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EDITORIAL

At the 150th birthday celebration of the LMS, those present were
given a copy of the speech of Augustus De Morgan, President, at
the first meeting of the Society, January 16th, 1865. He pointed
out that the new society would, inevitably, be influenced mainly
by a few energetic individuals, but would come to nothing if it did
not please the general body of members. Having reviewed previous
British societies and journals and linked their failure to capture by
special interests and a “preponderance of subjects of one particular
kind”, he said that his desire was to see the society “having the great
bulk of its business adapted to the great bulk of its members”1. With
an emphasis on the future of mathematics, and granting that one
cannot actually foresee how mathematical science will develop, he
tentatively suggested some directions that deserved more attention
in his day, to wit history, logic2, and (is anything new?) his desire
to see elementary students think more:

“Mathematics is becoming too much of a machinery, and
this is more especially the case with reference to the
elementary students. They put the data of the prob-
lems into a mill and expect the result to come out ready
ground at the other end. An operation which bears a
close resebmblance to putting in hemp seeds at one end
of a machine and taking out ruffled shirts ready for use
at the other end. This mode is undoubtedly exceedingly
effective in producing results, but it is certainly not so
the teaching the mind and in exercising thought.”

The Bulletin of the IMS has the same aim as that expressed for the
LMS journals by De Morgan: to publish material of general interest
to members, without limiting the areas. Members (and others) are
encouraged to contribute.

In the present issue we publish a couple of surveys related to sto-
chastic integrals and their application, a classroom note about in-
verse functions, as well as some reviews of books on varied pure and
applied topics, and the problem page. The surveys are by Danny

1— and clearly he was not referring to the BMI of the members!
2He referred warmly to Boole’s work.
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ii EDITORIAL

Duffy, who gives an account from the perspective of an experienced
practitioner of the kind of numerical methods used in finance, and
by Pat Muldowney, who gives a gentle introduction to the basic is-
sues around stochastic and other integrals, giving due credit to his
mentor Ralph Henstock, whose fundamental work on integration de-
serves to be better-known in Ireland. Henstock was for many years
Professor of Pure Mathematics at the University of Ulster in Col-
eraine. I can testify from personal experience that he was a tolerant,
kindly and hospitable fellow. Both Duffy and Muldowney have pub-
lished books which may be consulted by readers who wish to learn
more about the material outlined.

The next main scientific meeting of the Society will take place in
UCC, on 27-28 August, and will form a part of the Boole Centenary
celebrations there.

The IMS Committee has adopted revised guidelines for conference
organisers who wish to apply for support. These may be found at
the IMS website. Organisers are reminded that reports should be
submitted to the Bulletin by December, in good time for the Winter
issue.

The Treasurer asked me to draw the attention of members aged
over 65 to the fact that a reduced subscription rate applies. See
page 2, and contact him to take advantage of this.

AOF. Department of Mathematics and Statistics, Maynooth Uni-
versity, Co. Kildare

E-mail address : ims.bulletin@gmail.com



LINKS FOR POSTGRADUATE STUDY

The following are the links provided by Irish Schools for prospec-
tive research students in Mathematics:

DCU: (Olaf Menkens)

http://www.dcu.ie/info/staff_member.php?id_no=2659

DIT: (Chris Hills)

mailto://chris.hills@dit.ie

NUIG:

mailto://james.cruickshank@nuigalway.ie

NUIM:

http://www.maths.nuim.ie/pghowtoapply

QUB:

http://www.qub.ac.uk/puremaths/Funded_PG_2012.html

TCD:

http://www.maths.tcd.ie/postgraduate/

UCD:

mailto://nuria.garcia@ucd.ie

UU:

http://www.compeng.ulster.ac.uk/rgs/

The remaining schools with Ph.D. programmes in Mathematics are
invited to send their preferred link to the editor, a url that works.
All links are live, and hence may be accessed by a click, in the
electronic edition of this Bulletin1.

E-mail address : ims.bulletin@gmail.com

1http://www.maths.tcd.ie/pub/ims/bulletin/
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Applying for I.M.S. Membership

(1) The Irish Mathematical Society has reciprocity agreements
with the American Mathematical Society, the Deutsche Math-
ematiker Vereinigung, the Irish Mathematics Teachers Asso-
ciation, the Moscow Mathematical Society, the New Zealand
Mathematical Society and the Real Sociedad Matemática
Española.

(2) The current subscription fees are given below:

Institutional member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e160
Ordinary member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e25
Student member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e12.50
DMV, I.M.T.A., NZMS or RSME reciprocity member e12.50
AMS reciprocity member . . . . . . . . . . . . . . . . . . . . . . . . . . . . $15

The subscription fees listed above should be paid in euro by
means of a cheque drawn on a bank in the Irish Republic, a
Eurocheque, or an international money-order.

(3) The subscription fee for ordinary membership can also be
paid in a currency other than euro using a cheque drawn on
a foreign bank according to the following schedule:

If paid in United States currency then the subscription fee is
US$ 30.00.
If paid in sterling then the subscription is £20.00.
If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$ 30.00.

The amounts given in the table above have been set for the
current year to allow for bank charges and possible changes
in exchange rates.

(4) Any member with a bank account in the Irish Republic may
pay his or her subscription by a bank standing order using
the form supplied by the Society.

(5) Any ordinary member who has reached the age of 65 years
and has been a fully paid up member for the previous five
years may pay at the student membership rate of subscrip-
tion.
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(6) Subscriptions normally fall due on 1 February each year.

(7) Cheques should be made payable to the Irish Mathematical
Society. If a Eurocheque is used then the card number should
be written on the back of the cheque.

(8) Any application for membership must be presented to the
Committee of the I.M.S. before it can be accepted. This
Committee meets twice each year.

(9) Please send the completed application form with one year’s
subscription to:

The Treasurer, IMS
School of Mathematics, Statistics and Applied Mathematics

National University of Ireland
Galway
Ireland

E-mail address : subscriptions.ims@gmail.com



DECEASED MEMBERS

It is with regret that we report the deaths of members:

Dr Derek O’Connor of Donard, Co. Wicklow, died on 27 March
2013. He was a member of the Society for 7 years.

Prof. Allan Solomon, late of the Open University, died on 3 April
2013. He had been a member of the Society from its beginning.
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FLAT SURFACES OF FINITE TYPE IN THE
3-SPHERE

ALAN MCCARTHY

This is an abstract of the PhD thesis Flat surfaces of Finite Type
in the 3-Sphere written by Alan McCarthy under the supervision of
Martin Kilian at the School of Mathematical Sciences, University
College Cork, and submitted in May 2014.

The local theory of flat surfaces in S3 through the use of asymp-
totic curves in S3 was already known by Bianchi [1], however the
problem of classifying flat tori was first posed by Yau [4] in 1974.
Kitagawa [2] provided a classification by using asymptotic lifts of
’admissible pairs’ of closed curves on S2. Flat tori were also classi-
fied by Weiner [3] in terms of their Gauss maps.

My thesis is concerned with finite gap flat surfaces. These are sur-
faces whose generating curves on S2 have finite gap geodesic curva-
tures, which means that eventually all flows of the mKdV hierarchy
are finite linear combinations of preceeding ones.

We provide a summary of finite gap curves in terms of Lax pairs,
Killing fields, their spectral curves and provide conditions that en-
sure that the curve remains closed and spherical. We also provide
a discussion of the isoperiodic deformations and monodromy asso-
ciated to the frame of the curves.

As an application we show that given an admissible pair of curves
γ1, γ2 with geodesic curvatures k1, k2 ∈ L2(S1,R), there exists a pair
of finite gap curvature functions that generate curves on S2 that are
admissible and that these finite gap curvatures are also dense in the
Sobolev norm.

2010 Mathematics Subject Classification. 51H25, 35P30,58A02,53C02.
Key words and phrases. differential geometry, integrable systems, flat, tori,

finite type, finite gap.
Received on 23-1-2015.
Support from University College Cork through a part time lecturship is grate-

fully acknowledged.

c©2015 Irish Mathematical Society
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FROM NAVIER-STOKES TO BLACK-SCHOLES:
NUMERICAL METHODS IN COMPUTATIONAL

FINANCE

DANIEL J. DUFFY

Abstract. In this article we give a general overview of the numer-
ical methods (in particular the finite difference method) to approx-
imate the partial differential equations that describe the behaviour
of financial products (such as stocks, options, commodities and in-
terest rate products). These products are traded in the marketplace
and it is important to price them using accurate and efficient al-
gorithms. Furthermore, financial institutions need to compute and
monitor the risks associated with these financial instruments and
portfolios of these instruments.

The focus in this article is to trace the emergence of advanced
numerical techniques and their applications to computational fi-
nance during the last twenty-five years. It is aimed at a mathe-
matical audience with a passing acquaintance of partial differen-
tial equations (PDEs) and finite difference methods. In partic-
ular, time-dependent convection-diffusion-reaction PDEs will take
centre-stage because they model a wide range of financial products.

1. A short History of Computational Finance

Computational Finance can be defined as a set of mathematical
and engineering techniques to solve complex problems in finance. It
has grown steadily during the last thirty years as financial services
became global and computing power increased exponentially. When
the Cold War ended the market had acquired access to a large pool
of physicists, mathematicians and computer scientists, or quants as
they became known on Wall Street. These quants applied their
knowledge to solve complex derivatives pricing problems. Growth
was explosive until the financial crash of 2007/2008. After the crash

2010 Mathematics Subject Classification. 91G60, 65C30.
Key words and phrases. Financial Mathematics, Options, Derivatives, Compu-

tation, PDE.
Received on 20-2-2015; revised 8-3-2015.

c©2015 Irish Mathematical Society
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8 D.J. DUFFY

many of the exotic structured products that these quants had in-
vented were abandoned in favour of simpler ones. The events of the
last seven years have certainly proved that finance is not physics
and that models are, after all, just models of reality and not reality
itself.

2. Computational Finance 101: Plain Call Options

Before we jump into the mathematics and numerical analysis of
partial differential equations we try to sketch the financial context
in which they are used. It is impossible to discuss the context in any
great detail and we refer the reader to Wilmott [11]. It is written in
a style that should appeal to mathematicians.

In order to reduce the scope we focus exclusively on the most fun-
damental of all financial instruments, namely equity (also known
as stock or shares). Holding equity means that you own part of a
company. If the company goes bankrupt the value of your shares is
effectively zero or thereabouts. In short, you have lost your invest-
ment! The investor paid up front and she was probably expecting
the share price to increase in the future. Most people are optimists
and hence they buy shares in the hope that they will rise in price.
But this is risky because if the share price drops they will make a
loss. There is however, a less risky approach. Let us assume that
you expect the share price of the ABC company to rise from $100
to $140 in the next three months (for example, you consulted your
crystal ball on this and that is what it told you). So, instead of
buying the share for $100 now you might like to have the option to
wait for three months and then buy the share. You can then buy
a call option that gives you the right but not the obligation to buy
the share three months into the future for a certain strike price. Of
course, having the right but not the obligation to buy a share at
some time in the future comes at a price and this must be paid by
the investor up-front. For example, you can buy a call option with
strike price $120 that expires in three months time. If the price is
greater than $120 then you have made a profit. If the price is less
than $120 at expiration the option is worthless and you have lost
your initial investment.

We have not addressed the issue of how to compute the option price.
This is precisely the famous Black Scholes formula [1] that allows us
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to compute the option price analytically. In more complicated cases
we need to resort to numerical methods as discussed in this article.

3. The Mathematics of PDEs in Computational Finance:
Helicopter View

In general, the PDEs of relevance are of the convection-diffusion-
reaction type in n space variables and one time variable. The space
variables correspond to underlying financial quantities such as an as-
set or interest rate while the non-negative time variable t is bounded
above by the expiration T. The space variables take values in their
respective positive half-planes.

We model derivatives that are described by so-called initial bound-
ary value problems of parabolic type [10]. To this end, consider the
general parabolic equation:

Lu ≡
n∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

n∑

j=1

bj(x, t)
∂u

∂xj
+ c(x, t)u− ∂u

∂t
= f(x, t)

(1)
where the functions aij, bj, c and f are real-valued aij = aji, and

n∑

i,j=1

aij(x, t)αiαj > 0 if
n∑

j=1

α2
j > 0. (2)

In equation (2) the variable x is a point in n-dimensional space and
t is considered to be a positive time variable. Equation (1) is the
general equation that describes the behaviour of many derivative
types. For example, in the one-dimensional case (n = 1) it reduces
to the famous Black-Scholes equation (Here t∗ = T − t):

∂V

∂t?
+

1

2
σ2S2∂

2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0 (3)

where V is the derivative type (for example a call or put option), S
is the underlying asset (or stock), σ is the constant volatility, r is
the interest rate and D is a dividend. Equation (3) is a special case
and it can be generalised to include more general kinds of options.

Equation (3) can be generalised to the multivariate case:

∂V

∂t?
+

n∑

j=1

(r −Dj)Sj
∂V

∂Sj
+

1

2

n∑

i,j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
= rV. (4)
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This equation models a multi-asset environment. In this case σi is
the volatility of the ith asset and ρij is the correlation (−1 ≤ ρij ≤ 1)
between assets i and j. In this case we see that equation (4) is
written as the sum of three terms:

• Interest earned on cash position

r
(
V −

n∑

j=1

Sj
∂V

∂Sj

)
. (5)

• Gain from dividend yield
n∑

j=1

DjSj
∂V

∂Sj
. (6)

• Hedging costs or slippage

− 1

2

n∑

i,j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
. (7)

Our interest is in discovering robust numerical schemes that produce
reliable and accurate results irrespective of the size of the parameter
values in equation (4).

Equation (1) has an infinite number of solutions in general. In order
to reduce this number to one, we need to define some constraints.
To this end, we define so-called initial condition and boundary con-
ditions for (1). We achieve this by defining the space in which
equation (1) is assumed to be valid. In general, we note that there
are three types of boundary conditions associated with equation (1)
(see [10]). These are:

• First boundary value problem (Dirichlet problem).
• Second boundary value problem (Neumann, Robin problems).
• Cauchy problem.

The first boundary value problem is concerned with the solution of
(1) in a domain D = Ω× (0, T ) where Ω is a bounded subset of Rn

and T is a positive number. In this case we seek a solution of (1)
satisfying the conditions:

u|t=0 = ϕ(x) (initial condition)

u|Γ = ψ(x, t) (boundary condition) (8)

where Γ is the boundary of Ω. The boundary conditions in (8) are
called Dirichlet boundary conditions. These conditions arise when
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we model single and double barrier options in the one-factor case
(see [5]). They also occur when we model plain options.

The second boundary value problem is similar to (8) except that
instead of giving the value of u on the boundary Γ the directional
derivatives are included, as seen in the following specification:

(∂u
∂η

+ a(x, t)u
)
|Γ = ψ(x, t). (9)

In this case a(x, t) and ψ(x, t) are known functions of x and t, and ∂
∂η

denotes the derivative of u with respect to the outward normal η at
Γ . A special case of (9) is when a(x, t) ≡ 0 ; then (9) represents the
Neumann boundary conditions. These occur when modelling certain
kinds of put options. Finally, the solution of the Cauchy problem
for (1) in the strip Rn × (0, T ) is given by the initial condition:

u|t=0 = ϕ(x) (10)

where ϕ(x) is a given continuous function and u(x, t) is a function
that satisfies (1) in Rn×(0, T ) and that satisfies the initial condition
(10). This problem allows negative values of the components of the
independent variable x = (x1, . . . , xn). A special case of the Cauchy
problem can be seen in the modelling of one-factor European and
American options (see [11]) where x plays the role of the underlying
asset S. Boundary conditions are given by values at S = 0 and
S =∞. For European options these conditions are:

C(0, t) = 0

C(S, t)→ S as S →∞. (11)

Here C (the role played by u in equation (1)) is the variable repre-
senting the price of the call option. For European put options the
boundary conditions are:

P (0, t) = Ke−r(T−t
?)

P (S, t)→ 0 as S →∞. (12)

Here P (the role played by u in equation (1)) is the variable repre-
senting the price of the put option, K is the strike price, r is the
risk-free interest rate, T is the expiration and t is the current time.

From this point on we assume the following ‘canonical’ form for
the operator L in equation (1):

Lu ≡ −∂u
∂t

+ σ(x, t)
∂2u

∂x2
+ µ(x, t)

∂u

∂x
+ b(x, t)u = f(x, t) (13)



12 D.J. DUFFY

where σ, µ, b and f are known functions of x and t.

We have given a global introduction to the kinds of linear partial
differential equations that are used in computational finance. We
are unable to discuss other topics such as nonlinear PDEs, free and
moving-boundary value problems, qualitative properties of equation
(1) (for example, criteria for existence and uniqueness of the solution
of equation (1)) and applications to computational finance. For a
discussion of these topics we refer the reader to [5].

For the rest of this article we restrict our attention to the linear one-
factor PDE defined by equation (13) in conjunction with auxiliary
conditions to ensure existence and uniqueness. We also assume that
all the coefficients and inhomogeneous term in equation (13) are
known.

4. The Finite Difference Method (FDM) in
Computational Finance

For completeness, we formulate the initial boundary value problem
whose solution we wish to approximate using the finite difference
method.

Define the interval Ω = (A,B) where A and B are two real num-
bers. Further let T > 0 and D = Ω× (0, T ).
The formal statement of the idealised problem is:
With

Lu ≡ −∂u
∂t

+ σ(x, t)
∂2u

∂x2
+ µ(x, t)

∂u

∂x
+ b(x, t)u,

find a function u : D → R1 such that

Lu = f(x, t) in D (14)

u(x, 0) = ϕ(x), x ∈ Ω (15)

u(A, t) = g0(t), u(B, t) = g1(t), t ∈ (0, T ). (16)

The initial-boundary value problem (14)-(16) is general and it sub-
sumes specific cases from the option pricing literature (in particular
it is a generalisation of the original Black-Scholes equation).

In general, the coefficients σ(x, t) and µ(x, t) represent volatility (dif-
fusivity) and drift (convection), respectively. Equation (14) is called
the convection-diffusion-reaction equation. It serves as a model for
many kinds of physical and economic phenomena. Much research
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has been carried out in this area, both on the continuous problem
and its discrete formulations (for example, using finite difference
and finite element methods). In particular, research has shown that
standard centred-difference schemes fail to approximate (14)-(16)
properly in certain cases (see [4]) .

The essence of the finite difference method is to discretise equation
(14) by defining so-called discrete mesh points and approximating
the derivatives of the unknown solution of system (14) - (16) in some
way at these mesh points. The eventual goal is to find accurate
schemes that will be implemented in a programming language such
C++ or C# for the benefit of traders and risk management. Some
typical attention points are:

• The PDE being approximated may need to be pre-processed
in some way, for example transforming it from one on a semi-
infinite domain to one on a bounded domain.
• Determining which specific finite difference scheme(s) to use

based on quality requirements such as accuracy, efficiency
and maintainability.
• Essential difficulties to resolve: convection dominance, avoid-

ing oscillations and how to handle discontinuous initial con-
ditions, for example.
• Developing the algorithms and assembling the discrete sys-

tem of equations prior to implementation.

Our goal is to approximate (14)-(16) by finite difference schemes.
To this end, we divide the interval [A,B] into the sub-intervals:

A = x0 < x1 < . . . < xJ = B

and we assume for convenience that the mesh-points {xj}Jj=0 are
equidistant, that is:

xj = xj−1 + h, j = 1, . . . , J.

(
h =

B − A
J

.

)

Furthermore, we divide the interval [0, T ] into N equal sub-intervals
0 = t0 < t1 < . . . < tN = T where tn = tn−1+k, n = 1, . . . , N (k =
T/N).

(It is possible to define non-equidistant mesh-points in the x and
t directions but doing so would complicate the mathematics and we
would be in danger of losing focus).

The essence of the finite difference method lies in replacing the
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derivatives in (14) by divided differences at the mesh-points (xj, tn).
We define the difference operators in the x-direction as follows:

D+uj = (uj+1 − uj)/h, D−uj = (uj − uj−1)/h

D0uj = (uj+1 − uj−1)/2h, D+D−uj = (uj+1 − 2uj + uj−1)/h
2.

It can be shown by Taylor expansions that D+ and D− are first-
order approximations to ∂

∂x , respectivily while D0 is a second-order

approximation to ∂
∂x . Finally, D+D− is a second-order approxima-

tion to ∂2

∂x2 .
We also need to discretise the time dimension and to this end we
consider the scalar initial value problem:




Lu ≡ u

′
(t) + a(t)u(t) = f(t),∀t ∈ [0, T ]

with a(t) ≥ α > 0,∀t ∈ [0, T ].
u(0) = A.

(17)

The interval where the solution of (17) is defined is [0, T ]. When
approximating the solution using finite difference equations we use
a discrete set of points in [0, T ] where the discrete solution will be
calculated. To this end, we divide [0, T ] into N equal intervals of
length k where k is a positive number called the step size. In general
all coefficients and discrete functions will be defined at these mesh
points. We draw a distinction between those functions that are
known at the mesh points and the solution of the corresponding
difference scheme. We adopt the following notation:

an = a(tn), f
n = f(tn)

an,θ = a(θtn + (1− θ)tn+1), 0 ≤ θ ≤ 1, 0 ≤ n ≤ N − 1
un,θ = θun + (1− θ)un+1, 0 ≤ n ≤ N − 1.

(18)

Not only do we have to approximate functions at mesh point but we
also have to come up with a scheme to approximate the derivative
appearing in (17). There are several possibilities and they are based
on divided differences. For example, the following divided differences
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approximate the first derivative of u at the mesh point tn = n ∗ k;

D+u
n ≡ un+1 − un

k

D−un ≡
un − un−1

k

D0u
n ≡ un+1 − un−1

2k
.





(19)

We now introduce a number of important and useful difference
schemes that approximate the solution of (17). The main schemes
are:

• Explicit Euler.
• Implicit Euler.
• Crank Nicolson (or box scheme).

The explicit Euler method is given by:

un+1 − un
k

+ anun = fn, n = 0, . . . , N − 1

u0 = A

(20)

whereas the implicit Euler method is given by:

un+1 − un
k

+ an+1un+1 = fn+1, n = 0, . . . , N − 1

u0 = A.

(21)

Notice the difference: in (20) the solution at level n + 1 can be
directly calculated in terms of the solution at level n while in (21)
we must rearrange terms in order to calculate the solution at level
n+ 1. The next scheme is called the Crank-Nicolson or box scheme
and it can be seen as an average of the explicit and implicit Euler
schemes. It is given as:

un+1 − un
k

+ an,
1
2 un,

1
2 = fn,

1
2 , n = 0, . . . , N − 1

uo = A where un,
1
2 ≡ 1

2(un + un+1).

(22)

The discussion in this section has prepared us for a discussion of the
Black-Scholes partial differential equation.
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5. Example: The Black-Scholes PDE and its
Approximation

Probably one of the most famous formulae in computational fi-
nance is due to Fischer Black, Myron Scholes and Robert Merton
[1]. It has become popular with traders to price and hedge (a hedge
is a trade to reduce risk) options.

We introduce the generalised Black Scholes formula to calculate
the price of a call option on some underlying asset. In general the
call price is a function of six parameters:

C = C(S,K, T, r, σ, t) (23)

where the parameters have the following meaning [8]:

• S = asset price.
• K = strike (exercise) price.
• T = exercise (maturity) date.
• r = risk-free interest rate.
• σ = constant volatility.
• b = cost of carry.

We can view the call option price C as a function that maps a vector
of parameters into a real value. The exact formula for C is given
by:

C = Se(b−r)TN(d1)−Ke−rTN(d2) (24)

where N(x) is the standard cumulative normal (Gaussian) distribu-
tion function defined by

N(x) =
1√
2π

∫ x

−∞
e−y

2/2dy (25)

and where



d1 =
ln(S/K) + (b+ σ2/2)T

σ
√
T

d2 =
ln(S/K) + (b− σ2/2)T

σ
√
T

= d1 − σ
√
T .

(26)

The cost-of-carry parameter b has specific values depending on the
kind of derivative security [8]:

• b = r, we have the Black and Scholes stock option model.
• b = r − q, the Morton model with continuous dividend yield
q.
• b = 0, the Black futures option model.
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• b = r−R, the Garman and Kohlhagen currency option model,
where R is the foreign risk-free interest rate.

Thus, we can find the price of a plain call option by using formula
(24).

The formula needs six input parameters, one of which (namely, the
volatility) cannot be found from the market and then special meth-
ods must be employed to estimate it. A discussion of this problem
is outside the scope of this article. Even though the assumptions
upon which formula (24) are based do not hold in all practical cases
(see Hull 2006 for a discussion) it is nonetheless the motivator for
more general cases for which an analytical solution is not available.
In these cases we must resort to numerical methods, for example
using the finite difference method that approximates the so-called
Black-Scholes PDE:

LV ≡ −∂V
∂t

+ σ(S, t)
∂2V

∂S2
+ µ(S, t)

∂V

∂S
+ b(S, t)V

where

σ(S, t) = 1
2σ

2S2

µ(S, t) = rS
b(S, t) = −r.

(27)

The corresponding fitted scheme is now defined as:

LhkV
n
j = −

V n+1
j − V n

j

k
+ ρn+1

j D+D−V
n+1
j + µn+1

j D0V
n+1
j

+ bn+1
j V n+1

j ,
for 1 ≤ j ≤ J − 1, where

ρnj ≡
µnjh

2
coth

µnjh

2σnj
.

(28)

We define the discrete variants of the initial condition (15) and
boundary conditions (16) and we realise them as follows:

V 0
j = max(Sj −K, 0), 1 ≤ j ≤ J − 1 (29)

and
V n

0 = g0(tn)
V n
J = g1(tn)

}
0 ≤ n ≤ N. (30)

The system (28), (29), (30) can be cast as a linear matrix system:

AnUn+1 = F n, n ≥ 0 with U 0 given (31)
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and we solve this system using LU decomposition, for example. A
discussion of this topic with algorithms and implementation in C++
can be found in [3]. Summarising, the scheme (28) uses constant
meshes in both space and time, centred differencing in space and
backwards in time (fully implicit) marching. Furthermore, we use
exponential fitting (see [2]) to ensure that the method remains stable
and accurate for problems with small diffusion parameter or large
convection parameter (This is the case of convection dominance).
We note that equation (29) is the discrete payoff function for a call
option. It plays the role of the discrete initial condition for the finite
difference scheme (28), (29), (30).
Finally, we remark that scheme (28), (29), (30) is first-order accurate
in space and time. For higher-order methods for one-factor and
multi-factor Black Scholes PDEs, see [5] and [7].

6. Software Design and Implementation Issues

What happens when we have set up the system of equations (28),
(29), (30)? In general, we implement the schemes in some modern
object-oriented programming language, for example C++ or C# for
use in production environments although languages such as Mat-
lab and Mathematica are used for building and testing prototypes.
Many pricing libraries have been developed during the last twenty-
five years in C++ and its popularity can be attributed to the fact
that it is an ISO standard and it is very efficient. It is a big language
and the learning curve is steep.

A discussion of the software activities involved when designing soft-
ware systems in computational finance is outside the scope of this
article. See [3] for some applications to PDEs and to the finite
difference method.

7. Conclusions and Future Scenarios: Computational
Finance and Research Mathematics

We have written this article to show some of the mathematical,
numerical and computational techniques that are used to price and
hedge financial derivatives. We have focused on a small subset but
important subset, namely the Black Scholes PDE and its numerical
approximation using the finite difference method. There are many
challenges and opportunities in this field in my opinion for applied
and numerical mathematicians, computer scientists and engineers
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in the coming years as we enter an era of distributed and parallel
computing.
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INTEGRATION ISSUES IN PROBABILITY

PAT MULDOWNEY

Abstract. This essay explores the meaning of stochastic differen-
tial equations and stochastic integrals. It sets these subjects in a
context of Riemann-Stieltjes integration. It is intended as a com-
ment or supplement to [13].

1. Introduction

Famously, England and America are said to be divided by their
common language. Similarly, mathematical analysts and probability
theorists employ modes of expression which are superficially simi-
lar, but which may sometimes evoke different interpretations and
connotations in each camp. This can be illustrated by the formula

∫ x

−∞
exp

(
−(y − µ)2

2σ2

)
dy

σ
√

2π
.

To the analyst this expression may signify an improper indefinite
integral, whereas the probabilist may see a cumulative normal dis-
tribution function. Aspects of the expression which are problematic
or challenging to one may be trivially obvious to the other.

Another symptom is the probability/measure issue. In a kind
of coup d’etat by mathematical analysis following the discoveries
of A.N. Kolmogorov, the impression is sometimes given that the
phenomenon of probability is now and forevermore to be understood
in terms of the theory of measure.

But it is an overstatement to say that probability can be reduced
to measure. Probability was a subject of interest long before modern
measure theory existed, and there are aspects of random variation
which are not amenable to explanation by the current methods of
measure theory. On the other hand, an expert in probability is not,
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by virtue of that alone, an expert in the theory of measure. Neither
subject encompasses the other.

This essay seeks to tease out some distinctive features of these two
mathematical disciplines in respect of topics such as Itô’s formula
and stochastic calculus. In particular, it aims to demonstrate how
the modern theory of integration can shed light on some challenging
aspects of random variation.

Mathematical analysis does not “own” probability theory. But,
after all these years, it can still contribute to it!

2. Itô’s formula

Itô’s formula is an example of a stochastic differential equation:

dYs =
∂f(Xs)

∂s
ds+

1

2

∂2f(Xs)

∂X2
s

ds+
∂f(Xs)

∂Xs
dXs. (1)

For Ys = f(Xs), this formula is an evocative, shorthand way of
writing

Yt−Y0 =

∫

T

dYs =

∫

T

∂f(Xs)

∂s
ds+

1

2

∫

T

∂2f(Xs)

∂X2
s

ds+

∫

T

∂f(Xs)

∂Xs
dXs.

(2)
If the various expressions in this equation represented ordinary num-
bers and functions, then the presence in the equation of various in-
tegration processes might incline us to call (2) an integral equation.

But, while the symbol “f” in both equations is actually an or-
dinary deterministic function (such as the operation of taking the
square of some operand), the symbols X and Y do not represent
“ordinary” functions or definite numbers. Instead, they are “ran-
dom variables”, that is, quantities which are indefinite or unknown,
to the extent that they can be predicted only within some margin
of error.

The presence of “=” in the equation indicates that it is an ex-
act statement about actual quantities. Itô’s formula can be best
regarded as an exact statement about margins of error in estimates
of uncertain quantities or measurements.

In other words, it deals with probability distributions of unpre-
dictable quantities which are obtained by means of various oper-
ations in the formula, such as the integration operation. So Itô’s
formula can be regarded as a kind of integral equation in which the
integrals are the type known as stochastic integrals.
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What is a stochastic integral? What is the meaning of Itô’s for-
mula? These questions are not trivial. They can be answered in a
loose or intuitive manner, but deeper and more exact understanding
can be challenging for non-specialists. And since they are a funda-
mental part of many important practical subjects, such as finance
and communications, an understanding of them which is merely
loose or hazy can be a serious barrier to competent practice in such
subjects.

This essay seeks to outline an introduction to stochastic inte-
grals which is less difficult than the standard textbook treatment
of this subject. It uses Henstock’s non-absolute integration instead
of Lebesgue integration. It explores, compares, and contrasts these
two methods of integration, with a view to assessing their role in
stochastic integrals.

3. Random variables

Broadly speaking—at the risk of haziness and looseness!—a ran-
dom variable is a mathematical representation of a measurement
(an experiment, trial, or observation) of some uncertain or unpre-
dictable occurrence or value. For instance, the random variable Z
could represent a single throw of a die, so Z represents possible
outcomes {z = 1, . . . , z = 6} with probabilities {1

6 , . . . ,
1
6}. Or it

could represent measurement of a standard normal variable whose
possible values are the real numbers z ∈ R, with standard normal
probability distribution N(0, 1).

Suppose the throw of the die yields a payoff or outcome y = f(z)
obtained by the following deterministic calculation:

y =




−1 if z = 1,
+1 if z = 6,

0 otherwise.

This particular experiment or game depends on (is contingent on)
the outcome of the experiment Z, and can be denoted by Y = f(Z).
Where Z has six possible outcomes, with a uniform probability dis-
tribution, Y has three possible outcomes whose probability distribu-
tion can easily be deduced by means of the deterministic calculation
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f . The probability distribution1 of Y is y = −1 with probability 1
6 ,

y = +1 with probability 1
6 , and y = 0 with probability 2

3 .
We can easily invent such contingent random variables or gambling

games using more than one throw of the die, and with payoff Y
dependent on some calculation based on the joint outcome of the
successive throws.

This intuitive formulation is compatible with the formal and rig-
orous conception of a random variable as a P -measurable function
whose domain is a P -measurable sample space Ω. This twentieth
century injection of mathematical rigor by A.N. Kolmogorov and
others brought about a great extension of the depth and scope of
the theory of probability and random variation, including the devel-
opment of many new spheres of application of the theory.

These applications often involve stochastic processes. Suppose T
is some set of indexing elements {s}. For instance, T could be
an interval of real numbers [a, b]. A stochastic process Y = YT is
a family Y = (Y (s))s∈T , for which each element Y (s) = Ys is a
random variable. A sample path (y(s))s∈T of the process Y = YT
can be thought of as a function y : T 7→ R in which, for each s, y(s)
(or ys) is a possible outcome of the random variable (measurement,
experiment, trial) Y (s).

4. Stochastic integrals

Take T = [0, t]. Equation (2) above appears to be the result of
applying an integration operation

∫
T to the equation (1). If this is

the case, and if this step is justified, then comparison of (1) and (2)
implies (without delving into their actual meaning) that

∫

T

dYs =

∫ t

0

dYs = Yt−Y0; or

∫

T

dY (s) =

∫ t

0

dY (s) = Y (t)−Y (0).

(3)

1The probability distribution (“margin of error”) carries the essential informa-
tion specifying the character of the random variable or experiment. It is often
convenient to include other “potential” values or outcomes which are not actu-
ally possible or “potential”. For instance, in the die-throwing experiment we can
declare that every real number is a potential outcome. In that case we assign
probability zero to the impossible outcomes. This does not change the random
variable or its probability distribution in any essential way that affects its math-
ematical meaning
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On the face of it, a clear and precise understanding of this simplest
of all possible stochastic integrals would seem to be the sine qua
non of this subject. Expressed as a stochastic differential equation,
it is the tautology dYs = dYs. Whatever (3) actually means, it
seems consistent enough with more familiar forms of integration of
the Stieltjes kind, in the somewhat loose and uncritical sense that
the integral (or sum) of increments dY gives an overall increment.

Advancing a little bit further, take a deterministic function f , and
consider

∫
T f(Ys)dYs (or

∫
T f(Y (s))dY (s)), which is a more general

version of
∫
T dYs. If y is a sample path of the process Y , the expres-

sion ∫

T

f(y(s))dy(s) or

∫

T

f(ys)dys (4)

is a Stieltjes-type integral, which, if it exists, may be thought of as
some limit of Riemann sums∑

f(y(s))∆y(s) or
∑

f(y(sj)) (y(tj)− y(tj−1)) ,

where the finite set of points tj form a partition of the interval
T = [0, t], with tj−1 ≤ sj ≤ tj for each j.

From the point of view of basic mathematical analysis, unlike
(3) which is about “margins of error” in probabilistic measurement,
there is nothing problematic about (4)—this Riemann-Stieltjes-type
integral may or may not exist for particular functions y and f ,
but it is a fairly familiar subject for anyone who has studied ba-
sic Riemann-type integration.

In the Riemann sums for (4), some applications require that sj =
tj−1 for each j. Cauchy’s approach to the theory of integration used
approximating sums with sj = tj−1 or sj = tj, so such sums can
be called Cauchy sums rather than Riemann sums. In any event,
there are various ways, including the Lebesgue method, in which
we can seek to define an integral

∫
T f(y(s))dy(s) for sample paths

yT = (y(s))s∈T of a stochastic process Y = YT .
Suppose a Stieltjes-type integral of f(y(s)) is calculated with re-

spect to the increments y(I) := y(tj) − y(tj−1) of the function yT .
For instance, if f is a function taking some fixed, real, constant value
such as 1, then a “naive” Riemann sum calculation on the domain
T = [0, t], with t0 = 0 and tn = 1 gives

∑
f(y(s))y(I) =

n∑

j=1

y(I) =
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((y(t1)− y(0))+((y(t2)− y(t1))+· · ·+((y(1)− y(tn−1)) = y(1)−y(0)

for every sample outcome yT of the process YT . So it is reasonable—
in some “naive” way—to claim that, for this particular function f ,
the Riemann-Stieltjes integral exists for all outcomes yT :

∫

T

f(ys)dys =

∫ t

0

dy(s) = y(t)− y(0).

One might then be tempted2 to apply such an argument to step
functions f , and perhaps to try to extend it to some class of con-
tinuous functions f , especially if we are only concerned with sample
paths yT which are continuous.

But the key point here is that, given a stochastic process Y = YT ,
and given certain deterministic functions f , real values∫
T f(y(s))dy(s) can be obtained for each sample path y = yT by

means of a recognizable Stieltjes integration procedure.
Can this class of real numbers or outcomes be related somehow to

some identifiable random variable Z which possesses some identifi-
able probability distribution (or “margin of error” estimates)?

If so, then Z might reasonably be considered to be the random
variable obtained by integrating, in some Stieltjes fashion, the ran-
dom variable f(Ys) with respect to the increments Y (I) = Y (tj) −
Y (tj−1) of the stochastic process YT .

In other words, Z is the stochastic integral
∫
T f(Ys)dYs.

To justify the latter step, a probability distribution (or “margin
of error” data) for Z must be determined. But, in the case of the
constant function f given above (f(ys) = 1), this is straightforward.
Because, with f(ys) = 1 for all outcomes ys in all sample paths
(or joint outcomes) yT , the distribution function obtained for the
Riemann sum values

∑
f(ys)y(I) is simply the known distribution

function of the outcomes y(t)− y(0) of the random variable Y (t)−
Y (0).

This distribution is the same for all partitions of T = [0, t]. So
it is reasonable to take it to be the distribution function of the
stochastic integral Z =

∫
T f(Ys)dYs. For constant f this seems to

provide meaning and rationale for (4).

2A warning against this temptation is provided in Example 8.3 below.
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What this amounts to is a naive or intuitive interpretation of sto-
chastic integration which seems to hold for some elementary func-
tions f . This approach can be pursued further to give a straightfor-
ward interpretation—indeed, a “proof”—of Itô’s formula, at least
for the unchallenging functions f mentioned above.

But what of the standard or rigorous theory of stochastic integra-
tion?

5. Standard theory of stochastic integration

Unfortunately, this theory cannot accommodate the naive or intu-
itive construction of the simple stochastic integrals described in the
preceding section. Broadly speaking, the elementary Riemann sum
type of calculation is not adequate for the kinds of analysis needed
in this subject. It is not possible, for instance, to apply a mono-
tone convergence theorem, or a dominated convergence theorem, to
simple Riemann and Riemann-Stieltjes integrals. Historically, these
kinds of analysis and proof have been supplied by Lebesgue-type
integrals which, while requiring a measure function as integrator,
cannot be simply defined by means of the usual arrangement3 of
Riemann sums.

And this is where the difficulty is located. Suppose, for instance,
that the stochastic process YT that we are dealing with is a standard
Brownian motion. In that case any sample path yT is, on the one
hand, almost surely continuous—which is “nice”; but, on the other
hand, it is almost surely not of bounded variation in every interval
J of the domain T = [0, 1]. And the latter is “nasty”.

This turns out to be very troublesome if we wish to construct
a Lebesgue-Stieltjes integral using the increments y(I) = y(tj) −
y(tj−1) of a sample path which is continuous but not of bounded
variation in any interval.

The problem is that, in order to construct a Lebesgue-Stieltjes
measure from the increments y(I), we must separate the
non-negative increments y+(I) from the negative-valued increments
y−(I),

y(I) = y+(I)− |y−(I)|,
and try to construct a non-negative measure from each of the compo-
nents. But, because y is not of bounded variation, the construction

3But Section 8 shows that Lebesgue integrals are essentially Riemann-Stieltjes
integrals.
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for each component diverges to infinity on every interval J . Thus
the standard theory of stochastic integration encounters a significant
difficulty at the very first step (4).

To summarize:

• In the standard Itô or Lebesgue integral approach, the most
basic calculation of the integral of a constant function f(YT ),
with respect to the increments dY of a Brownian process,
fails because the Lebesgue-Stieltjes measure does not exist.
• On the other hand, if Riemann sums of the increments of the

process YT are used, then, by cancellation, a finite result is
obtained for each Riemann sum—a result which agrees with
what is intuitively expected.

In the standard Lebesgue (or Itô) theory of stochastic integration—
in [16] for instance—this problem is evaded by postulating a finite
measure µy(J) for each sample path, and then constructing a weak
form of integral which, in the case of Brownian motion, is based on
certain helpful properties of this process.

The trouble with this approach is that it produces a quite difficult
theory which does not lend itself to the natural, intuitive interpre-
tation described above.

However, elementary Riemann-sum-based integration is not gener-
ally considered to have the analytical power possessed by Lebesgue-
style integration. And a great deal of analytical power is required in
the theory of stochastic processes. So at first sight it seems that we
are stuck with the standard theory of stochastic integration, along
with all its baggage of subtlety and complication.

But this is not really the case. The good news is that is actu-
ally possible to formulate the theory of stochastic integrals using
Riemann sums instead of the measures of Lebesgue theory.

6. Integration of functions

To see this, it is first necessary to review the various kinds of
integration which are available to us.

First consider the basic Riemann integral,
∫ b
a f(s)ds, of a real-

valued, bounded, continuous function f(s) on an interval [a, b]. Let
P be a partition of [a, b];

P : a = t0 < t1 < t2 < · · · < tn = b,
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for any choice of positive integer n and any choice of tj, 1 ≤ j < n.
For any u < v and any interval I with end-points u and v, write
|I| = v − u. Denoting intervals ]tj−1, tj] by Ij let

UP =
n∑

j=1

Pj|Ij|, LP =
n∑

j=1

pj|Ij|

where

Pj = sup{f(s) : s ∈ Ij}, pj = inf{f(s) : s ∈ Ij}.
Definition 6.1. Define the upper Riemann integral of f by

U := inf{LP : all partitions P of [a, b]},
and the lower Riemann integral of f by

L := sup{lP : all partitions P of [a, b]}.
Then UP ≥ LP for all P , and if U = L we say that f is
Riemann integrable, with

∫ b

a

f(s)ds := U = L.

Write the partition P as {I} where each I has the form
Ij = ]tj−1, tj], with |Ij| = tj − tj−1, and Riemann sum

(P)
∑

f(s)|I| =
n∑

j=1

f(sj)|Ij|.

Suppose g(s) is a real-valued, monotone increasing function of s ∈
[a, b], so g(s) ≥ g(s′) for s > s′. For any interval I with end-points
u and v (u < v), define the increment or interval function g(I) to
be g(v)− g(u).

Definition 6.2. If |I| and |Ij| are replaced by g(I) and g(Ij) in
Definition 6.1 of the Riemann integral, then the resulting integral is

called the Riemann-Stieltjes integral of f with respect to g,
∫ b
a f dg

or
∫ b
a f(s)dg(s).

In fact if we start with the latter definition the Riemann integral
is a special case of it, obtained by taking the point function g to be
the identity function g(s) = s.

If g(s) has bounded variation it can be expressed as the difference
of two monotone increasing, non-negative point functions,

g(s) = g+(s)− (−g−(s)),
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and the Riemann-Stieltjes integral of f with respect to g can then
be defined as the difference of the Riemann-Stieltjes integrals of f
with respect to g+ and −g−, respectively.

The following result is well known: if real-valued, bounded f is

continuous and if real-valued g has bounded variation then
∫ b
a f dg

exists.
As suggested earlier, the Lebesgue integral of a real-valued point

function k with respect to a measure µ can be viewed, essentially,
as a Riemann-Stieltjes integral in which the point-integrand k(ω)
satisfies the condition of measurability. To explain this statement
further, consider a measure space (Ω,A, µ) with non-negative mea-
sure µ on a sigma-algebra A of µ-measurable subsets of the arbi-
trary measurable space Ω. Thus, if µ(Ω) = 1, the measure space
is a probability space. Suppose the point-integrand k is a bounded
real-valued µ-measurable function on the domain Ω. Then there
exist real numbers c and d for which

c ≤ k(ω) ≤ d for all ω ∈ Ω.

Also, for each sub-interval J of [c, d], measurability of k implies
µ(k−1(J)) is defined. The basic definition of the Lebesgue integral
of k with respect to µ on Ω is as follows.

Definition 6.3. Let Q = {Jj} = {]vj−1, vj]} be a partition of [c, d],

Q : c = v0 < v1 < v2 < · · · < vn = d,

and let

LQ =
n∑

j=1

vj−1µ(k−1(Jj)), UQ =
n∑

j=1

vjµ(k−1(Jj)).

Let L := sup{LQ : Q}, U := inf{UQ : Q}, the supremum and
infimum being taken over all partitions Q of [c, d]. If L = U , then
their common value is the Lebesgue integral

∫
Ω k(ω)dµ.

An advantage of Lebesgue integration over Riemann integration
is that the former has theorems, such as the dominated and mono-
tone convergence theorems which, under certain condition, make it
possible for instance to change the order of integration and differ-
entiation. Also, Fubini’s and Tonelli’s theorems allow exchange of
order of multiple integrals.

What makes “good” properties such as these possible is measur-
ability of the integrand k. But the Lebesgue integral itself is, by
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definition, a Riemann-Stieltjes-type integral. To see this, for each
u ∈ [c, d] define the monotone increasing function

g(u) = µ
(
k−1([c, u])

)
, (5)

and take the point function h(u) to be the identity function h(u) =
u. Then the construction4 in Definition 6.3 shows that∫

Ω

k(ω)dµ =

∫ d

c

h(u) dg(u), =

∫ d

c

u dg. (6)

In other words, when combined with the measurability property of
the point-integrand, this particular Riemann-Stieltjes construction
gives the “good” properties required in the integration of functions.

7. Riemann definition

But in fact a Riemann construction can give these “good” prop-
erties without postulating measurability in the definition5 of the
integral. To see this, we start again by considering a more general
and more flexible definition of basic Riemann and Riemann-Stieltjes
integration which generalizes the construction of these integrals as
given above in Definitions 6.1 and 6.2.

The proposed, more general, definition of the Riemann-Stieltjes in-
tegral is applicable to real- or complex-valued functions f (bounded
or not); and to real- or complex-valued functions g, with or without
bounded variation.

Definition 7.1. The function f is Riemann-Stieltjes integrable with
respect to g, with integral α, if, given ε > 0, there exists a constant
δ > 0 such that, for every partition P = {I} of [a, b] satisfying
|I| < δ for each I ∈ P , the corresponding Riemann sum satisfies∣∣∣α− (P)

∑
f(s)g(I)

∣∣∣ < ε,

so α =
∫ b
a f dg.

4The integral of a point function h(u) with respect to a point function g(u) can
be addressed either as a Riemann-Stieltjes construction or as a Lebesgue-Stieltjes
construction. When h(u) = u and g(u) = µ (k−1([c, u])) the former approach gives
the Lebesgue integral

∫
Ω
k(ω)dµ. On the other hand, if the Lebesgue-Stieltjes

construction is attempted with h(u) = u and g(u) = µ (k−1([c, u])), we simply
replicate the Riemann-Stieltjes construction of the Lebesgue integral

∫
Ω
k(ω)dµ,

and nothing new emerges.
5And if measurability is redundant in the definition, then so is the measure

space structure.
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If g is the identity function g(s) = s then Definition 7.1 reduces

to the ordinary Riemann integral of f ,
∫ b
a f(s)ds.

Definition 7.1 does not embody conditions which ensure the ex-
istence of the integral. Such integrability conditions are not postu-
lated but are deduced, in the form of theorems, from the definition
of the integral.

Thus, if the function properties specified, respectively, in Defini-
tions 6.1, 6.2, and 6.3 above are assumed, the integrability in each
case follows from Definition 7.1; and Definitions 6.1, 6.2, and 6.3
become theorems of Riemann, Riemann-Stieltjes, and Lebesgue in-
tegration, respectively.

Definition 6.3 can now be expressed in terms of Definition 7.1,
using the formulations (5) and (6), and assuming measurability of
the integrand f with respect to measure space (Ω,A, µ).

Definition 7.2. The function f is Lebesgue integrable with respect
to measure µ, with integral

∫
Ω f(ω)dµ = α, if, given ε > 0, there

exists a constant δ > 0 such that, for every partition Q = {J} of
[c, d] satisfying |J | < δ for each J ∈ Q, the corresponding Riemann
sum satisfies ∣∣∣α− (Q)

∑
h(u)g(J)

∣∣∣ < ε,

where h(u) = u is the identity function on [c, d]; so α =
∫ d
c h(u)dg(u)

=
∫ d
c u dg.

Thus, by definition, the Lebesgue integral
∫

Ω f(ω)dµ, with domain

Ω, is the Riemann-Stieltjes integral
∫ d
c u dg, with domain [c, d].

The following result is an obvious consequence of Definition 7.1.
If f has constant value β and if g is an arbitrary real- or complex-

valued function, then
∫ b
a f dg exists and equals β(g(b)− g(a)). This

follows directly from Definition 7.1 since, for every partition P of
[a, b], cancellation of terms gives

(P)
∑

f(s)g(I) = β

n∑

j=1

(g(tj)− g(tj−1)) = β (g(b)− g(a)) .

This result does not in general hold for Lebesgue-Stieltjes integra-
tion, as the latter requires that g(s) be resolved into its negative and
non-negative components, g(s) = g+(s)−(−g−(s)), and convergence
may fail when the integral is calculated with respect to each of these
components separately.
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Example 8.3 below shows that, though constant functions f are
Riemann-Stieltjes integrable with respect to any integrator function
g, this does not necessarily extend to step functions f .

Definition 7.1 of the Riemann or Riemann-Stieltjes integral does
not postulate any boundedness, continuity, measurability or other
conditions for the integrand f . But, as already stated, in the ab-
sence of integrand measurability and the construction in Definition
6.3, this method of integration does not deliver good versions of
monotone and dominated convergence theorems, or Fubini’s theo-
rem.

8. -Complete integration

Developments in the subject since the 1950’s—developments which
were originated independently by R. Henstock and J. Kurzweil—
have made good this deficit in the basic Riemann and Riemann-
Stieltjes construction. In this new development of the subject, Def-
inition 7.1 of the Riemann-Stieltjes integral is amended as follows.

Definition 8.1. A function f is Stieltjes-complete integrable with
respect to a function g, with integral α if, given ε > 0, there exists
a function δ(s) > 0 such that∣∣∣α− (P)

∑
f(s)g(I)

∣∣∣ < ε

for every partition P such that, in each term f(s)g(I) of the Rie-
mann sum, we have s− δ(s) < u ≤ s ≤ v < s+ δ(s), where u and v
are the end-points of the partitioning interval I.

In other words, where |I| is less than a constant δ in the basic
Riemann-Stieltjes definition, we have |I| < δ(s) in the new def-
inition. Write α =

∫
[a,b] f(s)g(I), or

∫
[a,b] f dg, for the Stieltjes-

complete integral whenever it exists.
Again, if the integrator function g is the identity function g(s) = s,

the resulting integral (corresponding to the basic Riemann integral),
is the Riemann-complete integral of f , written α =

∫
[a,b] f(s)|I|, or∫

[a,b] f(s)ds. The latter is also known as the Henstock integral, the

Kurzweil integral, the Henstock-Kurzweil, the generalized Riemann
integral, or the gauge integral since in this context the function
δ(s) > 0 is called a gauge.

It is obvious that every Riemann (Riemann-Stieltjes) integrable
integrand is also Riemann-complete (Stieltjes-complete) integrable,
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as the gauge function δ(s) > 0 of Definition 7.1 can be taken to be
the constant δ > 0 of Definition 6.1 and Definition 6.2.

This argument indicates a Lebesgue-complete extension of the
Lebesgue integral, by replacing the constant δ > 0 of Definition 7.2
with a variable gauge δ(u) > 0:

Definition 8.2. Let h(u) = u be the identity function on [c, d].
The function f is Lebesgue-complete integrable with respect to
measure µ, with integral

∫
Ω f dµ = α, if, given ε > 0, there exists a

gauge δ(u) > 0 for c ≤ u ≤ d, such that
∣∣∣α− (Q)

∑
h(u)g(J)

∣∣∣ < ε,

for every partition Q = {J} of [c, d] satisfying

u− δ(u) < vj−1 ≤ u ≤ vj < u+ δ(u)

for each J = ]vj−1, vj] ∈ Q.

In that case α =
∫

[c,d] h(u)g(J) =
∫

[c,d] u g(J), and the Lebesgue-

complete integral is a special case of the Stieltjes-complete integral—
a special case in which a measure space structure exists and for which
the integrand is measurable. So it is again clear that every Lebesgue
integrable integrand is Lebesgue-complete integrable; since the for-
mer is, in effect, a Riemann-Stieltjes integral, the latter is a Stieltjes-
complete integral, and every Riemann-Stieltjes integrable function
is also Stieltjes-complete integrable. (No special notation has been
introduced here to distinguish the Lebesgue integral

∫
Ω f dµ from

its Lebesgue-complete counterpart.)
If the measurable domain Ω is a real interval such as [a, b], then

some ambiguity arises in the interpretation of the Lebesgue integral
as an integral of the gauge, or generalized Riemann, kind. The rea-
son for the ambiguity is as follows. Assuming the existence of the
Lebesgue integral

∫
Ω f(ω)dµ,=

∫
[a,b] f(ω)dµ, where ω now represents

real numbers in the domain [a, b], then we are assured of the exis-
tence of the Stieltjes and Stieltjes-complete (or Lebesgue-complete)

integrals
∫ d
c u dg and

∫
[c,d] u g(J), respectively, with

∫

[a,b]

f(ω)dµ =

∫ d

c

u dg =

∫

[c,d]

u g(J),

where the values u = h(u) are elements of [c, d] and h is the identity
function on [c, d].



INTEGRATION ISSUES IN PROBABILITY 35

But in this case, letting ω = s denote points of the domain [a, b]
and with I denoting subintervals of [a, b], the function µ(I) is de-
fined on intervals I, and two different Stieltjes-type constructions
are possible.

First, there is the Riemann-Stieltjes integral
∫ d
c u dg which defines

the Lebesgue integral
∫

Ω f(ω)dµ,=
∫

[a,b] f(ω)dµ. Secondly, there

is the gauge integral
∫

[a,b] f(s)µ(I) which has a Stieltjes-complete
construction.

It is then meaningful to consider whether, with f measurable,
existence of the Lebesgue integral

∫
[a,b] f(ω)dµ implies existence of

the Stieltjes-complete integral
∫

[a,b] f(s)µ(I), and whether
∫ d

c

u dg =

∫

[a,b]

f(s)µ(I)

holds,6 the first of these integrals being the Lebesgue integral∫
[a,b] f(ω)dµ, which, by Definition 7.2, is interpreted as the Riemann-

Stieltjes integral
∫ d
c u dg.

To see that these two integrals coincide, take f to be a bounded,
measurable function on [a, b]. This can be expressed as the difference
of two non-negative, bounded, measurable functions f+ and f−. Ac-
cordingly, and without loss of generality, take f to be non-negative,
bounded, measurable. Then the Lebesgue integrable function f is
the µ-almost everywhere point-wise limit of a monotone increasing
sequence of step functions fj. With ω = s, each step function fj
is Lebesgue integrable, with Lebesgue integral

∫
[a,b] fj(ω) dµ; and

each step function fj is Stieltjes-complete integrable, with Stieltjes-
complete integral

∫
[a,b] fj(s)µ(I), and
∫

[a,b]

fj(ω) dµ =

∫

[a,b]

fj(s)µ(I)

for each j. (This statement is also true if “Lebesgue integral” and
“Lebesgue integrability” are replaced by “Lebesgue-complete inte-
gral” and “Lebesgue-complete integrability”.)

6There is a considerable literature on this question, which is usually answered
as: “Every Lebesgue integrable function on an interval of the real numbers R is
also Henstock-Kurzweil integrable.” If the domain of the integrand is a measur-
able space Ω which is not a subset of R or Rn, then the appropriate way to
formulate the corresponding Henstock-Kurzweil (or -complete) integral is in the
form

∫
[c,d]

u g(J) described in Definition 8.2.
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By the monotone convergence theorem of Lebesgue integration
(or, respectively, by the monotone convergence theorem of Lebesgue-
complete integration),∫

[a,b]

fj(ω)dµ→
∫

[a,b]

f(ω)dµ

as j → ∞. By the monotone convergence theorem of Stieltjes-
complete integration, f(s)µ(I) is Stieltjes-complete integrable and∫

[a,b]

fj(s)µ(I)→
∫

[a,b]

f(s)µ(I)

as j → ∞. Since corresponding integrals of the pair of sequences
are equal, their limits are equal:∫

[a,b]

f(ω)dµ =

∫

[a,b]

f(s)µ(I).

This is the gist of a proof that existence of a Lebesgue integral (or
of a Lebesgue integral) on a real domain implies existence of the
corresponding Stieltjes-complete integral on the same domain, and
equality of the two.

Thus the above argument can be applied to either the Lebesgue
or the Lebesgue-complete integral on Ω = [a, b] in conjunction, re-
spectively, with the corresponding Stieltjes-complete integral on the
same domain. In effect, if the domain Ω is a subset of R, and if f
is Lebesgue integrable or Lebesgue-complete integrable with respect
to µ, then f(s)µ(I) is also Stieltjes-complete integrable and the two
integrals are equal.

The specific properties of the Lebesgue-complete integral have not
been investigated.

As mentioned earlier, constant functions f are Riemann-Stieltjes
integrable, and hence Stieltjes-complete integrable, with respect to
any integrator function g. But as the following counter-example
shows, this does not necessarily extend to step functions f , or any
other functions which are not constant.

Example 8.3. Dirichlet function: For 0 ≤ s ≤ 1 let D(s) be 1 if
s is rational, and 0 otherwise. For I = ]u, v] let D(I) = D(v)−D(u).
Let D([0, v]) = D(v) − D(0). The point function D(s) is dis-
continuous everywhere, and has infinite variation on every interval
J ⊆ [0, 1]. If f(s) is constant for 0 ≤ s ≤ 1, then the Riemann-

Stieltjes integral
∫ 1

0 f(s) dD exists and equals D(1)−D(0); that is,
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∫ 1

0 f(s) dD = 0. But if f is not constant on [0, 1], then the
Riemann-Stieltjes integral of f with respect to D does not
exist. What about Stieltjes-complete integrability of f(s)D(I)? In
fact, if f is not constant on [0, 1], then the Stieltjes-complete in-
tegral of f with respect to D does not exist. This is proved in
Theorem 1 of [6], and the proof is reproduced in Theorem 67 of [13].
Thus f(s)D(I) is Riemann-Stieltjes integrable and Stieltjes-
complete integrable on [0, 1] if and only if f(s) is constant
for 0 ≤ s ≤ 1.

Historically this is the first published result (Theorem 1 of [6]) in
the theory of -complete integration.

9. -Complete approach to stochastic integrals

Returning to stochastic integrals, the -complete method of in-
tegration allows us to construct Stieltjes-type Riemann sums for
highly oscillatory expressions which include both positive and neg-
ative terms. Cancellation of terms can occur in the Riemann sum
approximations, so the possibility of convergence is preserved by this
construction.

The Lebesgue construction, on the other hand, requires integral
convergence, separately and independently, of the positive and neg-
ative components of the integrand. The difficulty this presents is
illustrated in the alternating or oscillating series

∑∞
j=1(−1)jj−1. If

the positive and negative terms of the series are considered as two
separate series then each of them diverges. But the series itself is
conditionally (or non-absolutely) convergent. Similarly, for sample
paths y(s) of a stochastic process YT the integral

∫
[0,t] dy(s) does

not generally exist when considered as a Lebesgue-Stieltjes integral.
But it exists for all sample paths yT , with value y(t) − y(0), when
considered as a Stieltjes-complete integral.

There is no analytical cost or disadvantage in relinquishing the
Lebesgue construction in favor of the -complete method. This is
because the important theorems of Lebesgue integration, such as
monotone and dominated convergence, are also valid for the -com-
plete approach. Furthermore, there are other convergence theorems
of a similar kind, specifically designed to deal with highly oscilla-
tory functions such as those which occur in the theory of stochastic
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processes but which are beyond the scope of the Lebesgue method.
See [13] for details of these.

However, stochastic integration includes novelties and challenges
which have not yet been addressed in this essay.

For Brownian motion processes XT , one of the most important
stochastic integrals is

∫ t
0 dX

2
s = t. The corresponding integral for

a sample path x(s) (0 ≤ s ≤ t) is “
∫ t

0 (dx(s))2”. But this expres-
sion does not have the familiar form of a Stieltjes-type integral:∫ b
a f(s)dg, which, when g is the identity function, reduces to the

even more familiar
∫ b
a f(s)ds.

In Riemann sum approximation we are dealing with expressions∑
(x(I))2, where, for I = ]u, v], x(I) = x(v) − x(u). But tradi-

tionally, while a Riemann sum for a Stieltjes integral involves terms
f(s)x(I) with integrator function x(I) (in which f(s) can be identi-
cally 1), we do not usually expect to see integrators such as (x(I))2

or dX2
s .

Another important stochastic integral in Brownian motion theory
is ∫ t

0

XsdXs =
1

2
X2
t −

1

2
t.

For a sample path x(s) of Brownian motion, this involves
∫ t

0 x(s)dx(s),
or, in Riemann sum terms,

∑
x(s)x(I). The latter, as it stands, is a

finite sum of terms x(s)(x(v)−x(u)) where I = ]u, v] and u ≤ s ≤ v.
And if we are using the Stieltjes-complete approach as described
above, then we might suppose that each s in the Riemann sum is
the special point used in partitions which are constrained by a gauge
δ(s),

s− δ(s) < u ≤ s ≤ v < s+ δ(s).

But in fact this is not what is required in the stochastic integral∫ t
0 XsdXs. In Riemann sum format, what is required is

∑
x(u)x(I), or

∑
x(u) (x(v)− x(u)) ,

where the first factor x(u) in the integrand is a point function eval-
uated at the left hand end-point u of the interval I = ]u, v].

Sometimes the form
∑
x(w)(x(v) − x(u)) is used, with w = u +

1
2(v − u).

In a way, integrands of form x(I)2, x(u)x(I), or x(w)x(I), are an
unexpected innovation. Their value is calculated from the numbers
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u and v which specify the interval I. So they can be thought of as
functions h(I) of intervals I.

But these functions are not additive7 on intervals. In that regard
they are unlike the integrators |I| and x(I) which are themselves
functions of I but are finitely additive on intervals, in the sense
that, if J = I1 ∪ . . . ∪ In is an interval, then

|J | =
n∑

j=1

|Ij|, x(J) =
n∑

j=1

x(Ij).

Broadly speaking, integration is a summation process in which the
summed terms involve functions of intervals. Up to this point in this
essay, the only integrands to be considered included a factor which
was an additive function of intervals I, such as the length function
|I| or the Stieltjes-type functions g(I) or x(I). But there is nothing
inherent in the definition of -complete integrals that requires any
I-dependent factor in the integrand to be additive.

With this in mind, consider again the definition of the -complete
integral on an interval [a, b].

Firstly, a gauge is a function δ(s) > 0, a ≤ s ≤ b. Given s, an
interval I = ]u, v] for which s is either an end-point or an interior
point, is δ(s)-fine if s−u < δ(s) and v−s < δ(s). A finite collection
D = {(s1, I1), . . . , (sn, In)} is a division of [a, b] if each sj is either an
interior point or end-point of Ij and the intervals Ij form a partition
of [a, b]. Given a gauge δ, a division D is δ-fine if each (sj, Ij) ∈ D
is δ-fine.

Now suppose h is a function of elements (s, I). Examples in-
clude: h(s, I) = h1(I) = |I|, h(s, I) = h2(s) = s, h3(s, I) =
s2|I|, h4(I) = |I|2. Given a division D = {(s, I)} of [a, b] whose
intervals I form a partition P , the corresponding Riemann sum is

(D)
∑

h(s, I),=
∑
{h(s, I) : I ∈ P}.

Definition 9.1. A function h(s, I) is integrable on [a, b], with inte-
gral

∫
[a,b] h(s, I) = α, if, given ε > 0. there exists a gauge δ(s) > 0

so that, for each δ-fine division D of [a, b],
∣∣∣α− (D)

∑
h(s, I)

∣∣∣ < ε.

7If h(I) were finitely additive on intervals I it could be used to define a point
function h(s) := h([0, s]), and vice versa. Integrals with respect to finitely additive
integrators are therefore representable as Stieltjes-type integrals, and vice versa.
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Applying this definition to the examples, h1 is integrable with
integral b − a, h2 is not integrable, h3 is integrable with integral
1
3(b3 − a3), and h4 is integrable with integral 0. If h(s, I) = h5(I) =
u2|I| where, for each I, u is the left hand end-point of I, then it is
not too hard to show that h5 is integrable with integral 1

3(b3 − a3).
Actually, it is the traditional custom and practice in this subject

to only consider integrands h(s, I) = f(s)p(I) where the integrator
function p(I) is a measure function or, at least, finitely additive on
intervals I; and where the evaluation point s of the point function
integrand f(s) is the point s of (s, I) for each (s, I) ∈ D. When
p(I) = |I|, this convention is needed in order to prove the Funda-
mental Theorem of Calculus.8.

But, while the Fundamental Theorem of Calculus is important
in subjects such as differential equations, it hardly figures at all
in some other branches of mathematics such as probability theory
or stochastic processes. And we have seen that stochastic integra-
tion often requires point integrands f(s) to be evaluated, not at
the points s of (s, I) ∈ D, but at the left hand end-points of the
partitioning intervals I.

So, with I = ]u, v], f(u) is, in fact, an integrand function which
depends, not on points s but on intervals ]u, v].

These are a few of the “unexpected innovations” to be encountered
in stochastic integration, giving it a somewhat alien and counter-
intuitive feel to anyone versed in the traditional methods of calculus.
Indeed, these are further examples of probability and analysis losing
contact with each other.

For instance, the stochastic integral
∫ t

0 XdX is given the value
1
2X(t)2 − 1

2t when the process X(s) (with X(0) = 0) is a Brownian
motion. Introductory treatments of this problem sometimes contrast
the expression

∫ t
0 XdX with the elementary calculus integral

∫
xdx

whose indefinite integral is 1
2x

2, in which the use of symbols X and x
can, in the mind of an inexperienced reader, set up an inappropriate
and misleading analogy.

In terms of sample paths, the stochastic integral
∫ t

0 X(s)dX(s)

has representative sample form
∫ t

0 x(s)dx(s) which is a Stieltjes-type
integral with integrator function x(I) = x(v)− x(u), formed from a
typically “zig-zag” Brownian path x(s), 0 < s ≤ t, with x(0) = 0.

8The Fundamental Theorem of Calculus states that if F ′(s) = f(s) then f(s)
is integrable on [a, b] with definite integral equal to F (b)− F (a)
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Then the notation for the contrasting elementary calculus integral is
not

∫
x dx, but

∫
s ds, with value 1

2s
2. Putting the latter in Stieltjes

terms,
∫
s ds is the Stieltjes integral

∫ t
0 x(s)dx(s) where the sample

path path or function x is the identity function x(s) = s, 0 ≤ s ≤ t.
Clearly a Stieltjes integral involving a “typical” Brownian path

x(s) (which though continuous is, typically, nowhere differentiable)
is a very different beast from a Stieltjes integral involving the straight
line path x(s) = s. So in reality it is not surprising that there is a
very big difference between the two integrals

∫
X(s)dX(s) =

1

2
X(t)2 − 1

2
t, and

∫
s ds =

1

2
s2. (7)

The first integral typically involves Stieltjes integrals using very
complicated and difficult Brownian paths x(s). It should be dis-
tinguished sharply from the more familiar and simpler Stieltjes in-
tegrals in which, for instance, the point function component of the
integrand is a continuous function, and the integrator or interval
function is formed from increments of a monotone increasing or
bounded variation function.

It is easy to overlook this distinction. Example 60 of [13] illustrates
the potential pitfall. In this Example, XT is an arbitrary stochastic
process and, with a fixed partition of T = ]0, t], 0 = τ0 < τ1 < · · · <
τm = t, the function σ(s) is constant for τj−1 < s ≤ τj. Example 60
claims, in effect, that the stochastic integral

∫ τj
τj−1

σ(s)dXs exists for

each j in the same way that, for constant β,
∫ τj
τj−1

β dXs exists and

equals β(X(τj)−X(τj−1)).
But Example 8.3 above shows that this claim is false. As a step

function, σ(τj−1) is not generally equal to the constant β = σ(s)
when s > τj−1. So if the sample path x(s) is the Dirichlet function
D(s), the Stieltjes integral

∫ τj
τj−1

σ(s)dx(s) does not exist, and the

claim in Example 60 is invalid.
However, if XT is a Brownian motion process, then each of the

significant sample paths x(s) satisfies a condition of uniform conti-
nuity. In that case Example 60 is valid. But it requires some proof,
similar to the proof of Theorem 229 on the succeeding page.

So what is truly surprising in (7) is, not that the two integrals give
very different results, but that any convergence at all can be found
for the first integral.
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Why is this so? This essay has avoided giving any precise mean-
ing to expressions such as

∫ t
0 XdX—or even to a random variable

Xs. But the meaning of the random variable
∫ t

0 XsdXs is somehow
representative of a Stieltjes-type integral which can be formulated
for every sample path {x(s) : 0 < s ≤ t}. These sample paths
may consist of joined-up straight line segments (as in the archetyp-
ical jagged-line Brownian motion diagram), or smooth paths, or
everywhere discontinuous paths (like the Dirichlet function). Thus
any claim that all of the separate and individual Stieltjes integrals∫ t

0 x(s)dx(s) of the class of such sample paths x—a very large class
indeed—have integral values 1

2x(t)2− 1
2t must be somehow challeng-

ing and dubious.
The integrals

∫ t
0 dX(s) = X(t),

∫ t
0 dx(s) = x(t), show that each

member of a large class of Stieltjes integrals can indeed yield a
common, single, simple result. Our discussion of the Riemann sum
calculation of these integrals illustrates how this happens: regardless
of the values of x(s) for s < t, adding up increments ensures that
all values x(s) cancel out, except the terminal value x(t).

Thus, if f(s) takes constant value β for 0 ≤ s ≤ t, then, for ev-
ery sample path x(s), the Riemann-Stieltjes (and Stieltjes-complete)

integral
∫ t

0 f(s)dx(s) exists, and
∫ t

0 f(s)dx(s) = βx(t) (or β(x(t) −
x(0)) if x(0) 6= 0. This is the basis of the claim that the stochastic

integral
∫ t

0 f(s)dX(s) exists, and is the random variable βX(t).
However, Example 8.3 demonstrates that caution must be exer-

cised in pursuing further the logic of Riemann sum cancellation.
Because if the sample path x(s) is the function D(s) of Example
8.3, the expression f(s)D(I) is not integrable on [0, t], in either the
Riemann-Stieltjes sense or the Stieltjes-complete sense, even when
f(s) is a step function (non-constant).

It is indeed possible to take the Riemann sum cancellation idea
further. Theorem 229 of [13] shows how this can be done.

But many important stochastic integrands are not actually inte-
grable in the basic sense of the Definition 9.1. If various sample
paths x(s) are experimented with in the integral

∫ t
0 dX

2
s , many dif-

ferent results will be found. So what is the meaning of the result∫ t
0 dX

2
s = t?

While, for different sample paths x,
∫ t

0 dx
2
s is not generally conver-

gent to any definite value, there is a weak sense of convergence of the
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integral which makes “
∫ t

0 dX
2
s = t” meaningful. Most importantly

in this case, the weak limit t is a fixed quantity rather than a ran-
dom or unpredictable quantity such as x(t). But this question goes
beyond the scope of the present essay, whose aim is to explore some
of the basic concepts of this subject, and hopefully to illuminate
them a little. A more extensive exploration is presented in [13].
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ON THE CONTINUITY OF THE INVERSES OF
STRICTLY MONOTONIC FUNCTIONS

HEIKO HOFFMANN

Abstract. In this short note we present an elementary, but seem-
ingly not well known result on the continuity of the inverse of a
strictly monotonic function and we discuss the relation of this re-
sult to the question when order and subspace topology are identical,
both on the real line as well as in the abstract framework of con-
nected linearly ordered spaces.

1. Introduction.

It is a fundamental question in analysis under which conditions
the inverse of a continuous bijection, say between two topological
spaces, is itself continuous. There are well-known results like the
invariance of domain theorem or the classical (and easy to prove)
result that the inverse of a continuous bijection from a compact
space onto a Hausdorff space is also continuous; see also [5] for a
complete characterisation of all subsets of R such that every con-
tinuous injection defined on a set of this kind is a homeomorphism
onto its range.

It seems that results like the ones just mentioned have influenced
the presentation of similar results at the level of undergraduate
courses. So it seems that the following statement is most wide-
spread in such courses.

If ∅ 6= I ⊆ R is an interval and if f : I → R is continuous and
injective, then f−1 : f(I)→ R is continuous, too.

Usually, the proofs given for this result make use of the continuity
of f in such a way that the continuity assumption appears to be
indispensable at a first cursory glance. However, there is a more
general result (see, e.g., [4, 37.1]), which, unfortunately, seems to be
seldom taught in undergraduate courses.
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If ∅ 6= I ⊆ R is an interval and if f : I → R is strictly monotonic,
then f−1 : f(I)→ R is continuous, too.

This statement demonstrates that the premise of the continuity of
f is entirely superfluous (of course, injectivity must be replaced by
strict monotonicity) and proofs based on this premise might disguise
the deeper reason for this phenomenon. In fact, from the point of
view of topology, the true reason lies in the following observation
(readers not very well familiar with abstract topology may skip the
subsequent explanation at their first reading): a strictly monotonic
function f : I → f(I) is a homeomorphism if I and f(I) both carry
the order topology induced by the order inherited from R instead
of the usual subspace topology. Since the subspace topology is finer
than the order topology the mapping f−1 : f(I)→ I is continuous if
f(I) is endowed with the subspace topology and I carries the order
topology. But since for intervals the order and subspace topology
coincide, we conclude that f−1 : f(I)→ I is continous where I and
f(I) now both carry the usual subspace topology.

Clearly, the same argument works for every strictly monotonic
function f : A → R (∅ 6= A ⊆ R) whenever the order and subspace
topology of A coincide. Unfortunately, the above proof (no matter
how simple it is) is in general out of reach for an undergraduate
course due to the topological conceptual framework. So at this point
three questions arise:

(1) Is there a simple (i.e., ideally so simple that it is easily ac-
cessible to undergraduate students with no knowledge of ab-
stract topology) description of those subsets of R for which
the order and subspace topology of A coincide?

(2) Is there an elementary proof for the above statement about
the continuity of the inverse of a strictly monotonic function
defined on such a set?

(3) Does there exist a subset of R such that each strictly mono-
tonic function defined on this set has a continuous inverse,
but the subspace and order topology on this set are distinct?

In this note we answer the first two questions affirmatively and we
present such an elementary proof, which might be easily incorpo-
rated into an undergraduate course. This proof is given in the next
section, where we choose a formulation that completely avoids men-
tion of the order topology and we get along only with notions easily
accessible to undergraduate students. Furthermore, we shall show
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that this result is optimal in the sense that on each non-empty sub-
set of R for which order and subspace topology differ there exists
a strictly monotonic function whose inverse is not continuous, thus
giving a negative answer to the third question.

In the last section we take up once again the abstract topologist’s
position in order to complete our picture and to relate Proposition
2.1 and Proposition 2.4 below to the topological point of view de-
scribed above. This link is provided by Lemma 3.3, which in fact
answers the first of the above questions (see Corollary 3.5).

2. Strictly monotonic functions on subsets of R

In this section we do not want to presuppose that the reader is
familiar with abstract topology in order to make sure that this part
of the note is also readable, e.g., for undergraduate students. For
this reason we first clarify some notions occuring in what follows.

The symbol N denotes the set of strictly positive integers, while
N0 := N∪̇{0}.
Let A be a subset of the reals R. A set C ⊆ A is called a (connected)
component of A if C is an interval (where we include the degenerate
cases of the empty set and singletons) and if each interval I ⊆ A
containing C already coincides with C. Each set A is the disjoint
union of all its connected components. This is most easily seen
by defining an equivalence relation on A by setting a ∼ a′ :⇐⇒
[min{a, a′},max{a, a′}] ⊆ A for a, a′ ∈ A. Then the equivalence
classes of ∼ are precisely the connected components of A.
We call A an open set if for each a ∈ A there exists ε > 0 such that
(a− ε, a+ ε) ⊆ A.
We denote by

∂A := {x ∈ R : ∀ε > 0 : (x− ε, x+ ε)∩A 6= ∅ 6= (x− ε, x+ ε) \A}
the boundary of A. The set A is closed if and only if ∂A ⊆ A. Notice
that A is closed if and only if R \ A is open.
A function f : A → R is continuous at a point a ∈ A if for every
sequence (an)n in A converging to A the sequence (f(an))n converges
to f(a). The function f : A → R is continuous (on A) if it is
continuous at each point of A.

Now we can state and prove the announced result on the continuity
of the inverse of strictly monotonic functions.
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Proposition 2.1. Let ∅ 6= A ⊆ R be a set such that every bounded
component of R \ A is either closed or open. Furthermore, let f :
A → R be a strictly monotonic function on A. Then the function
f−1 : f(A)→ R is continuous.

Proof. We suppose that f is strictly increasing (the case that f is
strictly decreasing can be treated in a similar way).

Let y0 ∈ f(A) be arbitrary. We want to show that f−1 : f(A)→ R
is continuous at y0. For this purpose, let (yn)n be an arbitrary
convergent sequence in f(A) with limit y0. We then have to show
that (xn)n := (f−1(yn))n ∈ AN converges to x0 := f−1(y0) ∈ A.

It is easy to verify that there are u, v ∈ f(A) with u ≤ v such
that yn ∈ [u, v] for all n ∈ N0. We put a := f−1(u) and b := f−1(v).
Then we have xn ∈ [a, b] ∩ A for all n ∈ N0. In particular, the
sequence (xn)n is bounded and it thus suffices to verify that x0 is its
only possible limit point in order to conclude that (xn)n converges
to x0, which completes the proof. Indeed, suppose to the contrary
that x0 is the only possible limit point of the sequence (xn)n, but
this sequence does not converge to x0. Then we may pass to a
subsequence (xnk

)k such that |xnk
− x0| ≥ r for all k ∈ N and some

r > 0. Since (xnk
)k is bounded as well, it has an accumulation

point thanks to the Bolzano-Weierstraß theorem, say x′0, and we
deduce |x′0 − x0| ≥ r, i.e., x′0 6= x0 on the one hand. But on the
other hand x′0 is also an accumulation point of the sequence (xn)n
itself and therefore x0 = x′0 by hypothesis and so we end up with a
contradiction.

Suppose now that (xn)n possesses a limit point ξ different from
x0 and let (xnk

)k be a subsequence converging to ξ. We then either
have ξ > x0 or ξ < x0. We only treat the first case (the second one
is analogous) and we shall show that we obtain a contradiction.

First, assume additionally that ξ does not belong to A and denote
by I that component of R\A that contains ξ. Observe that we have
ξ ∈ ∂I because of ξ ∈ ∂A.

If ξ is the left endpoint of I and if I is not a singleton, then
there exists a k0 ∈ N with xnk0

∈ (x0, ξ) and an index k1 ∈ N with
xnk
∈ (xnk0

, ξ) for all k ≥ k1. This yields

ynk
= f(xnk

) ≥ f(xnk0
) > f(x0) = y0

for all k ≥ k1. As k →∞ we obtain the contradiction y0 ≥ f(xnk0
) >

y0.
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If ξ is the right endpoint of I (which includes the case that I is a
singleton), then I must be bounded due to x0 < ξ. By assumption
I is either closed or open, but due to ξ ∈ ∂I ∩ (R \ A), the set I
must be closed. Therefore we then have I = [α, ξ] with an α ≤ ξ
such that α /∈ A.

We may now choose an element z ∈ (x0, α) ∩ A. (Note that this
is indeed possible: If α < ξ, this follows from α ∈ ∂A and x0 <
ξ, which yields x0 < α. If however α = ξ, then (x0, ξ) ∩ A is
nonvoid since otherwise we would obtain (x0, ξ] ⊆ I = {ξ}, which is
impossible.) There exists a k0 ∈ N such that xnk

> z for all k ≥ k0.
This implies

ynk
= f(xnk

) ≥ f(z) > f(x0) = y0

for all k ≥ k0 and we arrive at the contradition y0 ≥ f(z) > y0.
Summarizing, we infer that ξ must be an element of A. Here we

distinguish between two cases: (x0, ξ) ∩ A 6= ∅ or (x0, ξ) ∩ A = ∅.
In the first case we choose z ∈ (x0, ξ) ∩ A and proceed as in the
above case where ξ was a right endpoint of the above I to arrive at
a contradiction.

So let us assume that (x0, ξ) ∩ A = ∅. Then there exists a k0 ∈ N
such that xnk

≥ ξ for every k ≥ k0. This yields ynk
∈ [f(ξ),∞) for

each k ≥ k0, which leads to the contradiction y0 ≥ f(ξ) > f(x0) =
y0.

Altogether we arrive at the conclusion that ξ > x0 is not possible.
�

Proposition 2.1 gives rise to the following characterisation of the
continuity of a strictly monotonic function.

Corollary 2.2. Let ∅ 6= A ⊆ R such that every bounded component
of R \ A is closed or open. Then for a strictly monotonic function
f : A→ R the following assertions are equivalent.

(a) The function f : A→ R is continuous.
(b) Each bounded component of R \ f(A) is closed or open.

If either assertion holds, then the sets A and f(A) are homeomor-
phic. In particular, f is continuous if its range f(A) is closed, open
or an interval. Moreover, the implication “(b) =⇒ (a)” is still true
if we drop the assumption imposed on A.

Proof. Applying Proposition 2.1 to the function f−1 : f(A) → R
gives us the implication “(b) =⇒ (a)”; even without the assumption
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imposed on A.

Now assume that f is continuous as well as, without loss of general-
ity, that f strictly increases. Furthermore, suppose to the contrary
that R \ f(A) possesses a bounded component that is neither closed
nor open, thus having the form (u, v] or [u, v). We only treat the
first case.

Then u ∈ f(A), v /∈ f(A) and there is a strictly decreasing se-
quence (yn)n in f(A) with limit v. We set xn := f−1(yn) for n ∈ N
and x := f−1(u). The sequence (xn)n is strictly decreasing and
bounded from below by x, thus it converges to ξ := infn∈N xn in R.
The number ξ does not belong to A since otherwise the continuity
of f would imply

v = lim
n→∞

yn = lim
n→∞

f(xn) = f(ξ) ∈ f(A),

which is impossible because of v /∈ f(A). Now consider an arbitrary
z ∈ A with z > x. We then have f(A) 3 f(z) > f(x) = u and
thus f(z) > v. Consequently, there exists an index n ∈ N with
v < yn = f(xn) < f(z), which implies ξ < xn < z. We conclude that
(x, ξ] is a component of R \A (because x ∈ A and A 3 xn → ξ /∈ A
as n→∞), which contradicts the assumption on A.

The first part of addendum is clear by Proposition 2.1. �
Remark 2.3. The characterisation of the continuity of a strictly
monotonic function obtained in the preceding corollary fails if the
adverb “strictly” is dropped. Indeed, just consider the function
f : { 1n ; n ∈ N}∪{0} → R given by f(0) := 0 and f( 1n) = 1 (n ∈ N).

As announced we now demonstrate that Proposition 2.1 is in some
sense optimal.

Proposition 2.4. Let ∅ 6= A ⊆ R be a set such that R \A possesses
a bounded component that is neither closed nor open. Then there
exists a strictly monotonic, continuous function f : A → R such
that the function f−1 : f(A)→ R is discontinuous.

Proof. By assumption R\A possesses a bounded component having
the form (a, b] or [a, b) (with a < b). We only consider the first case
since the second case is analogous.

Clearly, b is a cluster point of (b,∞)∩A. Therefore we can choose
a strictly decreasing sequence (xn)n in A converging to b. Moreover,
we choose a strictly decreasing sequence (yn)n in R with limit a.
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Now we put g(xn) := yn for n ∈ N and g(a) := a and we extend
g on (xn+1, xn) linearly. This gives us a strictly increasing, contin-
uous function g : {a} ∪ (b, x1] → R, which we extend to a strictly
increasing, continuous function g : (−∞, a] ∪ (b,∞) → R in any
way. Then the function f := g|A (note that A ⊆ (−∞, a] ∪ (b,∞))
is strictly increasing and continuous, but its inverse is discontinuous
at a. In fact, we calculate limn→∞ f(xn) = limn→∞ yn = a = f(a),
while limn→∞ f−1(yn) = limn→∞ xn = b 6= a = f−1(a). �

Remark 2.5. (a) Proposition 2.1 and Proposition 2.4 together
characterise those nonvoid subsets A of R such that each
(continuous) strictly monotonic function f : A→ R possesses
a continuous inverse. These are precisely those non-empty
sets A such that all bounded connected components of R \A
are closed or open.

(b) By Proposition 2.1, the function g|(−∞,a)∪(b,∞) (where g is
as in the proof of Proposition 2.4) has a continuous inverse.
Therefore the point a is the only discontinuity of the above
f−1.

(c) Combined with the order topological considerations in the
introduction, Proposition 2.4 furnishes a proof that the order
and subspace topology of A do not coincide whenever R \ A
possesses a bounded component that is neither closed nor
open. The converse is also true, see Corollary 3.5 below in
the next section.

3. Strictly monotonic functions on subsets of
connected linearly ordered spaces

In this section we want to go beyond the scope of real functions
and embed the results of the preceding section into a more general
framework in order to supply the topological background underlying
these results. In particular, we want to explore whether there exists
a reasonable generalisation of Proposition 2.1. As we shall see, it
turns out that there is indeed a perfect analogue in the setting of
connected linearly ordered spaces (see Proposition 3.7 below).

We presuppose from now on that the reader is acquainted with the
most basic notions of abstract topology. Nevertheless we start by
reviewing some important notions.

In what follows (X,≤X) and (Y,≤Y ) are linearly ordered sets, both
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endowed with their respective order topology τ(X,≤X) and τ(Y,≤Y ). If
no confusion is to be expected, we drop the indices and simply write
≤.

Let ∅ 6= A ⊆ X. We may endow A with two reasonable topologies:
the subspace topology, denoted by τA, generated by all sets of the
form (−∞, x) ∩ A or (x,∞) ∩ A where x ∈ X, and the topology
induced by the order on A inherited from X, denoted by τ(A,≤),
generated by all sets of the form (−∞, a) ∩ A or (a,∞) ∩ A where
a ∈ A. We always have τ(A,≤) ⊆ τA, but this inclusion can be strict.
Notice that τ(A,≤) = τA if, for instance, A is compact with respect
to the subspace topology or an interval (see, e.g., [2, 4A2R (m)]).

We adopt the usual convention to write (−∞, x) resp. (x,∞) resp.
(−∞, x] resp. [x,∞) instead of {x′ ∈ X : x′ < x} resp. {x′ ∈ X :
x′ > x} resp. {x′ ∈ X : x′ ≤ x} resp. {x′ ∈ X : x′ ≥ x}. We write
supA = ∞ if A is not bounded from above and inf A = −∞ if A
is not bounded from below and by convention −∞ < x <∞ for all
x ∈ X (even if (X,≤) has a minimum or maximum; in particular
±∞ /∈ X).

Recall that (X,≤) is called Dedekind complete if every non-empty
subset A of X with an upper bound has a least upper bound denoted
by supA. If (X,≤) is Dedekind complete and A is a nonvoid subset
of X with a lower bound, then A possesses a greatest lower bound
denoted by inf A (see, e.g., [1, 314B (b)]).

One says that (X,≤) is dense provided that for any two elements
x, x′ ∈ X with x < x′ there exists an x′′ ∈ X such that x < x′′ < x′.

A subset A of X is called (order-) convex if for any two elements
a, a′ ∈ A the interval [min(a, a′),max(a, a′)] is contained in A.

The next lemma collects some basic facts concerning order topolo-
gies, which are probably folklore. For this reason we omit the easy
proofs (see also Exercise 26G in [7] for assertion (a))

Lemma 3.1. Let (X,≤) be a linearly ordered set endowed with the
order topology and ∅ 6= A ⊆ X.

(a) The space X is connected if and only if (X,≤) is Dedekind
complete and dense.

(b) If A is connected w.r.t. τA, then it is convex.
(c) If A is an interval, then A is convex. The converse is true

provided that (X,≤) is Dedekind complete.
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(d) If (X,≤) is connected and A is an interval, then A is con-
nected w.r.t. τA.

(e) If (X,≤) is connected, then the set of subsets of X that are
connected (w.r.t. the subspace topology) coincides with the
set of intervals.

Example 3.2. Subintervals of R, the extended real line R∪{±∞},
the long line (see, e.g., counterexample 46 in [6]), the extended long
line (see, e.g., counterexample 46 in [6]), the unit square with the
lexicographical order (see, e.g., counterexample 48 in [6]) or lexi-
cographic cubes (see section 2 of [3]) are examples for connected
linearly ordered spaces (X,≤).

For a connected linearly ordered space (X,≤) the subsequent
lemma provides a catchy characterisation of all subsets of X for
which the subspace and order topology coincide. Moreover, the fol-
lowing Lemma 3.3 (resp. Corollary 3.5) links Proposition 2.1 and
Proposition 2.4 to the topological consideration from the introduc-
tion and completes our picture. In fact, using Lemma 3.3 we obtain
a perfect generalisation of Proposition 2.1 as we shall see later on.

Lemma 3.3. Let (X,≤) be connected and ∅ 6= A ⊆ X. Then the
order and subspace topology of A coincide if and only if every com-
ponent of X \ A w.r.t. the subspace topology τA is closed or open.

Proof. We first suppose that X \A possesses a component which is
neither closed nor open. Thanks to part (e) of Lemma 3.1, there are
a, b ∈ X with a < b such that either [a, b) or (a, b] is a component
of X \ A. (Notice that all other kinds of intervals are surely closed
or open.) We only treat the first case since the second one can be
handled analogously.

We first observe that a cannot be the least element of (X,≤)
(provided there exist any at all) because otherwise [a, b) would be
open. As a consequence, the set (−∞, a) is nonvoid. In addition,
(t, a)∩A 6= ∅ for each t ∈ (−∞, a). The latter assertion results from
the fact that for a point t ∈ (−∞, a) with (t, a) ∩ A = ∅ one would
obtain (t, b) ⊆ X \ A. Since (t, b) is connected by Lemma 3.1 (d)
and [a, b) is a connected component of X \A with [a, b)∩ (t, b) 6= ∅,
we infer (t, b) ⊆ [a, b). But as (X,≤) is dense, the set (t, a) is non-
empty. This yields (−∞, a) ∩ [a, b) 6= ∅, which is absurd. We now
put A := {t ∈ X : t < a}, we let � denote the partial order ≤ on
A and we choose xt ∈ (t, a) ∩ A for each t ∈ A. Then (A,�) is an
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upwards directed (nonvoid) set and (xt)t∈A is a net in A ∩ (−∞, a)
that converges in (X,≤) to a, as one easily verifies. In particular,
for every x ∈ A with x < b, which implies x < a, resp. for each
x′ ∈ A with x′ > b, there is a t0 ∈ A with xt ∈ (x,∞) ∩ A, resp.
with xt ∈ (−∞, x′)∩A for all t � t0. Therefore (xt)t∈A converges to
b with respect to the order topology on A.

If the order topology and the subspace topology of A coincided,
then we could infer that (xt)t∈A converges to b with respect to the
subspace topology on A, hence in (X,≤), which would yield a = b
(the order topology is always Hausdorff, see, e.g., [2, 4A2R (c)]) in
contrast to a < b. As a result, the subspace topology of A is strictly
finer than the order topology of A. This establishes the only-if-part.

Now we conversely assume that each component of X \ A is either
closed or open. In order to show that in this case the order and
subspace topology of A are identical, it suffices to verify that each
set of the form (−∞, ξ) ∩ A or (ξ,∞) ∩ A, where ξ ∈ X, is open
with respect to the order topology on A. We show this only for
(−∞, ξ) ∩ A because the remaining case can be treated similarly.

In the cases ξ ∈ A, (−∞, ξ) ∩ A = ∅ or (−∞, ξ) ∩ A = A
the assertion is clear. Therefore we may assume that ξ /∈ A and
(−∞, ξ) ∩ A 6= ∅ and (−∞, ξ) ∩ A 6= A or equivalently that ξ /∈ A
and (−∞, ξ) ∩ A 6= ∅ and (ξ,∞) ∩ A 6= ∅. We denote by I that
component of X \ A that contains ξ. Due to (−∞, ξ) ∩ A 6= ∅,
(ξ,∞) ∩ A 6= ∅ and part (b) of Lemma 3.1, the set I is bounded
from above and from below. Thanks to Lemma 3.1 (e) the set I is
an interval and we thus deduce that there are a, b ∈ X such that
I ∈ {(a, b], [a, b), [a, b], (a, b)}.

We next show that none of the cases I = [a, b) or I = (a, b] can
occur. We establish this claim only for the first case because an
analogous argument works in the second one. The same argument
as utilised above in the proof of the only-if-part gives us a net (xt)t∈A
in A ∩ (−∞, a) that converges in (X,≤) to a. (For this notice that
(−∞, a) is non-empty because A∩ (−∞, ξ) 6= ∅ and [a, ξ] ⊆ X \A.)
By hypothesis, I is closed or open. If I were open, then there would
exist a t0 ∈ A such that xt ∈ I for all t � t0, which is impossible
because of (−∞, a) ∩ I = ∅. Hence, I is closed. Employing that
(X,≤) is dense, one easily shows that b is a cluster point of I, which
yields b ∈ I ⊆ X \ A. But as [a, b] is connected by Lemma 3.1 (d)
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and a strict superset of I, which is a connected component of X \A,
the point b belongs to A. Contradiction!

Altogether we therefore either have I = [a, b] with a ≤ ξ ≤ b and
a, b ∈ X \ A or I = (a, b) with a < ξ < b and a, b ∈ A.

In the first case we can choose as before a net (xt)t∈A in A∩(−∞, a)
converging in (X,≤) to a. We then obtain

(−∞, ξ) ∩ A = (−∞, a) ∩ A =
⋃

t∈A
((−∞, xt) ∩ A) ,

so that (−∞, ξ)∩A is a union of sets open with respect to the order
topology on A and consequently itself open with respect to the order
topology on A.

In the second case we observe that [b,∞)∩A is closed with respect
to the order topology on A (because of b ∈ A). For this reason

(−∞, ξ) ∩ A = A \ ([b,∞) ∩ A)

is open with respect to the order topology on A. �
Example 3.4. (a) Lemma 3.3 applies to all closed subsets of a

connected linearly ordered space (X,≤). Indeed, let A be a
closed subset of X. Then X \A is open and can be expressed
as a union of disjoint open intervals (see, e.g., [2, 4A2R (j)]).
Hence, each connected component of X \ A is open.

(b) Furthermore, we may apply Lemma 3.3 to open subsets U
of a connected linearly ordered space (X,≤). To see this,
note that each component of X \U is closed in (X \U, τX\U)
because components of a topological space are always closed
in this space. Hence, each component of X \ U is closed in
(X,≤) since X \ U is closed in (X,≤).

(c) Lemma 3.3 also applies to each subset D of a connected lin-
early ordered space (X,≤) which is dense in X. In fact,
thanks to Lemma 3.1 every component of X \D is an inter-
val. Since (X,≤) is dense, each non-empty interval that is
not a singleton has nonvoid interior. Hence, every component
of X \D is a singleton and consequently closed as (X,≤) is
Hausdorff.

We record the following simple consequence of Lemma 3.3.

Corollary 3.5. Let ∅ 6= A ⊆ R. Then the order and subspace
topology of A coincide if and only if every bounded component of
R \ A is either closed or open.
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Remark 3.6. If we combine Proposition 2.1, Proposition 2.4 and
Corollary 3.5, we arrive at the following result:

Let ∅ 6= A ⊆ R. Then the order and subspace topology of A coincide
if and only if every (continuous) strictly monotonic function f :
A → R possesses a continuous inverse f−1 : f(A) → A, where A
and f(A) are endowed with their respective subspace topologies.

As previously promised we now arrive at the announced generali-
sation of Proposition 2.1.

Proposition 3.7. Let (X,≤X) and (Y,≤Y ) be two linearly ordered
spaces, where (X,≤X) is connected. Let A be a nonvoid subset of
X such that each component of X \ A (w.r.t. the subspace topology
τA) is closed or open. Assume that f : A→ Y is an injective order-
preserving or injective order-reversing mapping. Then the inverse
mapping f−1 : (f(A), τf(A))→ (A, τA) is continuous.

Proof. If f is order-reversing, then we define another total order ≤r
Y

on Y via

y ≤r
Y y
′ :⇐⇒ y ≥Y y

′

for y, y′ ∈ Y . Then f : (A,≤X) → (Y,≤r
Y ) is order-preserving and

it is not hard to verify that τ(Y,≤Y ) = τ(Y,≤r
Y )

. For this reason we may
and will assume w.l.o.g. that f is order-preserving. Then

f : (A, τ(A,≤X))→ (f(A), τ(f(A),≤Y ))

is a homeomorphism. Because of τ(f(A),≤Y ) ⊆ τf(A) and τ(A,≤X) = τA
(the latter assertion results from Lemma 3.3 and the hypothesis),
we conclude that

f−1 : (f(A), τf(A))→ (A, τA)

is continuous as claimed. �
We close this note with the following Question:

Does also an analogue of Proposition 2.4 hold in all connected lin-
early ordered spaces? Or to put it another way: Is an analogon of
the characterisation obtained in Remark 3.6 valid in every connected
linearly ordered space?
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REVIEWED BY ANNA HEFFERNAN

This book doesn’t have the best start; the very first section aims to
convince the reader that inequalities are important for experimental
work. However, this means that it jumps from topics like signal
processing to induction coils and biomechanics at the drop of a hat.
The point the authors are trying to make is clear but the jumps in
topics come across as a little unsettling and leave the reader a little
bewildered. Whereas one expects the opening section of a book to
draw the reader in, this introduction almost has the opposite effect.
Or maybe that is just the feeling of this reviewer. Maybe an engineer
would have felt differently. However, having agreed to review the
book, this reviewer marched on, and was really glad that they did.

The book is quite simply a very nice book. It reads at an un-
dergraduate mathematics level but gives soft introductions and re-
views on all topics leaving it possible for those without a formal
mathematical or applied mathematical background to follow. The
authors ease the reader through the basics of analysis with some lin-
ear algebra, selecting accordingly. They introduce, derive and apply
several well known inequalties such as Bernoulli’s, Cauchy-Schwarz,
Minkowski’s and show some neat applications in several areas rang-
ing from bounding integrals to topology and electrostatics, finishing
with a nice introduction to interval analysis. They have a gift in giv-
ing clear and concise descriptions with proofs for nearly all theorems
used, backed up with worked examples and problems. In one or two
areas, they drop the ball ever so slightly in their lucid descriptions
but infrequently enough that you cannot hold it against them. This
is an applied mathematics book and so would be enjoyed by math-
ematicians, both pure and applied. For those outside this area, it
is still very readable but would require some patience and work but
the authors will get you there.
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This book is divided into seven chapters, six of which range from
16 to 32 pages while chapter five is a whopping 62 pages, leaving
you feel this could have been better organised. In the first chapter,
the authors bring the reader through a variety of basic inequal-
ity theorems. Each is well explained and the chapter proves to be
very much self-contained, an undergraduate (or even advanced high
school) student should follow the arguments and proofs quite easily.
Chapter two runs through the required highlights of basic calculus
that could be found in any first year undergraduate honours math-
ematics course. It leaves one or two theorems without proof, but
none that are of a difficult level and/or not easily retrievable with a
quick google, e.g., the fundamental theorem of calculus. By the end
of chapter two, the reader is not only refreshed with the required
calculus but the link to inequalities has been cemented in their mind.

Chapter three continues much in the same manner; with very clear
descriptions of theorems, proofs and exercises. It follows on nicely
from the previous chapters, bringing the reader through several well
known inequalities, e.g., Young’s, Cauchy-Schwarz, Chebyshev’s,
etc. Also, like previous chapters, there is a wealth of exercises (with
hints) to assist you in becoming more comfortable with the subject
area. The authors accomplish their goals with clarity and ease.

Unfortunately, things waiver slightly with the introduction of chap-
ter four - Inequalities in abstract spaces. Understandably, the au-
thors have to introduce the reader to a lot of mathematical concepts
required for functional analysis that most likely would not cross the
path of the reader unless they have studied pure or applied math-
ematics. Not only, are the authors introducing the basic concepts
such as linear spaces, spanning bases and linear independence but
slightly more complex notions such as inner product and metric
spaces as well as operators. Saying that, the authors still present a
very good review of the required definitions and theorems, follow-
ing a ‘need to know’ basis which serves as a nice refresher for those
previously familiar with some/most of the theories. Unfortunately
with less examples and exercises than previous chapters, if viewing
this material for the first time, the reader could easily get bogged
down in definitions.

Chapter five is where the authors reveal many applications of the
earlier mathematics. They bring you through a wide variety of top-
ics and show some neat implications of inequalities. They start
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with more mathematical topics, like bounding integrals and look-
ing at well known and used functions such as the Gamma or Bessel
functions. But quickly move on to more applied areas like signal
analysis and dynamical systems. Clearly at this point, the book
can no longer be truly self contained; in several areas, formulae are
introduced with no derivation, e.g., Euler’s characteristic formula
in topology or Poisson’s equation in electrostatics. However, this is
completely expected when touching on so many different topics and
the authors draw a good line between what is required to illustrate
the application and a full derivation of all equations.

Chapter six is dedicated to inequalities in differential equations
but mainly builds towards an understanding of Ritz’s method. Here
the cleanliness and clarity seen in the description of previous prob-
lems is lost a little; the authors explain the requirement of material
outside the scope of the book, e.g., Sobolev spaces, and cover that
part of the material suitable, giving simpler examples. However, the
explanations fall slightly short of the clear, concise descriptions of
earlier chapters, and there are fewer examples and problems.

Chapter seven is the final chapter of the book and ends the book
on a nice note. The authors give a brief introduction to interval
analysis where they truly ease the reader into the topic. Clear and
easy to follow descriptions and examples are given with references to
earlier problems solved by other means. In particular, they pick up
one or two of the initial problems put forth in the opening section
of the book and show how the application of interval analysis eases
their solving.

Any mathematician would enjoy this book and appreciate its clear,
concise descriptions. Non-mathematicians who seek a better under-
standing behind some of the inequalities or even mathematics that
arise in the different subject areas will also benefit greatly from work-
ing through the book. It simply is a very nice applied mathematics
book.
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1. Introduction

“In his [Bonn] Arbeitstagung lecture given 16 July 1962 Atiyah
formulated the problem of expressing the index of elliptic operators
in terms of topological invariants associated to their symbol and
stated the fundamental conjecture for the Dirac operator ... A few
months later, in Feburary 1963, Atiyah and Singer announced the
general index formula for elliptic operators on closed manifolds and
indicated the main steps of a proof ... K-theory which gave the es-
sential framework for the statement of the index theorem had been
introduced by Atiyah and Hirzebruch following Grothendieck’s lead
in their 1959 paper.... The central and deep point in this new coho-
mology theory was the Bott isomorphism”, recalls Brieskorn (1936-
2013) in [7] (see [1], [4], [3]). Both Brieskorn and Booß-Bavnbeck
received their doctorates in Bonn under Friedrich Hirzebruch (1927-
2012). In its draft version from 2012 [11], the book under review has
been dedicated to Hirzebruch and Bleecker’s PhD supervisor Chern.

The history of the book reflects this ancestry. It started as a
German language textbook [6] from 1977, which was translated and
somewhat extended by Bleecker in 1985. The book grew further to
a 766 pages hardcover volume, more than twice that of the original
textbook, or to a weight of 1.470kg (two pints, that is, and it may
make you equally giddy).

2. Content of the book

The book is organised into

I: Operators with Index and Homotopy Theory, (Chapters 1-4,
132 pages),
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II : Analyis on Manifolds, (Chapters 5-9, 118 pages),
III: The Atiyah-Singer Index Formula, (Chapters 10-13, 112

pages),
IV: Index Theory in Physics and the Local Index Theorem

(Chapters 14-18, 342 pages).

The book provides two appendices, the first devoted to Fourier
Series and Integrals - Fundamental Principles, the second to Vector
Bundles.

A bounded linear operator T acting in a (complex) Hilbert space is
Fredholm, written T ∈ F , if kerT and cokerT are finite dimensional.
The index of T is given by

index T = dim kerT − dim coker T . (1)

The index is invariant under small perturbations and in fact a ho-
motopy invariant. Thus it generalises to continuous families of Fred-
holm operators over a compact parameter space X, T : X → F ,
mapping x 7→ Tx, for x ∈ X. If the kernel of Tx and T ∗x , respectively,
has constant dimension, it defines an isomorphism class of complex
vector bundles in Vec(X). In order to make sense of the difference
in the semi-group Vec(X), one introduces the Grothendieck group
K(X). Specifically, we have index T ∈ K(X) in eq. (1). The de-
terminant line bundle generalises the index bundle with interesting
links to recent developments in physics (zeta function regularisa-
tion, multiplicative anomaly), which are hardly discussed in this
book though a reference to the work of Charles Nash is provided
[10] (best wishes on the occasion of your retirement!).

Elliptic operators on sections of complex vector bundles provide
a primary source of Fredholm operators (Part II, Chapters 5 and
6). Chapter 7 is a Crash Course on Sobolev spaces. In Chapter
8, elliptic Pseudo-Differential Operators are introduced. Let P =∑
|α|≤mA

α(x)Dα be a differential operator on X = Rn, acting on
smooth functions u with compact support. Then

(Pu)(x) =

∫
ei〈k,x〉p(x, k)û(k)dk ,

where û is the Fourier transform of u and the polynomial p(x, k) =∑
|α|≤mA

α(x)kα is the amplitude (or total symbol) of P . For more
general C∞ functions p of x and k, P defines a pseudo-differential
operator, subject to a growth condition in the variable k. There is a
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notion of principal symbol for pseudo-differential operators. Unlike
the amplitude p, the principal symbol turns out to have a geometric
meaning, and for elliptic operators, its knowledge is sufficient for
computing the index. Using charts, the definitions carry over to
operators P : C∞0 (X,E) → C∞(X,F ) between smooth sections
of vector bundles E,F over a manifold X. Elliptic operators of
this kind yield a space Ell(E,F ). There is a way to construct a
global amplitude [5] by considering the pull-back of E,F along the
projection π : T ∗X → X. (Here T ∗X is the cotangent bundle.)
This gives rise to a one-to-one map C∞(T ∗X,Hom(π∗E, π∗F )) →
Ell(E,F ), p 7→ P , up to small perturbations of P that do not affect
the index.

For the sake of “simplicity, accessibility and transparency”, in
Part III, the authors decide to “develop a larger portion of algebraic
topology by means of a theorem of Raoul Bott concerning the topol-
ogy of GL(N,C), i.e. on the basis of linear algebra, rather than on
the basis of the theory of simplicial complexes and their homology
and cohomology.”(p. 252). Winding numbers (Chapter 10) play a
central role in questions about stability of planetary orbits in ce-
lestial mechanics. In keeping visible the political sympathies of the
authors, the book mentions challenging engineering tasks related to
“the unmanned soft landing of the lunar module Luna 9 on Febru-
ary 3, 1966” (resp. Luna 1 in the previous versions). A very careful
discussion of winding numbers follows, from a geometric, a com-
binatorial, a calculus, an algebraic and a functional analytic view
point. The index theorem relates two of the possible generalisations
to higher dimension: a local one (the topological index) and a global
one (the analytic index). For example, the Euler characteristic χ(X)
of a compact oriented differentiable surface X can be described as

• the number of isolated zeros of a tangent vector field on X,
counted with proper multiplicity (the local index of the vector
field at that point);
• the degree of the map S1 → S1 (a winding number);
• the alternating sum of the number of vertices, edges and faces

(for polyhedra).

The third approach generalises to higher dimension as an alternating
sum of dimensions of cohomology groups of TX. Closely related is
the description of χ(X) as
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• the index of the elliptic differential operator (d+d∗) : Ωeven(X)→
Ωodd(X) based on the de Rahm operator d.

More generally, “one considers cycles where a given number of vec-
tor fields become dependent” (p. 262, citing Atiyah), linking topol-
ogy to GL(n,C). The mapping degree πn−1(GL(N,C)) → Z (n
even) is the first step towards Bott’s Periodicity Theorem. If P
is a pseudo-differential operator acting on C∞0 (Rn × CN), for fixed
x ∈ Rn, its principal symbol defines a continuous map σ(P )(x, .) :
Sn−1 → GL(N,C) (Chapter 11). Chapter 12 deals with Hermitian
vector bundles E,F over a closed manifold X. Let P ∈ Ell(E,F )
have principal symbol σ(P ). The restriction of σ(P ) : T ∗X →
Hom(π∗E, π∗F ) to the sphere bundle SX ⊂ T ∗X defines isomor-
phisms, so there is a naturally associated element

[σ(P )] = [π∗E, π∗F ;σ(P )|SX ] ∈ K(BX,SX) ∼= K(T ∗X) ,

represented by the difference bundle obtained by gluing π∗E|BX and
π∗F |BX (where BX ⊂ T ∗X is the ball bundle) on BX ∪SX BX
along SX using σ(P )|SX . It turns out that index P defined by eq.
(1) depends only on the equivalence class [σ(P )] ∈ K(TX). On the
other hand, there is a notion of topological index, and the Atiyah
Singer Index Theorem states that these two are equal,

analytic index = topological index

as group homomorphisms K(TX) → Z. While the analytic index
is easy to define, it is hard to compute. In contrast, the topological
index can be explicitely calculated in many cases, but its definition
is too involved to be reproduced here.

A particular feature is the workout of the embedding proof of
the Atiyah-Singer Index formula for non-trivial normal bundle of
X. The crucial step is the multiplicative property of the index.
The authors follow a suggestion made in ([9], p. 188) and apply the
Bokobza-Haggiag formalism [5] to simplify this partial discussion.
Eventually the cobordism proof is discussed shortly and compared
to the embedding and the heat equation proof (see below).

Part IV gives a crash course in Classical Field Theory and in
Quantum Theory (Chapter 14) and treats the Geometric Prelimi-
naries like principal fiber bundles, connections and curvature, and
characteristic classes (Chapter 15), which in part have been used
already in Chapter 12. Chapter 16 on Gauge Theoretic Instantons
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investigates an application of the index theorem which is important
for both mathematicians and physicists, namely the computation of
the dimension of the moduli space of self-dual connections (instan-
tons) on a principal G-bundle, where G is a compact semi-simple Lie
group, on a compact oriented Riemannian 4-manifold. In the mas-
sive Chapter 17 (130 pages) it is shown that the classical geometric
operators such as the signature operator, the de Rham operator, the
Dolbeault operator and the Yang-Mills operator can be locally ex-
pressed in terms of twisted Dirac operators, so that The Local Index
Theorem for twisted Dirac operators applies. In Section 4 of Chap-
ter 17, an asymptotic expansion for the heat kernel is presented in
great and useful detail over 27 pages, using the geometric concepts
introduced previously in Chapter 15. The last Chapter in the book,
Chapter 18, is devoted to the Theory of the Seiberg-Witten equation
(1994). The authors don’t try to keep up with recent developments
but aim at a “digestible presentation of the main results” (p. 643).
Sketches and some details of the proofs are given.

3. Comments and conclusion

The book tries to draw a complete and comprehensible picture of
the field. In particular, it usually includes sketches of proofs that
it cannot work out fully. The reader is encouraged to question the
meaning of the formulae in a guided manner, and numerous exercises
are included, mostly backed by helpful hints. The book is unusual
in its willingness to go much into detail, which it does very carefully.
In view of the amount of material it covers, structuring is a major
issue and overall the book does a truly admirable job here. Inside
the text, cohesion is established using many references to related
discussions in other parts of the book. Luckily these come not only
with the number of the relevant chapter and section, but also with
a page number, so that a jump to other parts of the book is quick
and easy and does not feel like a disruption. This also allows one to
step in to the book at any place, and to get to know the book as a
whole without reading it linearly from the beginning. A determined
reader is suggested to follow a logical path through the material to
approach the subject in one of the directions labelled as follows:

(1) Index Theorem and Topological K-Theory,
(2) Index Theorem via Heat Equation,
(3) Gauge Theoretic Physics,
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(4) Spectral Geometry, and
(5) Global and Micro-Local Analysis.

The book is a rich source of citations and references for further read-
ing, making it half an encyclopaedia, as a colleague would name it.
Though these are included in the normal text, the conversational
style keeps the reasoning running and the text does not appear
overloaded. All in all the book is sagely written and pleasant to
read.

This said, there are issues with the book. The definition of the
topological index (Part III, Chapter 12) relies on the K-theoretical
Thom isomorphism

K(X)
∼=→ K(V ) (2)

whenever V → X is a complex vector bundle over a compact mani-
fold. For V = R2n×X, (2) is just the Bott Periodicity isomorphism
(given by the outer tensor product with a power of the Bott class
b ∈ K(R2)). The general case “can be considered as a reformula-
tion or generalization of Bott Periodicity”, where “the Bott class b
... corresponds to the canonical exterior class λV ” (p. 289). Though
efforts are made to define the class λV and thus the map, (2) is not
actually explained or proved. Instead, the reader is referred to an
“independent” proof in [6]. It seems that λV does not reappear in
any later discussion. A survey in the literature indicates, however,
that a complete proof of (2) is out of reach for the dedication and
space in the book, which is not primarily devoted to K-theory.

In Part IV, Chapter 16, the introduction (p. 460f) of an invariant
inner product on simple Lie algebras is cumbersome and should have
been omitted. The matrix trace tr AB is sufficient for the purpose.

The same is true for the crash course in physics (Chapter 14)
which is beyond the realm of the book. The presentation falls out
of shape: Maxwell’s equations for the field F are written in terms of
components of the electric and magnetic fields, which are irrelevant
to the book. One might have written

F = dA ,

d ∗ F = j ,

since the Hodge-star operator is introduced in Chapter 13. The
book, however, avoids the use of the ∗ operator by introducing an
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extra letter δ which it takes two attempts to explain (“the codif-
ferential (the formal adjoint of d)”, p. 366). The use of the letters
A and F for the one- and two-form, respectively, is standard con-
vention but conflicts with the presentation a hundred pages later
(Chapter 16, p. 463), where now F denotes an element in the gauge
group (the role played by A before).

The comments about quantum electrodynamics (QED) are incom-
prehensible, since no quantised fermions are introduced. After a
brief mention of Feynman integrals, we read “Contrary to popular
misconceptions (even held by good physicists) a formal power series
in α does not necessarily converge, even at α = 1/137” (p. 383).
This is a suspicious statement, even for the year 1977!

The main link between the mathematical content of the book and
quantum field theory (QFT) is provided by instantons. These are
absolute minima of the Yang-Mills (YM) functional with non-trivial
winding number. The proper mathematical framework for quan-
tum YM is lattice gauge theory. The notion of a winding number
is not available on the lattice, however, and the reader would want
to see at least an argument why instantons are relevant to this set-
ting. Unfortunately, none of these issues is addressed throughout
the more than 50 pages. The authors include the original construc-
tion of instantons by Atiyah, Drinfeld, Hitchin and Manin but state
that a proof that this construction yields all instantons would take
them too long (p. 482). They could have given a short proof by
following Donaldson and Kronheimer [8] who use the simpler and
more powerful approach by Nahm. The chapter culminates in the
Main Theorem (Theorem 16.37 on page 511) which states that un-
der rather strict conditions on the manifold, like being self-dual and
having positive scalar curvature, the moduli space of self-dual con-
nections has a manifold structure, and its dimension is specified.
The authors are aware that work after 1982 (Kronheimer, Mrowka,
Taubes, and Uhlenbeck) has removed the restrictions, but they only
present the old argumentation.

We have already commented on Chapter 18 on Seiberg Witten
Theory. The reader should note that the chapter is not about
Seiberg-Witten QFT but about the classical equation. This is global
analysis and only marginally involves index theory.

The authors cite Hilbert (p. 133): “Any true progress brings with
it the discovery of more incisive tools and simpler methods which
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at the time facilitate the understanding of earlier theories and elim-
inate older more awkward developments.” Unfortunately, the girth
acquired by the book since 1977 does not pay any heed to this in-
sight.

Though the book has considerable merits, the referee often felt a
relief when she looked up the citations and read the short and clear
expositions by Atiyah.
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This book provides a comprehensive survey of fundamental con-
cepts and directions in Hodge Theory, leading into topics at the
forefront of current research. The volume is based on lectures from
the Summer School on Hodge Theory and Related Topics hosted by
the ICTP in Trieste, Italy, and organized by E. Cattani, F. El Zein,
P. Griffiths, Le D. T. and L. Goettsche. It comprises contributions
of fourteen authors, written in a variety of styles and contexts from
concrete, informal and local to abstract, general and highly struc-
tured. Despite these differences, all chapters benefit from a uniform
strife for conciseness and efficiency, as befits the book aims. The
emphasis is on providing the proper context for the development of
each new idea. Some proof technicalities are omitted, as necessary
in order to fit the rich material within the confines of one volume -
but useful outlines of proofs and precise references to literature are
provided most of the times. On the other hand, counter to the eco-
nomical style of each chapter, there is some overlap of topics between
different authors - including definitions of mixed Hodge stuctures,
polarizations of Hodge structures, period maps, monodromy repre-
sentations, local systems, the Gauss-Manin connection and, unsur-
prisingly, the Hodge conjecture - but each time within a somewhat
different context or goal. As an overall result, the reader can focus
on the connections between different concepts and form a general
picture while also gaining enough familiarity with each topic.

While the homology and cohomology groups provide topological
invariants for manifolds, Hodge theory encodes the structure of a
complex projective manifold X into linear algebraic data on the co-
homology of X. Chapter 1, by Eduardo Cattani, lays down the
analytic background: starting with a brisk tour of complex, sym-
plectic, Hermitian and Kahler structures on a manifold, followed
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by constructions of the de Rham and Dolbeaut complexes of dif-
ferential forms leading to the definition of de Rham and Dolbeaut
cohomologies. The Hodge decomposition of the cohomology groups
is introduced via harmonic forms. No proof is given, but the prelim-
inary work is concrete and detailed enough, without over-reliance
on long computations: these are relegated to exercises. The author
pays due attention to the Kahler metric on a projective manifold,
and the relation between the Kahler form and the hyperplane class.
This induces an extra structure on the cohomology groups called
polarization, or equivalently a Hermitian metric whose orthogonal
decomposition is compatible with the Hodge decomposition, and
leads to a further splitting of the Hodge groups (the Lefschetz de-
composition).

While Chapter 1 starts with the definition of a holomorphic map,
this inclusive beginning is rather deceptive. The following chapters
will assume a background in algebraic geometry and homological
algebra. Chapter 2 contains a new proof of Grothendieck’s Algebraic
de Rham Theorem, whereby the cohomology of an algebraic manifold
(not necessarily compact) can be calculated based on sheaves of
algebraic differential forms. Spectral sequences provide a unitary
and elegant framework for the discussion in Chapters 2 and 3, by
Fouad el Zein with co-authors Loring W. Tu and Lê Dũng Tráng:
starting from sheaf cohomology, and continuing with mixed Hodge
complexes and structures. Surprisingly though, spectral sequences
are only defined on page 134, some 40 pages after their first use
in Chapter 2, and are only truly fleshed out 20 pages later. The
important concept of mixed Hodge structures (MHS) first occurs
in a highly formal, abstract presentation, but the patient reader is
fully rewarded by a nice geometric motivation at the end of Chapter
3: Given a non-compact quasi-projective variety X, we can embedd
it in a projective manifold Y such that the complement D admits
a nice structure, called a normal crossing divisor (NCD). Then the
holomorphic differential forms on X can be related to differential
forms on Y with poles along D, via so called residue maps. Thus
the simplicial structure given by the components of D leads to a new
filtration on the cohomology of X, the weight filtration. Together
with the Hodge filtration, this forms a MHS, which will occur often
in the rest of the book.
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Chapter 4 by James Carlson is refreshingly concrete and serves as
an analytical preamble for the presentation of Variations of Hodge
Structures (VHS) by Eduardo Cattani in Chapter 7. A fixed topo-
logical space X can have many different complex structures. This
leads to the construction of a classifying space of Hodge structures
(with fixed polarization and Hodge numbers). Any family of com-
plex structures (Xb)b∈B yields a map from the basis B to this mod-
uli space, the period map, whose differential yields the Gauss-Manin
connection. In the case when B is not compact, the remarcable
properties of the Gauss-Manin connections lead to an extension of
Hodge structures at the limit. Cattani presents the asymptotic be-
haviour of the period map, helpfully illustrating it by the concrete
example of the mirror quintic.

Chapters 5, 6, and 8 by Luca Migliorini, Mark Andrea de Cataldo,
Patrick Brosnan and Fouad El Zein respectively, all deal with vari-
ations of mixed Hodge structures (VMHS): for algebraic families of
(possibly singular) varieties, they discuss the interplay of the corre-
sponding MHS-s. Thinking of the members of such a family as fibres
of an algebraic morphism, not necessarily smooth nor proper, they
organize the study of the MHS-s in terms of a suitable stratification
of the target. This leads to a decomposition theorem, which shows
how the intersection cohomology groups of the domain split into a
direct sum of intersection cohomology groups on the target. Again,
this requires an intricate formalism, involving e.g. the category of
perverse sheaves, and most arguments are only sketched in these
chapters. The focus is on illustrating the theorem through a series
of well chosen examples - de Cataldo’s chapter is just a long sequence
of exercises. One cannot help but feel that this chapter was written
in some haste and the onus is left on the reader to slowly flesh it out
- while references provided are sometimes imprecise. Patrick Bros-
nan and Fouad El Zein follow the evolution of the geometric ideas,
focusing on the case when the fibres of the family are not compact,
and building on from their discussion of the NCD case in Chapter
3. Linking in with the chapters on classifying spaces, they finish
with recent results on admissible normal function (describing an ad-
missible variation of graded-polarized mixed Hodge structures), and
their algebraic zero-locus.

Chapter 9 by Jacob Murre is a beautiful survey on the various
equivalence relations on algebraic cycles, the relations between them
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and between their respective quotient groups. The cycle map, Abel-
Jacobi map and Albanese map provide links with Hodge structures.
The exact nature of these connections has been long investigated,
making the subject of the celebrated Hodge and Bloch-Beilison con-
jectures. Mark Green’s Chapter 10 transposes the main themes of
Hodge theory to the case of varieties generated over number fields,
resulting in many conjectures. Recent results by Mark Green and
Phillip Griffiths are illustrated by examples in the last sections.

Chapters 10 and 11 are due to a new generation of mathematicians
who have already made important contributions to Hodge theory:
Francois Charles, Christian Schnell and Matt Kerr. In these chap-
ters they discuss arithmetic aspects of Hodge theory in well-thought
out and largely self-contained presentations.

While the present volume cannot replace classics like [1], [2], [3],
[4], [5], it can serve as a good reference, or road-map, for readers
interested in Hodge theory. It outlines the development stages of
main themes, and their interactions, and it can point the reader
towards new exciting directions.
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This book describes the life and work of John Napier with great
care. It can be seen as a translation of the work of Napier into mod-
ern language and concepts. One of the main motivations of the book
is to underline the importance of the work of this mathematician, in
view of the fact that, for instance the 2010 Britannica publication,
The 100 Most Influential Scientists of All Time, makes no mention
of Napier or in an online poll conducted by the National Library of
Scotland concerning the favourite Scottish scientist, he only made
it to be the tenth.

The first chapter starts with the citation “May you live in inter-
esting times” and is appropiate to describe the time in which John
Napier lived. As is mentioned from the beginning there is not much
known about his life, almost nothing about his youth, not even in
which university he studied. Nevertheless some known facts and
anecdotes give a good impression about his life and an epoch which
was characterized by different political struggles which took the form
of religous conflicts and the struggle between the so-called Kings’
Men and the Queen’s Men. In the second chapter we learn about
his passion for and decipherment of the apocalypse. This topic is in-
teresting and Napier thought he would be most remembered because
of his contribution in the understanding of the revelation. However
it seems that apart from being especially methodical, his conclu-
sions, like for instance that the pope was the antichrist were rather
standard during his time. In chapter three the tables are presented
and the reader is introduced to Napier logarithms and how they re-
late to the definition of logarithms we know today. It is not until
chapter four that we know how he actually constructed the tables
and his genius becomes evident. The introduction of motion in his
conception is the key that brings him to the relations we know and
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love. In the remaining three chapters his work is put into context
with modern computation and his legacy. That a new technology
had been born is evident. As is described in the book in the begin-
ning Napier was dealing with sines, until he later realized that his
construction was not that artificial and really helped to treat rela-
tions in general. Logarithms are central in the conception of bases
of numbers and is closely related to the decimal system. This is
explained in detail in the last three chapters together with Napier’s
bones. Alltogether it seems difficult to put the work of this man
into context with other mathematicians. What seems marvellous
is the combination of mystical and practical thinking in his work.
The year 2012 was the 400th anniversary of Napier’s publication
Descriptio and in view of the fact that the younger generations will
not even know of the existence of the logarithmic tables, there is a
good reason to write about the work of this man. It is clearly a very
interesting book from a historical perspective.
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This book consists of a comprehensive account of matrix theory
over real quaternion division algebra H. The first seven chapters
present an adaptation of many of the essential principles of matrix
theory (over the real and complex fields) to the quaternion con-
text. Chapters 8 through 14 are mostly devoted to the theme of
quaternion matrix pencils and are closely based on a series of recent
research articles by the author. The exposition is detailed and care-
ful, and readers familiar with concepts such as canonical forms and
standard matrix factorizations and with basic knowledge of analysis
and topology will find it accessible and largely self-contained.

Irish readers may be disappointed by the fact that an entire book
on the algebra of quaternions mentions William Rowan Hamilton
only once, in passing, as a warrant for the use of the symbol H. Oth-
erwise the book is extraordinarily comprehensive. The first chapter
introduces some notational and other conventions, and the second
discusses the basic arithmetic of quaternions, including such topics
as automorphisms and involutions of the quaternion algebra. Par-
ticular matrix realizations of H via the real and complex regular rep-
resentations are presented; these concrete interpretations of H are
often used throughout the text for computational purposes. Read-
ers who enjoy random mathematical challenges may like Exercise
2.7.21, which asks for a demonstration that every non-zero element
of H can be written in infinitely many ways as the product of two
pure quaternions.

Chapter 3 establishes some basic principles of linear algebra for
vector spaces over the quaternions and for matrices with quaternion
entries. Standard matrix factorizations over R and C that extend
unproblematically to the quaternion setting are presented, such as
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the Gaussian elimination algorithm, the singular value decompo-
sition, and the QR factorization for a square quaternion matrix.
A detailed analysis of topological and geometric properties of nu-
merical ranges of quaternion matrices is provided, with respect to
general involutions as well as the standard quaternion conjugation.
Your (routine but informative) challenge from the exercises in this
chapter is to show that every element of Hn×n that has a right in-
verse also has a left inverse and that these coincide, and to calculate
the inverse in H3×3 of the matrix


0 i j
−i 0 k
−j −k 0


 .

The next two chapters consider canonical forms, for congruence
classes of hermitian and skew-hermitian quaternion matrices (Chap-
ter 4) and for similarity classes of square quaternion matrices (Chap-
ter 5). A quaternion matrix A is said to be hermitian if it equal to
its conjugate transpose A∗, and skew-hermitian if A = −A∗. If
A ∈ Hn×n is hermitian then x∗Ax ∈ R for all x ∈ Hn×1, and so
concepts such as positive definiteness for hermitian matrices extend
unproblematically to the quaternion setting. Canonical forms are
established in Chapter 4 for quaternion matrices that are hermitian
or skew-hermitian, in the above sense or with respect to an involu-
tion φ other than the standard conjugation. The development and
the results appear to be analagous to the theory over C. Chapter
5 introduces the left and right spectra of a square quaternion ma-
trix and the quaternion analogue of the Jordan canonical form. If
A ∈ Hn×n, then λ ∈ H is a right eigenvalue of A if Av = vλ for some
nonzero v ∈ Hn×1, and µ ∈ H is a left eigenvalue of A if Au = µu
for some nonzero u ∈ Hn×1. It is easily confirmed that if λ is a
right (or left) eigenvalue of A then so also is every element α−1λα
of the conjugacy class of λ in the multiplicative group H× of the
quaternion division algebra. So eigenvalues of quaternion matrices
are not really single elements but conjugacy classes. There is no
general connection between the left and right spectra of an element
of Hn×n and they may be disjoint. There is a Jordan canonical
form theorem for quaternion matrices; it resembles the usual state-
ment for algebraically closed fields except that the eigenvalues that
appear in the Jordan blocks are determined only up to conjugacy
in H×. The exercises in Chapter 5 reveal some unsettling failures
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of reliable certainties of linear algebra to translate to the division

ring setting. The harmless-looking example

(
1 i
j k

)
shows that a

quaternion matrix need not be similar to its transpose, and even
that the transpose of an invertible quaternion matrix need not be
invertible. One of the issues here seems to be that it is possible for
a set of column vectors to be right linearly independent but not left
linearly independent over H.

Chapter 6 considers subspaces of Hn×1 that are simultaneously
invariant for one matrix in Hn×n and have special properties (such
as being totally isotropic) with respect to a form defined by another.
Chapter 7 discusses the Smith normal form of a matrix written
over the ring of polynomials in one (central) variable over H, and
the Kronecker canonical form for a quaternion matrix pencil. This
theme serves as an introduction to the second half of the book, which
is concerned with canonical forms of pencils of quaternion matrices
of special forms (for example hermitian or skew-hermitian, or φ-
(skew)-hermitian for a nonstandard involution φ). This detailed
and extensive analysis is mostly drawn or adapted from a series of
recent research articles by the author (and collaborators in some
cases). Many open problems are included.

The book covers a huge range of material, from basic informa-
tion about the algebra of quaternions to discussions of much more
specialized interest in the later chapters. It is very well organized
and the quality of exposition is high; care has been taken to provide
an accessible and readable account with plenty of interesting prob-
lems. Each chapter concludes with some notes explaining aspects of
the context and provenance of the content, and advising the reader
of relevant literature. The early chapters would certainly be use-
ful to lecturers and students of graduate courses on such themes as
linear algebra or ring theory, and the entire volume will certainly
be useful as a reference text for researchers in linear algebra. The
author passed away in March this year, however his comprehensive
and engaging book will be appreciated long into the future.
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IAN SHORT

Problems

Let us begin with a classic.

Problem 75.1. What is the least positive integer n for which a
square can be tessellated by n acute-angled triangles?

The second problem was proposed by Finbarr Holland of Univer-
sity College Cork. The inequality involving the exponential function
that is considered in the problem is a generalisation of the useful in-
equalities

ex 6 1

1− x and e2x 6 1 + x

1− x (0 6 x < 1),

which are strict inequalities unless x = 0.

Problem 75.2. Let

sn(x) =
n∑

k=0

xk

k!
, n = 0, 1, 2, . . . .

Suppose 0 < α < 1. Prove that when n > 1,

ex 6 sn(x)− αxsn−1(x)

1− αx for all x ∈ [0, 1/α)

if and only if α > 1/(n+ 1).

We finish with another inequality: the sort that might crop up in
a mathematics olympiad.

Problem 75.3. Given positive real numbers a, b, and c, prove that

a+ b+ c 6 3
√
abc

(
a

b
+
b

c
+
c

a

)
.
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Solutions

Here are solutions to the problems from Bulletin Number 73.
The first problem was solved by Angel Plaza (Universidad de Las

Palmas de Gran Canaria, Spain), the North Kildare Mathematics
Problem Club, and the proposer, Finbarr Holland. We present the
solution of the North Kildare Mathematics Problem Club.

Problem 73.1 . Let Un denote the Chebyshev polynomial of the sec-
ond kind of degree n, which is the unique polynomial that satisfies
the equation Un(cos θ) = sin((n + 1)θ)/ sin θ. The polynomial U2n

satisfies U2n(t) = pn(4t2), where

pn(z) =
n∑

k=0

(−1)k
(

2n− k
k

)
zn−k.

Prove that pn is irreducible over the integers when 2n+ 1 is a prime
number.

Solution 73.1. Define qn(t) = pn(2t+2), so that qn(2t2−1) = U2n(t).
Since qn(cos 2θ) = U2n(cos θ), the n roots of qn are the numbers
cos(2kπ/(2n+ 1)) for k = 1, . . . , n. We prove that if pn is reducible,
then 2n+ 1 is not prime.

Suppose that pn is reducible over the integers. Then so is qn, and
one of the proper factors of qn has a = cos(2π/(2n+1)) as a root. It
follows that the degree of the extension Q(a) over Q is less than n.
Now let b = i sin(2π/(2n+ 1)). Since b2 = a2 − 1, the degree of the
extension Q(a, b) over Q is less than 2n. Notice that Q(a, b) contains
a+b, a primitive root of unity. Therefore the cyclotomic polynomial
x2n + · · · + x2 + x + 1 of degree 2n splits in Q(a, b). However, this
polynomial is irreducible when 2n+ 1 is prime, as is well-known, so
2n+ 1 cannot be prime. �

The second problem was solved by Henry Ricardo (New York Math
Circle, New York, USA), the North Kildare Mathematics Problem
Club, and the proposer (the Editor, who learned the problem from
Tony Barnard of King’s College London). The solution we present is
an amalgamation of the submitted solutions. Henry Ricardo pointed
out that the problem (and solution) appear elsewhere; for example,
see Problem 1339 in Math. Mag. 64 (1991), no. 1.
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Problem 73.2 . Find all positive integers a, b, and c such that

bc ≡ 1 (mod a)

ca ≡ 1 (mod b)

ab ≡ 1 (mod c).

Solution 73.2. Without loss of generality, suppose that a 6 b 6 c.
Since bc−1, ca−1, and ab−1 are divisible by a, b, and c, respectively,
we see that

(bc−1)(ca−1)(ab−1) = (abc)2− (abc)(a+ b+ c)+(ab+ bc+ ca)−1

is divisible by abc. Hence ab + bc + ca − 1 is divisible by abc. But
0 < ab+ bc+ ca− 1 < 3bc, so a < 3.

Next, we know that

(ca− 1)(ab− 1) = a2(bc)− (ab+ ca) + 1

is divisible by bc, so (ab + ca) − 1 is divisible by bc. But 0 <
(ab+ ca)− 1 < 2ac, so b < 2a.

From the inequalities a < 3 and b < 2a we see that either a = 1
and b = 1 or a = 2 and b < 4. In the former case we obtain the
solution (1, 1,m), where m is any positive integer. In the latter case,
the congruence bc ≡ 1 (mod a) tells us that b is odd, so b = 3. From
the congruence ab ≡ 1 (mod c) we deduce that c = 5, which gives
the only other solution (2, 3, 5). �

The third problem was solved by Adnan Al (Mumbai, India), An-
gel Plaza (Universidad de Las Palmas de Gran Canaria, Spain),
Henry Ricardo (New York Math Circle, New York, USA), the North
Kildare Mathematics Problem Club, and the proposer (the Editor,
who learned the problem from Tony Barnard). It was also solved by
Finbarr Holland, and it is his short solution that we present here.
Several contributors noted that there is literature on this kind of
problem; see, for example, S. Koumandos, Remarks on a paper by
Chao-Ping Chen and Feng Qi, Proc. Amer. Math. Soc. 134 (2006),
no. 5, 1365–1367.

Problem 73.3 . Prove that

1

10
√

2
<

1

2
× 3

4
× 5

6
× · · · × 99

100
<

1

10
.
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Solution 73.3. Let

vn =
1

2
× 3

4
× 5

6
× · · · × 2n− 1

2n
.

Then a quick check shows that the sequence
√
nvn is strictly in-

creasing and the sequence
√

2n+ 1vn is strictly decreasing. Since
v1 = 1/2, we obtain the more general collection of inequalities

1

2
√
n
< vn <

1√
2n+ 1

, n = 2, 3, . . . . �

We invite readers to submit problems and solutions. Please email
submissions to imsproblems@gmail.com in any format (we prefer
Latex). Submissions for the summer Bulletin should arrive before
the end of April, and submissions for the winter Bulletin should
arrive by October. The solution to a problem is published two issues
after the issue in which the problem first appeared. Please include
solutions to any problems you submit, if you have them.
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