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PROBLEMS

IAN SHORT

Problems

We begin with three integrals.

Problem 76.1.

(a)

∫ ∞
0

sin(x2) dx (b)

∫ 1

0

x− 1

log x
dx (c)

∫ 1

−1

cosx

e1/x + 1
dx

I learnt the next problem from a popular-mathematics lecture
given by Vicky Neale of the University of Oxford.

Problem 76.2. For each point z on the unit circle, let `z denote the
closed line segment from z to z2. Consider the collection of those
points in the closed unit disc that each lie at the intersection of two
distinct line segments `z and `w. What shape is the complement in
the unit disc of this collection of points?

We finish with a problem proposed by Wenchang Chu of Universitá
del Salento, Italy.

Problem 76.3. Evaluate
∞∑
n=0

1

2n
tan
( x

2n

)
.

Solutions

Here are solutions to the problems from Bulletin Number 74.
The first problem was solved by the North Kildare Mathematics

Problem Club, and it is their solution that we present. The solution
was also known to Grahame Erskine of the Open University, who
suggested the problem.
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Problem 74.1 . Given a positive integer A, let B be the number
obtained by reversing the digits in the base n expansion of A. The
integer A is called a reverse divisor in base n if it is a divisor of B
that is not equal to B.

For example, using decimal expansions, if we reverse the digits of
the integer 15, then we obtain 51. Since 15 is not a divisor of 51,
the integer 15 is not a reverse divisor in base 10.

For which of the positive integers n between 2 and 16, inclusive,
is there a two-digit reverse divisor in base n?

You may also wish to attempt the more difficult problem of classi-
fying those positive integers n for which there is a two-digit reverse
divisor in base n.

Solution 74.1. Given a positive integer n and two integers a and b
with 1 6 a, b < n, let [ab]n = an + b. The number [ab]n is defined
to be a two-digit reverse divisor in base n if [ba]n is divisible by, but
not equal to, [ab]n.

By inspection, there are no two-digit reverse divisors in bases 1,
2 or 3. For n > 3, we claim that there is a two-digit reverse divisor
in base n if and only if n + 1 is composite. To see this, suppose
first that n + 1 is composite. Choose positive integers a and k
with n + 1 = (a + 1)(k + 1), and define b = n − a − 1. Then
bn + a = k(an + b), so we have a two-digit reverse divisor, unless
k = 1. In the case k = 1, we define a′ = 1 and b′ = n − 2 to give
b′n+a′ = a(a′n+b′). This time we certainly have a two-digit reverse
divisor, because a = (n− 1)/2 > 1.

Conversely, suppose that n+ 1 is equal to a prime p, and suppose
that [ab]n is a two-digit reverse divisor in base n. Let k = (bn +
a)/(an+ b). One calculates that

p(b− ak) = (b− a)(k + 1).

Thus one of b− a or k + 1 is divisible by p. But 1 6 b− a < p and

1 < k + 1 < b+ 2 6 n+ 1 = p,

so we have a contradiction. Hence, contrary to our earlier assump-
tion, there does not exist a two-digit reverse divisor in base n. �

The second problem was solved by Henry Ricardo (New York Math
Circle, New York, USA), the North Kildare Mathematics Problem

Club, and the proposer, Ángel Plaza (Universidad de Las Palmas
de Gran Canaria, Spain). All solutions were similar. The solution
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we present is that of Henry Ricardo. Nesbitt’s inequality features in
the solution, which says that for positive real numbers a, b, and c,
we have

a

b+ c
+

b

c+ a
+

c

a+ b
>

3

2
.

This inequality can be proven by using two applications of the re-
arrangement inequality with the triples (a, b, c) and (1/(a+b), 1/(b+
c), 1/(c+ a)).

Problem 74.2 . Let f : R+ −→ R+ be an increasing, convex function
with f(1) = 1, and let x, y, and z be positive real numbers. Prove
that for any positive integer n,(

f

(
2x

y + z

))n

+

(
f

(
2y

z + x

))n

+

(
f

(
2z

x+ y

))n

> 3.

Solution 74.2. By Nesbitt’s inequality,

2x

y + z
+

2y

z + x
+

2z

x+ y
> 3.

Then, as the function g(x) = f(x)n is convex and increasing with
g(1) = 1, we can use Jensen’s inequality to write

g

(
2x

y + z

)
+ g

(
2y

z + x

)
+ g

(
2z

x+ y

)
> 3g

(
2x
y+z + 2y

z+x + 2z
x+y

3

)
> 3g(1) = 3,

as required. �

The third problem was solved by the North Kildare Mathemat-
ics Problem Club, Ángel Plaza, and the proposer Finbarr Holland
(University College Cork). Finbarr has pointed out that in fact the
result in the problem can quickly be derived using Bernstein poly-
nomials. Bernstein polynomials are useful for approximating con-
tinuous functions; they provide one way of proving the Weierstrass
approximation theorem. To solve the problem, simply calculate the
nth Bernstein polynomial of the function f(x) = xj and use the
value x = 1/2. Nonetheless, we present a complete, more elemen-
tary, solution here, which does not require Bernstein polynomials.
The solution is essentially the same as that of the North Kildare
Mathematics Problem Club and Ángel Plaza.

In this problem, we use the standard notation

f(n) ∼ g(n) as n→∞,
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where f and g are positive functions, to mean that

f(n)

g(n)
→ 1 as n→∞.

Problem 74.3 . Prove that for j = 0, 1, 2, . . .,
n∑

k=0

kj
(
n

k

)
∼ nj2n−j as n→∞.

Solution 74.3. Let f0(x) = (1 + x)n, and for j = 1, 2, . . . let

fj(x) = x
d fj−1(x)

dx
.

We shall prove by induction that for j = 0, 1, 2, . . . ,

fj(x) = njxj(1 + x)n−j + pj(x, n),

where pj is a polynomial in x and n, and its degree as a polynomial
in n is less than j. This equation holds when j = 0 (p0 is the
zero polynomial, which we assume has degree −1 in each variable).
Suppose that it holds when j = m− 1. Then one can check that

fm(x) = nmxm(1 + x)n−m + q(x, n),

where

q(x, n) = (m− 1)nm−1xm−1(1 + x)n−m + x
∂

∂x
pm−1(x, n).

The degree of q as a polynomial in n is less than m, so the inductive
proof is complete. We deduce that, for x > 1,

fj(x) ∼ njxj(1 + x)n−j, j = 0, 1, 2, . . . .

Now,

f0(x) = (1 + x)n =
n∑

k=0

(
n

k

)
xk,

so
n∑

k=0

kj
(
n

k

)
= fj(1) ∼ nj2n−j, j = 0, 1, 2, . . . .

�

Finally, we return to a problem of Niall Ryan (University of Lim-
erick) from issue 72. Niall had a solution to this problem, but it was
quite involved. The solution we include here, provided by Finbarr
Holland, deals with the ‘odd case’ only.



PROBLEMS 95

Problem 72.1. For each integer n > 0, let

Sn =
∞∑

m=0

K2m

2m+ n+ 1
+

∞∑
m=0
2m6=n

K2m

2m− n
,

where

K2m =

[
(2m)!

22m(m!)2

]2
.

Prove that

Sn =


0, n odd,

2Kn

(
log 2−

n∑
k=1

(−1)k+1

k

)
, n even.

Solution 72.1. Let

an =
Γ(12 + n)

Γ
(
1
2

)
Γ(n+ 1)

=
(2n)!

22n(n!)2
=
√
K2n.

We aim to prove that for n = 0, 1, 2, . . . ,

S2n+1 =
∞∑

m=0

a2m

(
1

2m+ 2n+ 2
+

1

2m− 2n− 1

)
= 0.

Clearly, it is enough to prove that Tn = 0 for n = 0, 1, 2, . . . , where

Tn =
n∑

j=0

(−1)j
(
n

j

)
S2j+1 = 0.

To establish this, notice that
n∑

j=0

(−1)j
(
n

j

)
1

2z + 2j + 2
=

n!

2
∏n

j=0(z + j + 1)
=

n!Γ(z + 1)

2Γ(z + n+ 2)
,

and
n∑

j=0

(−1)j
(
n

j

)
1

2z − 2j − 1
=

(−1)nn!2n∏n
j=0(2z − 2j − 1)

=
(−1)nn!Γ(z − 2n+1

2 )

2Γ(z + 1
2)

.

Next we appeal to a well-known result about hypergeometric series,
which can be found, for example, in Section 10.31 of An introduction
to the theory of functions of a complex variable by E.T. Copson
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(OUP, 1970). Recall that the hypergeometric series F (a, b; c; z) is
defined for |z| < 1 by the equation

∞∑
m=0

Γ(a+m)Γ(b+m)

Γ(c+m)

zm

m!
=

Γ(a)Γ(b)

Γ(c)
F (a, b; c; z),

and it is defined for |z| > 1 by analytic continuation. In fact, by
Abel’s continuity theorem, the series above can also be used to define
F (a, b; c; 1). The result we need, from page 251 of Copson’s text, is
that

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

if Re[c− a− b] > 0. Using this observation, we see that

Tn =
n!

2

∞∑
m=0

a2m

(
Γ(m+ 1)

Γ(n+ 2 +m)
+ (−1)n

Γ
(
−2n+1

2 +m
)

Γ
(
1
2 +m

) )

=
n!

2π

∞∑
m=0

(
Γ
(
1
2 +m

)
Γ
(
1
2 +m

)
m!Γ(n+ 2 +m)

+ (−1)n
Γ
(
1
2 +m

)
Γ
(
−2n+1

2 +m
)

m!Γ(1 +m)

)

=
n!

2π

(
Γ
(
1
2

)2
F
(
1
2 ,

1
2 ;n+ 2; 1

)
Γ(n+ 2)

+ (−1)n
Γ
(
1
2

)
Γ
(
−2n+1

2

)
F
(
1
2 ,−

2n+1
2 ; 1; 1

)
Γ(1)

)

=
n!

2π

(
πΓ(n+ 1)

Γ
(
n+ 3

2

)2 + (−1)n
Γ
(
−2n+1

2

)
Γ(n+ 1)

Γ
(
n+ 3

2

) )

=
n!

2π

(
πΓ(n+ 1)

Γ
(
n+ 3

2

)2 + (−1)n
πΓ(n+ 1)

sin
(
−
(
n+ 1

2

)
π
)

Γ
(
n+ 3

2

)2
)

= 0.

The well-known functional equation Γ(z)Γ(1 − z) = π/ sin(πz) is
used in the second-last line. �

We invite readers to submit problems and solutions. Please email
submissions to imsproblems@gmail.com in any format (we prefer
Latex). Submissions for the summer Bulletin should arrive before
the end of April, and submissions for the winter Bulletin should
arrive by October. The solution to a problem is published two issues
after the issue in which the problem first appeared. Please include
solutions to any problems you submit, if you have them.
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