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Real Lie Algebras with Equal Characters

CHING-I HSIN

Abstract. We recall Cartan’s definition of characters of real forms
of complex simple Lie algebras, based on Cartan decomposition.
For a given complex simple Lie algebra, its real forms are uniquely
determined by their characters in almost all cases. We work out the
exceptions where non-isomorphic real forms have the same charac-
ter.

1. Introduction

Let g be a real form of a complex simple Lie algebra L. Let
g = k+p be a Cartan decomposition, namely k is a maximal compact
subalgebra of g. In É. Cartan’s classification of real simple Lie
algebras, he defines the character of g as

character(g) = dim p− dim k.

He observes that non-isomorphic real forms of exceptional Lie alge-
bras have distinct characters [1, p.263-265], and uses them to denote
these exceptional real forms. For example e6(δ) denotes the real form
of E6 with character δ [2, p.518]. For the classical Lie algebras, Hel-
gason notes that non-isomorphic real forms with equal character
occur only in types A and D, and provides two examples [2, p.517]

(a) su∗(14), su(9, 5) ⊂ sl(14,C),
(b) so∗(18), so(12, 6) ⊂ so(18,C).

(1)

The following theorem determines all non-isomorphic real forms with
equal character.

Theorem 1.1. All the cases of real forms g, g′ ⊂ L such that g 6∼= g′

and g, g′ have the same character are given as follows:
(a) su(2r2 + r− 1, 2r2− r− 1), su∗(4r2− 2) ⊂ sl(4r2− 2,C), where
1 < r ∈ N;
(b) so(r2 + r, r2 − r), so∗(2r2) ⊂ so(2r2,C), where 2 < r ∈ N.
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We see that su∗(14) and su(9, 5) of (1)(a) are obtained by setting
r = 2 in Theorem 1.1(a), while so∗(18) and so(12, 6) of (1)(b) are
obtained by setting r = 3 in Theorem 1.1(b).

If g and g′ are real forms of L, then clearly dim g = dim g′.
Hence the condition character(g) = character(g′) is equivalent to
dim k = dim k′. It is known that g is determined by k and L [2,
Ch.X-6,Thm.6.2]; and Theorem 1.1 says that g is in fact determined
by dim k and L except for the indicated cases.

2. Proof of Theorem 1.1

We now prove Theorem 1.1. We study sl(n,C) in the proof of
Theorem 1.1(a), and study so(2n,C) in the proof of Theorem 1.1(b).

Proof of Theorem 1.1(a):
The Lie algebra sl(n,C) has three classes of real forms g, whose

maximal compact subalgebras k are indicated in (2) (see for instance
[2, p.518]). In (2)(a),

dim k = dim u(p) + dim u(n− p)− 1
= p2 + (n− p)2 − 1 = 2p2 − 2np+ n2 − 1.

g k dim k
(a) su(p, n− p) s(u(p) + u(n− p)) 2p2 − 2np+ n2 − 1
(b) su∗(n), n even sp(n2 ,R) 1

2(n2 + n)
(c) sl(n,R) so(n) 1

2(n2 − n)

(2)

If g is a split form of L (i.e. g has a Cartan subalgebra contained
in p; also known as a normal form), then its character is strictly
larger than that of other real forms of L [2, p.517]. Therefore, we
can ignore the split form sl(n,R), and consider only (2)(a,b). We
recall the elementary fact

ap2 + bp+ c = 0 =⇒ p =
−b±

√
b2 − 4ac

2a
. (3)

It is easier to compare dim k instead of the characters. Suppose
that (2)(a) and (2)(b) have equal dim k. Then

0 = (2p2−2np+n2−1)− 1

2
(n2+n) = 2p2−2np+

1

2
(n2−n−2). (4)

By (3) and (4),

p =
2n±

√
(−2n)2 − 4(n2 − n− 2)

4
=

1

2
(n±

√
n+ 2). (5)
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This implies that n + 2 is a perfect square. Furthermore since n is
even in (2)(b), condition (5) also says that

√
n+ 2 is even, namely

n+2 = (2r)2 for some r ∈ N. Then (5) becomes p = 2r2±r−1. For
r = 1, (2)(a,b) gives su(2) ∼= su∗(2). Hence we assume that r > 1.
This leads to the pairs of real forms in Theorem 1.1(a).

It remains to compare (2)(a) with itself for different values of p.
If su(p, n− p) and su(q, n− q) have equal dim k, then

0 = (2p2−2np+n2−1)−(2q2−2nq+n2−1) = 2(p2−np+(nq−q2)).
By (3),

p =
n±

√
(−n)2 − 4(nq − q2)

2
=

1

2
(n± (n− 2q)) ∈ {q, n− q}.

This implies that su(p, n − p) ∼= su(q, n − q). We conclude that
Theorem 1.1(a) gives all the cases of non-isomorphic real forms of
sl(n,C) with equal character. �

Proof of Theorem 1.1(b):
The Lie algebra L = so(2n,C) has two classes of real forms g,

with k and dim k indicated in (6).

g k dim k
(a) so(p, 2n− p) so(p) + so(2n− p) p2 − 2np+ 2n2 − n
(b) so∗(2n) u(n) n2

(6)

Suppose that (6)(a) and (6)(b) have equal dim k. Then

p2 − 2np+ n2 − n = 0.

By (3),

p =
2n±

√
(−2n)2 − 4(n2 − n)

2
= n±

√
n.

It implies that n is a perfect square, say n = r2 for some r ∈ N.
Then p = r2± r. For r = 1, (6)(a,b) gives so(2) ∼= so∗(2). Similarly
for r = 2, it gives so(6, 2) ∼= so∗(8). Hence we assume that r > 2.
This leads to the pairs of real forms in Theorem 1.1(b).

We also compare (6)(a) with itself for different values of p. If
so(p, 2n− p) and so(q, 2n− q) have equal dim k, then

0 = (p2−2np+2n2−n)−(q2−2nq+2n2−n) = p2−2np+(2nq−q2).
By (3),

p =
2n±

√
(−2n)2 − 4(2nq − q2)

2
= n± (n− q) ∈ {2n− q, q}.
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This implies that so(p, 2n − p) ∼= so(q, 2n − q). We conclude that
Theorem 1.1(b) gives all the cases of non-isomorphic real forms of
so(2n,C) with equal character. �

Since non-isomorphic real forms with equal character may occur
only in typesA andD [2, p.517], this completes the proof of Theorem
1.1.
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