

the ball with centre α1 and radius ε.
Consider any one of these Riemann sums

∑n
i=1 f(xi)|Ii|, corre-

sponding to a particular δ-fine partition with {(xi, Ii) : i =
1, . . . , n}. For each x choose

r(x) ≥ 1

x
, so r(xi) ≥

1

xi
for each i.

Then, by definition of fj, if j = j(x) ≥ r(x),

fj(x) = fj(x)(x) = f(x),

so, for all choices j(xi) ≥ r(xi) = r(xi, ε),
n∑

i=1

fj(xi)(xi)|Ii| =
n∑

i=1

f(xi)|Ii| ∈ B(α1, ε),

as required by Theorem 5.1.
In general, the convenient equation fj(x) = fj(x)(x) = f(x) can-

not be appealed to. But if, with suitable choices of j = j(x), the
differences

fj(x)− f(x) = fj(x)(x)− f(x),

can make sufficiently small contributions to the Riemann sum, then
it may be plausible that

n∑

i=1

fj(x)(xi)|Ii| ∈ B′(ε) implies
n∑

i=1

f(xi)|Ii| ∈ B′′(ε)

so f is integrable. This is the intuitive content of Theorem 5.1.
Now to Theorem 5.2. The preceding remarks are concerned with

the integrability of limj→∞ fj. The fundamental assumption is that
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each function fj in the sequence {fj} is integrable. In the case of our
example (2) the anti-derivatives (4) are the sequence {Fj}, giving a
sequence of integrals

∫

]0,1]

fj(x)dx = Fj(1)− Fj(j−1) = sin 1− Fj(j−1),

which can be denoted by βj. Note that continuity of F implies
βj → 0 as j →∞. In this case it is already clear that the sequence
of integrals

∫
]0,1] fj(x)dx converges as j → ∞, the limit being (in

this case) sin 1; what we want is confirmation, including intuitive
confirmation, that Theorem 5.2 actually works.

The convergence of a sequence of integrals is the subject of The-
orem 5.2, and it is again expressed in terms of Riemann sums. The
criterion implies that, with arbitrarily small ε > 0 given, there is
a ball B(α2, ε) with centre α2 and radius ε, and a corresponding
integer q depending only on ε, so that for each j ≥ q = q(ε), a
gauge δj(x) > 0 can be found such that for every δj-fine partition
of [0, 1] the corresponding Riemann sum

∑n
i=1 fj(xi)|Ii| is contained

in B(α2, ε); so for every δj-fine {(xi, Ii)},
∣∣∣∣∣α2 −

n∑

i=1

fj(xi)|Ii|
∣∣∣∣∣ < ε

whenever j ≥ q. Unlike Theorem 5.1, here j is the same for each
term of any particular Riemann sum.

Again, this is easy to demonstrate since we already know in this
case that the integrals

∫
]0,1] fj(x)dx converge to the value sin 1 as

j →∞. Just take

α2 = sin 1 = lim
j→∞

g(1)− g(j−1) =

∫

]0,1]

fj(x)dx,

and choose q so that j ≥ q implies
∣∣∣∣α2 −

∫

]0,1]

fj(x)dx

∣∣∣∣ < ε.

For each j ≥ q choose a gauge δj(x) (0 ≤ x ≤ 1) so that, for any
δj-fine partition {(xi, Ii)} of ]0, 1],

∣∣∣∣∣

∫

]0,1]

fj(x)dx−
n∑

i=1

fj(xi)|Ii|
∣∣∣∣∣ < ε.
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Then, by the triangle inequality,∣∣∣∣∣α2 −
n∑

i=1

fj(xi)|Ii|
∣∣∣∣∣ < 2ε, or

n∑

i=1

fj(xi)|Ii| ∈ B(α2, 2ε)

for all j ≥ q = q(ε) and all δj-fine partitions of ]0, 1]. In other
words, the criterion of Theorem 5.2 confirms the convergence of the
sequence of integrals {∫

]0,1]

fj(x)dx

}
;

and this demonstration illustrates the intuitive content of Theorem
5.2.

Finally, the question arises whether the integral of the limit∫

]0,1]

lim
j→∞

fj(x)dx

equals the limit of the integrals

lim
j→∞

∫

]0,1]

fj(x)dx.

For the sequence fj of (2), we already know by direct evaluation
that these two quantities have the same value, namely sin 1. This
agrees with the criterion of Theorem 5.3, which requires that α1 and
α2 have the same value. In this case

α1 = sin 1 = α2;

so the intuitive content of Theorem 5.3 is clear in the context of this
example.

6. Conclusion

So, does it really matter whether aviation designers work out their
aerodynamic equations using old-fashioned Riemann integrals or the
latest fancy Lebesgue integrals?

Probably not much. But it matters a lot if the value 22/7 for
π were hard-wired into every computer in the world. Or if the
wrong value for elasticity of O-rings at freezing temperature was
used in space shuttle design. And it certainly matters whether our
aviation designers make tricky, unjustifiable calculations involving,
for instance, term-by-term integration of Fourier series.

It is thanks to the intellectual diligence of the nineteenth century,
not to mention its monster-functions, that we have the dominated
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convergence theorem to keep the garden of mathematics safe and
fertile—and, indeed, to keep airplanes flying safely.

But do we really need anything more than the dominated conver-
gence theorem for absolutely convergent integrals? Why bring up
the convergence criteria of Theorems 5.1, 5.2, and 5.3? Is the se-
quence {fj} described in (2) above just an exceptional one-off, or is
it representative of something more significant? If the latter, where
are all these non-absolute integrals?

In fact they are very widespread. Modern stochastic calculus [16,
17] is based on integrals for which absolute convergence fails, but
which may converge weakly or, in some cases, non-absolutely. These
are described in [14, 15].

A very significant formulation of quantum mechanics is in terms of
path integrals [3] which also fail to converge absolutely. Famously,
the dominated convergence theorem does not work for these inte-
grals, and, as described in [14], the non-absolute convergence criteria
must be invoked.

“Does anyone believe ... I would not care to fly in that plane.” A
healthy scepticism must be welcomed. But what is certain is that,
while integration is central to mathematical analysis, there are no
certain and definite ways of tackling any problem of integration,
and even a beginning student has to exercise imagination and in-
genuity. From the ancient methods of quadrature, to the methods
of Newton/Leibnitz, Cauchy, Riemann, Lebesgue, Denjoy, Perron,
Kolmogorov, Kurzweil, or Henstock, it is unwise to disregard any
resource or insight that can be called upon.
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Composition operators between weighted Bergman
spaces and weighted Banach spaces of holomorphic

functions

ELKE WOLF

Abstract. An analytic self-map φ of the open unit disk D in
the complex plane induces the so-called composition operator Cφ :
H(D) → H(D), f 7→ f ◦ φ, where H(D) denotes the set of all
analytic functions on D. Motivated by [5] we analyze under which
conditions on the weight v all composition operators Cφ acting be-
tween the weighted Bergman space and the weighted Banach space
of holomorphic functions both generated by v are bounded.

1. Introduction

Let D denote the open unit disk in the complex plane C and H(D)
the space of all analytic functions on D endowed with the compact-
open topology co. Moreover, let φ be an analytic self-map of D.
Such a map induces through composition the classical composition
operator

Cφ : H(D)→ H(D), f 7→ f ◦ φ.
Composition operators acting on various spaces of analytic functions
have been studied by many authors, since this kind of operator ap-
pears naturally in a variety of problems, such as e.g. in the study
of commutants of multiplication operators or the study of dynami-
cal systems, see the excellent monographs [8] and [17]. For a deep
insight in the recent research on (weighted) composition operators
we refer the reader to the following papers as well as the references
therein: [4], [5], [6], [7], [11], [13], [14], [15], [16].
Let us now explain the setting in which we are interested. We say
that a function v : D → (0,∞) is a weight if it is bounded and
continuous. For a weight v we consider the following spaces:
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(1) The weighted Banach spaces of holomorphic functions defined
by

H∞v := {f ∈ H(D); ‖f‖v := sup
z∈D

v(z)|f(z)| <∞}.

Endowed with the weighted sup-norm ‖.‖v this is a Banach
space. These spaces arise naturally in several problems re-
lated to e.g. complex analysis, spectral theory, Fourier anal-
ysis, partial differential and convolution equations. Concrete
examples may be found in [3]. Weighted Banach spaces of
holomorphic functions have been studied deeply in [2] and
also in [1].

(2) The weighted Bergman spaces given by

A2
v :=

{
f ∈ H(D); ‖f‖v,2 :=

(∫

D
|f(z)|2v(z) dA(z)

) 1
2

<∞
}
,

where dA(z) is the normalized area measure such that area
of D is 1. Endowed with norm ‖.‖v,2 this is a Hilbert space.
An introduction to Bergman spaces is given in [10] and [9].

In [19] we characterized the boundedness of composition opera-
tors acting beween weighted Bergman spaces and weighted Banach
spaces of holomorphic functions in terms of the involved weights as
well as the symbols. In this article we are interested in the question,
for which weights v all composition operators Cφ : A2

v → H∞v are
bounded.

2. Background and basics

2.1. Theory of weights. In this part of the article we want to
give some background information on the involved weights. A very
important role play the so-called radial weights, i.e. weights which
satisfy v(z) = v(|z|) for every z ∈ D. If additionally lim|z|→1 v(z) = 0
holds, we refer to them as typical weights. Examples include all the
famous and popular weights, such as

(a) the standard weights v(z) = (1− |z|)α, α ≥ 1,
(b) the logarithmic weights v(z) = (1− log(1− |z|))β, β > 0,

(c) the exponential weights v(z) = e−
1

(1−|z|)α , α ≥ 1.
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In [12] Lusky studied typical weights satisfying the following two
conditions

(L1) inf
n∈N

v(1− 2−n−1)

v(1− 2−n)
> 0

and

(L2) lim sup
n→∞

v(1− 2−n−j)

v(1− 2−n)
< 1 for some j ∈ N.

In fact, weights having (L1) and (L2) are normal weights in the
sense of Shields and Williams, see [18]. The standard weights are
normal weights, the logarithmic weights satisfy (L1), but not (L2)
and the exponential weights satisfy neither (L1) nor (L2). In our
context (L2) is not of interest, while (L1) will play a secondary role.
The formulation of results on weighted spaces often requires the so-
called associated weights. For a weight v its associated weight is
given by

ṽ(z) :=
1

sup{|f(z)|; f ∈ H(D), ‖f‖v ≤ 1} , z ∈ D.

See e.g. [2] and the references therein. Associated weights are con-
tinuous, ṽ ≥ v > 0 and for every z ∈ D there is fz ∈ H(D) with
‖fz‖v ≤ 1 such that fz(z) = 1

ṽ(z) . Since it is quite difficult to really

calculate the associated weight we are interested in simple condi-
tions on the weight that ensure that v and ṽ are equivalent weights,
i.e. there is a constant C > 0 such that

v(z) ≤ ṽ(z) ≤ Cv(z) for every z ∈ D.

If v and ṽ are equivalent, we say that v is an essential weight. By
[5] condition (L1) implies the essentiality of v.

2.2. Setting. This section is devoted to the description of the set-
ting we are working in. In the sequel we will consider weighted
Bergman spaces generated by the following class of weights. Let ν
be a holomorphic function on D that does not vanish and is decreas-
ing as well as strictly positive on [0, 1). Moreover, we assume that
limr→1 ν(r) = 0. Now, we define the weight as follows:

v(z) := ν(|z|) for every z ∈ D. (1)

Obviously such weights are bounded, i.e. for every weight v of this
type we can find a constant C > 0 such that supz∈D v(z) ≤ C.
Moreover, we assume additionally that |ν(z)| ≥ ν(|z|) for every
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z ∈ D.
Now, we can write the weight v in the following way

v(z) = min{|g(λz)|, |λ| = 1},

where g is a holomorphic function on D. Since ν is a holomorphic
function, we obviously can choose g = ν. Then we arrive at

min{|ν(λz)|, |λ| = 1} = min{|ν(λreiΘ)|, |λ| = 1}
≤ |ν(e−iΘreiΘ)| = |ν(r)| = |ν(|z|)| = v(z)

for every z ∈ D. Conversely, by hypothesis, for every λ ∈ ∂D we
obtain for every z ∈ D

|ν(λz)| ≥ ν(|λz)|) ≥ ν(|z|) = v(z).

Thus, the claim follows. The standard, logarithmic and exponential
weights can all be defined like that.

2.3. Composition operators between weighted Bergman
spaces and weighted Banach spaces of holomorphic func-
tions. In the setting of weighted Banach spaces of holomorphic
functions the classical composition operator has been studied by
Bonet, Domański, Lindström and Taskinen in [4] and [5]. Among
other things they proved that in case that v and w are arbitrary
weights the boundedness of the operator Cφ : H∞v → H∞w is equiva-
lent to

sup
z∈D

w(z)

ṽ(φ(z))
<∞.

Moreover, they showed that v satisfies condition (L1) if and only if
every composition operator Cφ : H∞v → H∞v is bounded.

This was the motivation to study the boundedness composition
operators acting between weighted Bergman spaces and weighted
Banach spaces of holomorphic functions. Doing this we obtain the
following results which we need in the sequel. For the sake of un-
derstanding and completeness we give the proof here.

For p ∈ D let

αp(z) :=
p− z
1− pz , z ∈ D,

be the Möbius transformation that interchanges p and 0.

RE
TR
AC
TE
D

D
UE

TO

SE
LF
-P
LA
G
IA
RI
SM



Composition operators 79

Lemma 2.1 ([20], Lemma 1). Let v(z) = ν(|z|) for every z ∈ D
with ν ∈ H(D) be a weight as defined in Section 2.2. Then there is
a constant M > 0 such that

|f(z)| ≤M
‖f‖v,2

(1− |z|2)v(z)
1
2

for every f ∈ A2
v.

Proof. As we have seen in Section 2.2 a weight as defined above may
be written as

v(z) := min {|g(λz)|; |λ| = 1} for every z ∈ D,

where g is a holomorphic function on D. In the sequel we will write
gλ(z) := g(λz) for every z ∈ D. Now, fix λ ∈ C with |λ| = 1.
Moreover, let p ∈ D be arbitrary. Then, we consider the map

Tp,λ : A2
v → A2

v, Tp,λf(z) = f(αp(z))α′p(z)gλ(αp(z))
1
2 .

Let f ∈ A2
v. Then a change of variables yields

‖Tp,λf‖2
v,2 =

∫

D
v(z)|f(αp(z))|2|α′p(z)|2|gλ(αp(z))| dA(z)

≤
∫

D
v(z)|f(αp(z))|2|α′p(z)|2|v(αp(z))| dA(z)

≤ sup
z∈D

v(z)

∫

D
|f(αp(z))|2|α′p(z)|2|v(αp(z))| dA(z)

≤ C

∫

D
v(t)|f(t)|2 dA(t) = C‖f‖2

v,2.

Next, put hp,λ(z) := Tp,λf(z) for every z ∈ D. By the Mean Value
Property we obtain

v(0)|hp,λ(0)|2 ≤
∫

D
v(z)|hp,λ(z)|2 dA(z) ≤ ‖hp,λ‖2

v,2 ≤ C‖f‖2
v,2.

Since λ was arbitrary, we obtain

v(0)|f(p)|2(1− |p|2)v(p)
1
2 ≤ C‖f‖2

v,2.

Finally,

|f(p)| ≤M
‖f‖v,2

(1− |p|2)v(p)
1
2

<∞.

�
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The following result is obtained by using the previous lemma and
following exactly the proof of [19] Theorem 2.2. Again, for a better
understanding we give the proof.

Theorem 2.2. Let v(z) = ν(|z|) for every z ∈ D with ν ∈ H(D) be
a weight as defined in Section 2.2. Then the operator Cφ : A2

v → H∞v
is bounded if and only if

sup
z∈D

v(z)

(1− |φ(z)|2)v(φ(z))
1
2

<∞. (2)

Proof. First, we assume that (2) holds. Applying Lemma 2.1 for
every f ∈ A2

v we have

|f(z)| ≤ C
‖f‖v,2

(1− |z|2)v(z)
1
2

for every z ∈ D. Thus, for every f ∈ A2
v:

‖Cφf‖v = sup
z∈D

v(z)|f(φ(z))| ≤ C sup
z∈D

v(z)‖f‖v,2
(1− |φ(z)|2)v(φ(z))

1
2

<∞.

Hence the operator must be bounded.
Conversely, let p ∈ D be fixed. Then there is f 2

p ∈ H∞v , ‖f 2
p‖v ≤ 1

with |f 2
p (p)| = 1

ṽ(p) . Now, put

gp(z) := fp(z)α′p(z) for every z ∈ D.

Changing variables we obtain

‖gp‖2
v,2 =

∫

D
|gp(z)|2v(z) dA(z) =

∫

D
|fp(z)|2|α′p(z)|2v(z) dA(z)

≤ sup
z∈D

v(z)|fp(z)|2
∫

D
|α′p(z)|2 dA(z) = 1

Next, we assume to the contrary that there is a sequence (zn)n ⊂ D
such that |φ(zn)| → 1 and

v(zn)

(1− |φ(zn)|2)v(φ(zn))
1
2

≥ n for every n ∈ N.

Now, we consider

gn(z) := gφ(zn)(z) for every z ∈ D and every n ∈ N

RE
TR
AC
TE
D

D
UE

TO

SE
LF
-P
LA
G
IA
RI
SM



Composition operators 81

as defined above. Then (gn)n is contained in the closed unit ball of
A2
v and we can find a constant c > 0 such that

c ≥ v(zn)|gn(φ(zn))| =
v(zn)

(1− |φ(zn)|2)v(φ(zn))
1
2

≥ n

for every n ∈ N. Since we know that under the given assumptions
we have v = ṽ this is a contradiction. �

Having now characterized the boundedness of the composition op-
erator acting between A2

v andH∞v we take the second result of Bonet,
Domański, Lindström and Taskinen as a motivation to ask the ques-
tion: For which weights v are all operators Cφ : A2

v → H∞v bounded?

3. Results

Lemma 3.1. Let v(z) = ν(|z|) for every z ∈ D with ν ∈ H(D) be a

weight as defined in Section 2.2. Moreover, let supz∈D
v(z)

1
2

1−|z|2 <∞ and

Cαp : A2
v → H∞v be bounded for every p ∈ D. Then all composition

operators Cφ : A2
v → H∞v are bounded.

Proof. Let φ : D → D be an arbitrary analytic function. We have
to show that Cφ : A2

v → H∞v is bounded. Now, φ = αp ◦ ψ where
p = φ(0), ψ = αp ◦ φ and ψ(0) = 0. Since ψ(0) = 0, by the Schwarz
Lemma we obtain that |ψ(z)| ≤ |z|. Hence we get

sup
z∈D

v(z)

(1− |ψ(z)|2)v(ψ(z))
1
2

≤ sup
z∈D

v(z)

(1− |z|2)v(z)
1
2

= sup
z∈D

v(z)
1
2

(1− |z|2)
< ∞. Thus, Cψ is bounded. Finally, we can conclude that Cφ is
bounded since it is a composition of bounded operators. �

The proof of the following theorem is inspired by [5].

Theorem 3.2. Let v(z) = ν(|z|) for every z ∈ D with ν ∈ H(D) be

a weight as defined in Section 2.2. Moreover, let supz∈D
v(z)

1
2

1−|z|2 <∞.

Then the composition operator Cφ : A2
v → H∞v is bounded for every

analytic self-map φ of D if and only if

inf
n∈N

(2−n − 2−2n−2)v(1− 2−n−1)
1
2

v(1− 2−n)
> 0. (3)

Proof. By Lemma 3.1 we have to show that condition (3) holds if
and only if Cαp : A2

v → H∞v is bounded for every p ∈ D.
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First, let each Cαp : A2
v → H∞v be bounded. Then we have that for

every p ∈ D there is Mp > 0 such that

v(z) ≤Mpv(αp(z))
1
2 (1− |αp(z)|2) for every z ∈ D.

Since sup|z|=r |αp(z)| = |p|+r
1+|p|r it follows that

v(z) ≤ Mpv
(
|p|+r
1+|p|r

) 1
2

(
1−

(
|p|+r
1+|p|r

)2
)

for all |z| = r. Let l(r) =

v(1 − r) 1
2 (1 − (1 − r)2) and s = 1 − r. Now, since 1 − |p|+1−s

1+|p|(1−s) =
s(1−|p|)

1+|p|−|p|s , for s < 1
2 we obtain

l

(
s

1− |p|
1 + |p|

)
≤ l

(
1− |p|+ 1− s

1 + |p|(1− s)

)
≤ l

(
s

1− |p|
1− |p|2

)
(4)

Next, choose p = 2
5 and find M > 0 and s0 > 0 such that

v(1−s) ≤Ml
(s

2

)
= Mv

(
1− s

2

) 1
2

(
1−

(
1− s

2

)2
)

for all s ∈]0, s0[.

Hence the claim follows.

Conversely we assume that (3) holds. Then l as defined above has
the property that there are M > 0 and t0 ∈]0, 1[ with

v(1− t) ≤Ml

(
t

2

)
for all t ≥ t0.

Hence, for any c < ∞ we find n ∈ N such that c < 2n and thus

l(t) ≤ Mnl
(
t
c

)
. We take c = 1+|p|

1−|p| . By the first inequality in (4) for

all p ∈ D there is Mp > 0 such that

v(1− t) ≤Mpl

(
1− |p|+ 1− t

1 + |p|(1− t)

)

for all t > t0. Clearly this implies that for all p ∈ D there existsMp >

0 such that for every |z| = r we have that v(z) < Mpv(αp(z))
1
2 (1−

|αp(z)|2). �

Example 3.3. (a) Let v(z) = (1 − |z|)n, n ≥ 2. Then all com-
position operators Cφ : A2

v → H∞v are bounded. To prove
this we have to show that the weight v satisfies the following
conditions

(1) supz∈D
v(z)

1
2

1−|z|2 <∞,
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(2) infk∈N
(2−k−2−2k−2)v(1−2−k−1)

1
2

v(1−2−k)
> 0.

Indeed,

sup
z∈D

v(z)
1
2

1− |z|2 = sup
z∈D

(1− |z|)n2
(1− |z|)(1 + |z|) = sup

z∈D

(1− |z|)n−22

(1 + |z|)
≤ sup

z∈D
(1− |z|)n−22 <∞ since n ≥ 2. Moreover,

inf
k∈N

(2−k − 2−2k−2)v(1− 2−k−1)
1
2

v(1− 2−k)
= inf

k∈N
(2−k − 2−2k−2)2

1
2 (kn−n)

= inf
k∈N

2−
n
2 (2k(n2−1) − 2k(−2+n

2 )−2)

> 0 for every n.

(b) The weight v(z) = 1 − |z| satisfies neither (1) nor (2). We
obtain

sup
z∈D

v(z)
1
2

1− |z|2 = sup
z∈D

1

(1− |z|) 1
2 (1 + |z|)

≥ 1

2
sup
z∈D

1

(1− |z|) 1
2

=∞.

Furthermore easy calculations show

inf
k∈N

(2−k − 2−2k−2)v(1− 2−k−1)
1
2

v(1− 2−k)
= inf

k∈N
(2−k − 2−2k−2)2

1
2 (k−1)

=
1√
2

inf
k∈N

(2−
k
2 − 2

−3
2 k−2) = 0.

Hence, in this case there exists a composition operator Cφ :
A2
v → H∞v that is not bounded. For example, the operator

Cφ generated by the map φ(z) = z for every z ∈ D is not
bounded, since

sup
z∈D

v(z)

(1− |φ(z)|2)v(φ(z))
1
2

= sup
z∈D

1

(1 + |z|)(1− |z|) 1
2

=∞.

(c) The exponential weights v(z) = e−
1

(1−|z|)n , n > 0, satisfy con-
dition (1), but not condition (2). First, we get

sup
z∈D

v(z)
1
2

1− |z|2 = sup
z∈D

e−
1

2(1−|z|)n

1− |z| <∞.

It follows, that (1) is fulfilled. Now,

inf
k∈N

(2−k − 2−2k−2)v(1− 2−k−1)
1
2

v(1− 2−k)
= inf

k∈N
(2−k − 2−2k−2)

e−2kn

e−2kn
= 0.
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Thus, (2) is not satisfied. There must be a composition op-
erator Cφ : A2

v → H∞v that is not bounded.
(d) The logarithmic weights v(z) = 1

(1−log(1−|z|))n , n > 0, neither

satisfy (1) nor (2). Indeed,

sup
z∈D

v(z)
1
2

1− |z|2 = sup
z∈D

1

(1− |z|2)(1− log(1− |z|))n2 =∞

and

inf
k∈N

(2−k − 2−2k−2)v(1− 2−k−1)
1
2

v(1− 2−k)
= inf

k∈N
(2−k−2−2k−2)

(1− log 2−k)n

(1− log 2−k−1)
n
2

= 0. With the criteria above we cannot decide, whether all
composition operators Cφ : A2

v → H∞v are bounded or not.
But, again selecting φ(z) = z we see that

sup
z∈D

v(z)

(1− |φ(z)|2)v(φ(z))
1
2

= sup
z∈D

1

(1− |z|2)(1− log(1− |z|)) 1
2

=∞.

Hence the corresponding composition operator is not bounded.

References

[1] K.D. Bierstedt, J. Bonet, A. Galbis: Weighted spaces of holomorphic func-
tions on balanced domains, Michigan Math. J. 40, no. 2, (1993), 271-297.

[2] K.D. Bierstedt, J. Bonet, J. Taskinen: Associated weights and spaces of holo-
morphic functions, Studia Math. 127, no. 2, (1998), 137-168.

[3] K. D. Bierstedt, R. Meise, W.H. Summers: A projective description of
weighted inductive limits, Trans. Am. Math. Soc. 272, no. 1, (1982), 107-
160.
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REVIEWED BY PETER LYNCH

Is mathematics discovered or created? The Platonic view is that
mathematical ideas such as numbers and geometric forms have an
a priori existence independent of humanity and gradually come to
light as they are discovered through research and investigation. The
contrary view is that mathematics is a creation of the human in-
tellect. The question has been debated for centuries. The author
of this book, Klaus Truemper, addresses this question and comes
to a definite conclusion, strongly in favour of mathematics as a hu-
man creation, justifying the subtitle of his book, The Human Mind’s
Greatest Achievement.

Mathematics has emerged over thousands of years, in several civ-
ilizations. The first part of the book (Chapters 2 to 7) traces the
development of the struggle for insight. Where do mathematical
ideas come from? Are they somehow already present in the physi-
cal world, hidden and awaiting discovery by inquisitive minds? Or
are they the products of human ingenuity? The second half of the
book investigates this question from several perspectives, reaching
a definite, although hardly definitive, conclusion.

Following the Introduction, Chapter 2 traces the development of
numbers from the natural or counting numbers through rational to
real and complex numbers. What is the origin of all these numbers?
The general thrust is that each successive layer is a result of cre-
ation. The question then occurs to this reviewer: if we start with
the natural numbers and the additional numbers already exist in
some realm awaiting discovery, there seems to be only one way for-
ward. But if we are free to create at will, is there not a multitude of
possible extensions, not trivially equivalent and all internally consis-
tent? Are there such alternative number systems, and is it perhaps

Received on 8-4-2017; revised 28-4-2017.
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that the standard number system is the one most suited to physical
applications? This is not considered in any depth in the book.

Chapter 3 discusses mathematical notation. It is beyond doubt
that well-chosen notation can facilitate advances while badly-chosen
symbols can severely inhibit it. Truemper discusses the contrast
between Newton’s awkward fluents and fluxions and Leibniz’s ele-
gant notation. The former certainly held up progress in analysis in
Britain for more than a century. In Chapter 4 (Infinity) Truemper
shows how the application of mathematical arguments in physical
contexts can produce nonsensical results. One example is Torricelli’s
Trumpet, which has finite volume but infinite surface area. Indeed,
infinity frequently leads to paradoxical results when we try to apply
it to physical systems. The Banach-Tarski Theorem is a particularly
sharp example.

In Chapter 5, some classical problems (squaring the circle, etc.)
are considered. The key argument here is that all these problems,
outstanding for 2000 years, were resolved in the nineteenth century
only when mathematics broke free from the natural world. Truem-
per writes (pg. 77): “mathematics is different from nature, does not
need nature and should not be confused with nature.”

Chapter 6 examines the role of proof in mathematics from Baby-
lon and Ancient Greece to modern times, when Hilbert’s dream of a
rock-solid foundation for mathematics was shattered by Gödel’s In-
completeness Theorems. The Zermelo-Fraenkel Axioms (ZF), with
or without the Axiom of Choice and Continuum Hypothesis, form
the basis of most mathematics today. Modern researchers have no
real choice but to accept the potential inconsistency of these founda-
tions, hoping — indeed expecting — that if an inconsistency is ever
found it will be remedied by suitable modification of the underlying
axioms.

The proof by Paul Cohen that the Axiom of Choice may be added
to ZF without affecting (in)consistency shows how more than one
mathematical system is possible. So, if we consider a single physical
universe, at most one of these systems can describe it, implying
that the other systems somehow have an existence independent of
the physical world.

A chapter on computing machines is interesting but seems inessen-
tial to the dominant theme of the book. Still, I cannot resist the
temptation to quote Leibniz, inventor of the binary system and of
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some mechanical calculators: It is beneath the dignity of excellent
men to waste their time on calculations when any peasant could do
the work just as accurately with the aid of a machine (perhaps math-
ematicians should avoid quoting this to their colleagues in computer
science).

Chapter 8 opens the second part of the book asking in its title
“Is Mathematics Created or Discovered?” Mathematical platonism
posits that all of mathematics resides in a realm of abstract objects
that is separate from the sensible world. This implies that math-
ematical truths are discovered, not invented. From 1800 onwards
many mathematicians departed from this view, starting with Gauss
who wrote that “number is purely a product of our mind”. Kro-
necker’s famous dictum is that “God made the integers; all else is
the work of man”. Yet, many twentieth century mathematicians
supported the view that mathematical results are discovered.

The concept of “language games”, devised by Ludwig Wittgen-
stein, is introduced in Chapter 9. It is argued that the technique
can resolve many thorny philosophical problems. A language game
is “a controlled setting of language use that brings a particular facet
of a given philosophical problem into focus” and provides insight into
the problem. To apply this technique many examples are required
and these are drawn from the earlier chapters. In each instance,
it is assumed that mathematics is discovered. Then contradictions
arising during the course of the game indicate that this assumption
must be abandoned.

Chapter 10 looks at several stages in the historical emergence of
mathematics, using the language games framework. Before the con-
cept of numbers, came one-one correspondences or bijections, for
example between pebbles and sheep or fingers of the hand and chil-
dren. Soon names were made up for groups of pebbles or fingers,
leading to the counting numbers. All this could be regarded as cre-
ative. More species of numbers negatives, fractions, square roots
followed as the need for them arose. Again, all could be described
as invention rather than discovery. Other areas considered include
logarithms, calculus, function theory, Lebesgue integration and the
hierarchy of infinities. In each case, the assumption of discovery
leads the author to bizarre and untenable consequences.

Analogies between mathematics and art are considered. Truem-
per gives a strange argument constructing a mathematical function
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that precisely specifies Michaelangelo’s David: the function is de-
fined in 3-dimensional Cartesian space and takes the value 1 for
points within the statue and 0 for points outside. He then argues
that, if the function existed before the statue was made, Michaelan-
gelo must have discovered rather than created David. But the same
argument holds if we replace David (created) by Mount Everest (dis-
covered). I did not find this example illuminating. A comparison
of the development of music and mathematics is more enlighten-
ing. Musical compositions are universally held to be creations, not
discoveries. Why then should mathematical results be regarded as
discoveries?

Truemper next addresses the proposition “Mathematical concepts
are created, whereas the consequences provable from these concepts
are discovered”. I might paraphrase this: “Definitions are created,
theorems/proofs are discovered”. By analogies with sculpture, music
and literature, the author shows that such a proposition leads to
unreasonable conclusions. But I cannot easily accept such analogies
as valid, or as vitiating the proposition. Indeed, this idea (definitions
created, theorems discovered) has arguments and evidence in its
favour (See “Invention or Discovery?” at https://thatsmaths.

com).
The “unreasonable effectiveness” of mathematics in the physical

sciences is examined in Chapter 11. This concept is often advanced
in support of the idea that mathematics is discovered. Evidence is
amassed in the book that, contrary to a widespread view, mathe-
matics is actually quite ineffective in providing solutions to many
problems in the modern world. There is selection bias: failed math-
ematical models tend to be ignored in favour of successful ones.

There are many natural processes for which we have not been
able to construct useful mathematical models. Truemper considers
these as evidence of the “reasonable ineffectiveness” of mathematics.
However, our inability to solve the non-linear Navier-Stokes equa-
tions in closed form does not diminish the remarkable power of these
equations to describe accurately a huge range of fluid phenomena.
Truemper then compares the limitations of weather forecasting and
economic prediction. This is to miss a crucial distinction: there are
no Navier-Stokes equations for the economy!

Mathematics appears to be essential to civilization and is often
considered to be an inherent part of nature. However, this view is
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disputed in Chapter 12, which gives the absence of any mathematics
in an Amazonian tribe as an agument against the discovery of math-
ematics. I found this unconvincing and feel that the entire chapter
is irrelevant and superfluous. In the last substantive chapter, recent
advances in brain science are used to account for divergent opinions
amongst experts concerning creation/discovery. In the past, Gauss
and Cantor argued for creation, while Frege and Gödel supported
discovery. It is claimed that differences arise from “embodiment
of different learning experiences”. Modern neuroscience is hardly
needed to see that scholars with different backgrounds, knowledge
and experience may reach different conclusions, and appeal to re-
cent research does not really provide any additional insight into the
creation/discovery dilemma. As with the previous chapter, I feel
that this one could have been omitted without loss.

Braoadly speaking, mathematics involves the study of quantity
(number), structure (algebra), space (geometry) and change (anal-
ysis). This book concentrates mostly on the first and last cate-
gories. The concept of symmetry is not mentioned. It would be
interesting to examine the concept of symmetry in the context of
creation/discovery.

The main text of the book covers 207 pages and is supplemented
by 67 pages of endnotes containing much fascinating background
material. A good bibliography follows this.

In summary, I found the book well-written with generally clear
and convincing arguments (despite the counterexamples mentioned
above). If there is a general criticism it is that the author has tried
too hard to support his main conclusion, giving more weight to argu-
ments supporting it and less to those that might refute it. Notwith-
standing this, the book is an interesting, enjoyable and thought-
provoking read. Of course, it cannot provide the final word on the
central question, which I feel has the characteristics of a Gödelian
problem, irresolvable with our current tools of thought.
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This book will appeal to undergraduate and graduate students,
and researchers in the area of applications of singular perturbations
in various fields such as chemical kinetics, combustion, control the-
ory and nonlinear dynamics. It combines analytic singular pertur-
bation methods with the geometric approach based on analysis on
integral manifolds. The authors are known experts in this field. The
reduction to a low dimensional slow integral manifold underpins the
order reduction technique presented in the book.

The book is specially constructed to allow a non-expert to read it
from beginning to end. In particular, it could serve as the basis for
an excellent graduate course on singular perturbations. It begins
very simply and is self-contained to such an extent that it is accessi-
ble to upper class undergraduate student in mathematics or physics.
New topics are introduced by a smooth transition from previous top-
ics. The presentation proceeds by dealing with progressively more
difficult problems, where the theory and the solution techniques are
laid out. These techniques are illustrated with a large number of
examples drawn from widely diverse areas including reaction kinet-
ics of organometallic compounds, combustion problems, population
models, control of gyroscopic and robotic systems, and laser dy-
namics. The examples are completely worked out and become more
sophisticated and challenging as the text moves on, until finally they
are at the research level where many of the details of calculations in
published papers are given. In the earlier chapters there are many
simpler examples enabling the reader to get a good grasp of under-
lying ideas. This exposition style is comparable to that of another
major book in the subject area by P. Kokotovic, H. K. Khalil and
J. O’Reilly [1].
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In each chapter, the basics are introduced, some theory is pre-
sented in a relatively simple way, and then there are examples show-
ing how to apply the method.

Chapters 1 and 2 present an introduction to perturbation methods
and integral manifolds.

Chapter 3 gives an overview of examples of increasing complexity
with up to two slow variables and up to two fast variables.

Chapter 4 presents a method of finding integral manifolds in para-
metric and implicit form.

Chapter 5 lays out a technique of scaling transformations and
gauge functions, which regularizes singular singularly perturbed prob-
lems in order to approximate integral manifolds.

In Chapter 6, the techniques developed so far are applied to order
reduction problems.

The full strength of the methodology presented in the book is
seen in Chapters 7 and 8 in which the usual hypotheses of integral
manifold theory such as the conditions of Tikhonov’s theorem are
violated. These chapters should be of particular interest to those
researchers who need perturbation methods for solving systems of
strongly nonlinear equations. The exposition includes mathemat-
ical treatment of fascinating slow-fast phenomena represented by
cascades of canard solutions and integral surfaces with variable sta-
bility called black swans.
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Problems

The first problem this issue was contributed by Peter Danchev of
Plovdiv University, Bulgaria.

Problem 79.1. Suppose that k and n are positive integers with
1 6 k 6 n. Find the largest integer m such that the binomial

coefficient

(
2n

k

)
is divisible by 2m.

The next problem was suggested by Prithwijit De of the Homi
Bhabha Centre for Science Education, Mumbai, India.

Problem 79.2. Let f be a function that is continuous on the inter-
val [0, π/2] and satisfies f(x) + f(π/2−x) = 1 for each x in [0, π/2].
Evaluate the integral

∫ π/2

0

f(x)

(sin3 x+ cos3 x)2
dx.

We finish with an elegant identity involving sums of powers of
integers. It would be pleasing to see a simple geometric proof of this
classic identity, but perhaps that is asking too much.

Problem 79.3. Prove that, for any positive integer n,

(15 + · · ·+ n5) + (17 + · · ·+ n7) = 2(1 + · · ·+ n)4.

Solutions

Here are solutions to the problems from Bulletin Number 77. The
first problem was solved by the North Kildare Mathematics Problem
Club as well as the proposer, Finbarr Holland of University College
Cork. The two solutions were similar in spirit; we give the solution
of the problem club.
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Problem 77.1 . Suppose that f : [0, 1]→ R is a convex function and∫ 1

0 f(t) dt = 0. Prove that
∫ 1

0

t(1− t)f(t) dt 6 0,

with equality if and only if f(t) = a(2t− 1) for some real number a.

Solution 77.1. Let

α = 1
2(f(1)− f(0)), g(t) = α(1− 2t), and h(t) = f(t) + g(t).

Then h is convex, h(0) = h(1), and
∫ 1

0

h(t) dt = 0.

Let k(t) = h(t) + h(1− t). Then k is convex, k(t) = k(1− t), and
∫ 1/2

0

k(t) dt =

∫ 1

0

k(t) dt = 0. (1)

Also, ∫ 1/2

0

t(1− t)k(t) dt =

∫ 1

0

t(1− t)f(t) dt.

It cannot be that k(0) < 0, because if that were so then k(1) < 0,
and hence (by convexity) k(t) < 0 on [0, 1], which contradicts (1).
Reasoning similarly, we see that if k(0) = 0, then k(t) = 0 for all t,
and ∫ 1/2

0

t(1− t)k(t) dt = 0.

The remaining possibility is that k(0) > 0. In this case, since k
is convex with integral zero, there must be exactly two zeros of k
between 0 and 1, and by symmetry they are at points β and 1−β for
some β ∈ (0, 12). Moreover, k is strictly decreasing on the interval

(0, 12) and t(1− t) is positive and increasing on (0, 12). Thus one can
check that the inequality t(1− t)k(t) < β(1− β)k(t) is satisfied on
both intervals (0, β) and (β, 1/2). Therefore

∫ 1/2

0

t(1− t)k(t)dt < β(1− β)

∫ 1/2

0

k(t)dt = 0.

So the desired inequality holds, with equality only in the case
when k(t) is identically 0, that is, when h(t) = −h(1 − t). But in
that case h(0) = −h(1) = −h(0), so h(0) = h(1) = 0, and since h is
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convex with integral zero, we see that h is identically zero. Hence
f(t) = α(2t− 1). �

Finbarr points out that if f is twice continuously differentiable
and f ′′(t) ≥ 0 for all t, then there is a much shorter solution, which
follows immediately from the identity below, which can be proved
by integrating the left-hand integral by parts a couple of times:

∫ 1

0

t2(1− t)2f ′′(t) dt = 2

∫ 1

0

(1− 6t+ 6t2)f(t) dt.

The second problem from Bulletin Number 77 was solved by Henry
Ricardo of the Westchester Area Math Circle, New York, USA, and
the North Kildare Mathematics Problem Club. The solution was
also known to the proposer. Many have pointed out that the prob-
lem is well known. Henry notes that the problem is usually ascribed
to Pierre Rémond de Montmort (1678–1719), and that The Prob-
lem of Coincidences by Lajos Takács (Archive for History of Exact
Sciences, 21, 1980) is an excellent survey on this problem and its
generalisations. We give Henry’s solution here, which coincides with
that of the problem club, and which apparently is essentially due to
Euler.

Problem 77.2 . Each member of a group of n people writes his or her
name on a slip of paper, and places the slip in a hat. One by one
the members of the group then draw a slip from the hat, without
looking. What is the probability that they all end up with a different
person’s name?

Solution 77.2. The problem is equivalent to counting the number
Dn of permutations P of {1, . . . , n} that satisfy P (k) 6= k for 1 6
k 6 n. Let us call such a permutation P a derangement. We use the
notation (j1, j2, . . . , jn) to represent a permutation, where jk denotes
the image of k.

For any derangement (j1, j2, . . . , jn), we have jn 6= n. Let jn = k,
where k ∈ {1, 2, . . . , n − 1}. Now we split the derangements on n
elements into two cases.
Case 1 : jk = n (so k and n map to each other). By removing

elements k and n from the permutation, we have a derangement on
n− 2 elements; and so, for fixed k, there are Dn−2 derangements in
this case.
Case 2 : jk 6= n. Swap the values of jk and jn, so that we have a

new permutation with jk = k and jn 6= n. By removing element k,
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we have a derangement on n− 1 elements; and so, for fixed k, there
are Dn−1 derangements.

Thus, with n− 1 choices for k, we have, for n > 2,

Dn = (n− 1) (Dn−1 +Dn−2) .

The probability Pn of a derangement is the number of derangements
divided by the number of all possible permutations of n objects:

Pn =
Dn

n!
=

(n− 1)

n!
(Dn−1 +Dn−2)

= (n− 1)

(
1

n
· Dn−1

(n− 1)!
+

1

n(n− 1)
· Dn−2

(n− 2)!

)

=

(
1− 1

n

)
Pn−1 +

1

n
Pn−2

= Pn−1 −
1

n
(Pn−1 − Pn−2) ,

or Pn− Pn−1 = −(1/n)(Pn−1− Pn−2), with P1 = 0 and P2 = 1/2. It
follows that

Pn − Pn−1 =
(−1)n

n!
,

so

Pn = P1 +
n∑

k=2

(Pk − Pk−1) =
n∑

k=2

(−1)k

k!
. �

The third problem was incorrectly labelled 76.3, rather than 77.3,
in issue 77. It was solved by Dixon Jones of the University of Alaska
Fairbanks, USA, Niall Ryan of the University of Limerick, and the
North Kildare Mathematics Problem Club. We give the solution of
the problem club.

Problem 77.3 . Evaluate

1 +
12

1 +
22

1 +
32

1 + · · ·

.

Solution 77.3. Consider the identity

1

x
− 1

y
=

1

x+
x2

y − x

, where x, y 6= 0 and x 6= y. (2)



PROBLEMS 99

Applying (2) with x = n and y = n+ 1, where n > 1, we obtain

1

n
− 1

n+ 1
=

1

n+
n2

1

.

Applying (2) with x = n−1 and y = n+n2, where n > 2, we obtain

1

n− 1
− 1

n
+

1

n+ 1
=

1

(n− 1) +
(n− 1)2

1 +
n2

1

.

Continuing in this manner, we obtain

1

1
− 1

2
+

1

3
− · · ·+ (−1)n

1

n+ 1
=

1

1 +
12

1 +
22

1 + · · ·+ n2

1

.

Then, taking limits, we see that

log 2 =
1

1 +
12

1 +
22

1 + · · ·

,

so the desired continued fraction is equal to 1/ log 2. �

The problem club point out that various generalisations of this
continued fractions formula appear in the literature. One such gen-
eralisation is

log(1 + x) =
x

1 +
12x

2− x+
22x

3− 2x+
32x

4− 3x+ · · ·
(and there are more). The problem club’s method comes from
Higher Algebra by Hall and Knight, and seems to be due to Frobe-
nius and Stickelberger (J. Reine Angew. Math., 88, 1880) originally.
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A similar idea to that given in the proof can be used to establish
that

π

4
=

1

1 +
12

2 +
32

2 +
52

2 + · · ·

.

We invite readers to submit problems and solutions. Please email
submissions to imsproblems@gmail.com in any format (we prefer
Latex). Submissions for the summer Bulletin should arrive before
the end of April, and submissions for the winter Bulletin should
arrive by October. The solution to a problem is published two issues
after the issue in which the problem first appeared. Please include
solutions to any problems you submit, if you have them.

School of Mathematics and Statistics, The Open University, Mil-
ton Keynes MK7 6AA, United Kingdom
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