The Centre of Unitary Isotopes of JB*-Algebras

AKHLAQ A. SIDDQUI

Abstract. We identify the centre of unitary isotopes of a JB*-algebra. We show that the centres of any two unitary isotopes of a JB*-algebra are isometrically Jordan *-isomorphic to each other. However, there need be no inclusion between centres of the two unitary isotopes.

1. Basics

We begin by recalling (from [3], for instance) the following concepts of homotope and isotope of Jordan algebras.

Let \(J \) be a Jordan algebra, cf. [3], and \(x \in J \). The \(x \)-homotope of \(J \), denoted by \(J[x] \), is the Jordan algebra consisting of the same elements and linear algebra structure as \(J \) but a different product, denoted by \(\cdot_x \), defined by

\[a \cdot_x b = \{axb\} \]

for all \(a, b \) in \(J[x] \). By \(\{pqr\} \) we will always denote the Jordan triple product of \(p, q, r \) defined in the Jordan algebra \(J \) as below:

\[\{pqr\} = (p \circ q) \circ r - (p \circ r) \circ q + (q \circ r) \circ p, \]

where \(\circ \) stands for the original Jordan product in \(J \). An element \(x \) of a Jordan algebra \(J \) with unit \(e \) is said to be invertible if there exists \(x^{-1} \in J \), called the inverse of \(x \), such that \(x \circ x^{-1} = e \) and \(x^2 \circ x^{-1} = x \). The set of all invertible elements of \(J \) will be denoted by \(J_{\text{inv}} \). In this case, \(x \) acts as the unit for the homotope \(J[x^{-1}] \) of \(J \).

If \(J \) is a unital Jordan algebra and \(x \in J_{\text{inv}} \) then by \(x \)-isotope of \(J \), denoted by \(J[x] \), we mean the \(x^{-1} \)-homotope \(J[x^{-1}] \) of \(J \). We denote the multiplication \(\cdot_{x^{-1}} \) of \(J[x] \) by \(\circ_x \).

The following lemma gives the invariance of the set of invertible elements in a unital Jordan algebra on passage to any of its isotopes.
Lemma 1.1. For any invertible element a in a unital Jordan algebra \mathcal{J}, $\mathcal{J}_{\text{inv}} = \mathcal{J}_{\text{inv}}^{|a|}$.

Proof. See Lemma 1.5 of [8]. □

Let \mathcal{J} be a Jordan algebra and let $a, b \in \mathcal{J}$. The operators T_b and $U_{a,b}$ are defined on \mathcal{J} by $T_b(x) = b \circ x$ and $U_{a,b}(x) = \{axb\}$. We shall denote $U_{a,a}$ simply by U_a. The elements a and b are said to operator commute if $T_b \text{ commute with } T_a$.

Let \mathcal{J} be a complex unital Banach Jordan algebra and let $x \in \mathcal{J}$. As usual, the spectrum of x in \mathcal{J}, denoted by $\sigma_{\mathcal{J}}(x)$, is defined by

$$\sigma_{\mathcal{J}}(x) = \{\lambda \in \mathbb{C} : x - \lambda e \text{ is not invertible in } \mathcal{J}\}.$$

A Jordan algebra \mathcal{J} with product \circ is called a Banach Jordan algebra if there is a norm $\| \|$ on \mathcal{J} such that $(\mathcal{J}, \| \|)$ is a Banach space and $\|a \circ b\| \leq \|a\| \|b\|$. If, in addition, \mathcal{J} has a unit e with $\|e\| = 1$ then \mathcal{J} is called a unital Banach Jordan algebra. In the sequel, we will only be considering unital Banach Jordan algebras; the norm closure of the Jordan subalgebra $\mathcal{J}(x_1, \ldots, x_r)$ generated by x_1, \ldots, x_r of Banach Jordan algebra \mathcal{J} will be denoted by $\overline{\mathcal{J}(x_1, \ldots, x_r)}$.

The following elementary properties of Banach Jordan algebras are similar to those of Banach algebras and their proofs are a fairly routine modifications of these [1, 2, 7, 9].

Lemma 1.2. Let \mathcal{J} be a Banach Jordan algebra with unit e and $x_1, \ldots, x_r \in \mathcal{J}$.

(i) If $\mathcal{J}(x_1, \ldots, x_r)$ is an associative subalgebra of \mathcal{J}, then $\overline{\mathcal{J}(x_1, \ldots, x_r)}$ is a commutative Banach algebra.

(ii) T_{x_1} and U_{x_1, x_2} are continuous with $\|T_{x_1}\| \leq \|x_1\|$ and $\|U_{x_1, x_2}\| \leq 3\|x_1\| \|x_2\|$.

(iii) $\mathcal{J}(x_1, \ldots, x_r)$ is a closed subalgebra of \mathcal{J}.

(iv) If \mathcal{J} is unital then $\mathcal{J}(e, x_1)$ is a commutative Banach algebra.

(v) If $x \in \mathcal{J}$ and $\|x\| < 1$ then $e - x$ is invertible and $(e - x)^{-1} = \sum_{n=0}^{\infty} x^n \in \mathcal{J}(e, x)$.

(vi) If K is a closed Jordan subalgebra of \mathcal{J} containing e and $x \in K$ such that $\mathbb{C} \setminus \sigma_{\mathcal{J}}(x)$ is connected then $\sigma_{\mathcal{J}}(x) = \sigma_K(x)$.

A complex Banach Jordan algebra J with isometric involution * (see [6], for instance) is called a JB*-algebra if $\|\{xx^*x\}\| = \|x\|^3$ for all $x \in J$.

The class of JB*-algebras was introduced by Kaplansky in 1976 (see [10]) around the same time when a related class called JB-algebras was being studied by Alfsen, Shultz and Størmer (see [1]).

A real Banach Jordan algebra J is called a JB-algebra if $\|x\|^2 = \|x^2\| \leq \|x^2 + y^2\|$ for all $x, y \in J$.

These two classes of algebras are linked as follows (see [10, 13]).

Theorem 1.3.
(a) If A is a JB*-algebra then the set of self-adjoint elements of A is a JB-algebra.
(b) If B is a JB-algebra then under a suitable norm the complexification $\mathbb{C}B$ of B is a JB*-algebra.

There is an easier subclass of these algebras. Let \mathcal{H} be a complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the full algebra of bounded linear operators on \mathcal{H}.

(a) Any closed self-adjoint complex Jordan subalgebra of $\mathcal{B}(\mathcal{H})$ is called a JC*-algebra.
(b) Any closed real Jordan subalgebra of self-adjoint operators of $\mathcal{B}(\mathcal{H})$ is called a JC-algebra.

Any JB*-algebra isometrically *-isomorphic to a JC*-algebra is also called a JC*-algebra; similarly, any JB-algebra isometrically isomorphic to a JC-algebra is also called a JC-algebra.

It is easy to verify that a JC*-algebra is a JB*-algebra and a JC-algebra is a JB-algebra. It might be expected, conversely, that every JB-algebra is a JC-algebra (with a corresponding statement for JB*-algebras and JC*-algebras) but unfortunately this is not true (for details see [1]).

2. Unitary Isotopes of a JB*-algebra

In [8], we presented a study of unitary isotopes of JB*-algebras. In this section, we recall some facts from [8] which are needed for the sequel.

Let J be a JB*-algebra. The element $u \in J$ is called unitary if $u^* = u^{-1}$, the inverse of u. The set of all unitary elements of J
will be denoted by $\mathcal{U}(\mathcal{J})$. If u is a unitary element of JB^*-algebra \mathcal{J} then the isotope $\mathcal{J}^{[u]}$ is called a unitary isotope of \mathcal{J}.

Theorem 2.1. Let u be a unitary element of the JB^*-algebra \mathcal{J}. Then the isotope $\mathcal{J}^{[u]}$ is a JB^*-algebra having u as its unit with respect to the original norm and the involution $*_{u}$ defined by $x^{*_{u}} = \{ux^{*}u\}$.

Proof. See Theorem 2.4 of [8].

Recall (from [3], for instance) that a Jordan algebra is said to be special if it is isomorphic to a Jordan subalgebra of some associative algebra. We require the following fact.

Lemma 2.2. If \mathcal{J} is a special Jordan algebra and $a \in \mathcal{J}$, then $\mathcal{J}^{[a]}$ is a special Jordan algebra.

Proof. See Lemma 1.3 in [8].

Theorem 2.3. The unitary isotope of a JC^*-algebra is again a JC^*-algebra.

Proof. This follows from Theorem 2.1 and Lemma 2.2 (also see [8, Theorem 2.12]).

We close this section by noting following facts.

Lemma 2.4. Let \mathcal{J} be a JB^*-algebra with unit e. Then $u \in \mathcal{U}(\mathcal{J}) \implies e \in \mathcal{U}(\mathcal{J}^{[u]})$. Moreover $\mathcal{J}^{[u]}[e] = \mathcal{J}$.

Proof. See Lemma 2.7 of [8].

Next theorem establishes the invariance of unitaries on passage to unitary isotopes of a JB^*-algebra.

Theorem 2.5. For any unitary element u in the JB^*-algebra \mathcal{J}, $\mathcal{U}(\mathcal{J}) = \mathcal{U}(\mathcal{J}^{[u]})$.

Proof. See Theorem 2.8 of [8].

Corollary 2.6. Let \mathcal{J} be a JB^*-algebra with unit e and let $u, v \in \mathcal{U}(\mathcal{J})$. Then

(i) $\mathcal{J}^{[u]}[v] = \mathcal{J}^{[v]}$.

(ii) The relation of being unitary isotope is an equivalence relation in the class of unital JB^*-algebras.

Proof. See Corollary 2.9 of [8].
3. Centre of Unitary Isotopes

In this section, we identify the centre of unitary isotopes in terms of the centre of the original JB^*-algebra. We recall the following definition from [14].

Definition 3.1. Let \mathcal{J} be a unital JB^*-algebra and let

$$C(\mathcal{J}) = \{ x \in J_{sa} : x \text{ operator commutes with every } y \in J_{sa} \}.$$

Then the centre of \mathcal{J}, denoted by $Z(\mathcal{J})$, is defined by

$$Z(\mathcal{J}) = C(\mathcal{J}) + iC(\mathcal{J}).$$

Remark 3.2. It is known from [14] that $Z(\mathcal{J})$ is a C^*-algebra, and if \mathcal{J} is a JC^*-algebra with $\mathcal{J} \subseteq \mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} then

$$Z(\mathcal{J}) = \{ x \in \mathcal{J} : xy = yx \quad \forall y \in \mathcal{J} \}.$$

To investigate further properties of the centre we need the following lemma.

Lemma 3.3. Let \mathcal{J} be a JB^*-algebra and let $x \in Z(\mathcal{J})$. Then for all $y \in \mathcal{J}$,

(i) $T_xT_y = T_yT_x$;

(ii) $T_xU_y = U_yT_x$;

(iii) $U_xU_y = U_yU_x$;

(iv) if $u \in \mathcal{J}$ is unitary then $(x \circ u^*) \circ u = x$.

Proof. Let $x = a + ib$ and $y = c + id$ with $a, b \in C(\mathcal{J})$ and $c, d \in J_{sa}$. Then

$$T_xT_y = (T_a + iT_b)(T_c + iT_d) = T_aT_c + iT_aT_d + iT_bT_c - T_bT_d = T_aT_c + iT_aT_b + iT_cT_b - T_cT_a = T_yT_x$$

as $a, b \in C(\mathcal{J})$ which proves (i).

(ii). Since $U_y = 2T_y^2 - T_y^2$, we have

$$T_xU_y = T_x(2T_y^2 - T_y^2) = 2T_xT_y^2 - T_xT_y^2 = (2T_y^2 - T_y^2)T_x = U_yT_x$$

by part (i) (note that the associativity of $\mathcal{B}(\mathcal{J})$ is used here).

(iii). Since $x \in Z(\mathcal{J})$, $x^2 \in Z(\mathcal{J})$ by Remark 3.2. Hence by part (ii),

$$U_xU_y = (2T_x^2 - T_x^2)U_y = 2T_x^2U_y - T_x^2U_y = 2U_yT_x^2 - U_yT_x^2 = U_yU_x.$$

(iv). By part (i), $(x \circ u^*) \circ u = T_bT_xu^* = T_xT_{u^*} = T_xe = x$. □
Theorem 3.4. Let \(\mathcal{J} \) be a \(JB^\ast \)-algebra with unit \(e \) and let \(b \in \mathcal{Z}(\mathcal{J}) \). Then for any unitary \(u \in \mathcal{U}(\mathcal{J}) \) and for any \(x \in \mathcal{J} \) we have

(i) \((u^\ast \circ x) \circ u = u^\ast \circ (x \circ u)\);
(ii) \(\{ (b \circ u)u^\ast x \} = b \circ x\).

Proof. (i). If \(\mathcal{J} \) is special then

\[
(u^\ast \circ x) \circ u = \frac{1}{4}(u(u^\ast x + xu^\ast) + (u^\ast x + xu^\ast)u) = \frac{1}{4}(2x + xu^\ast + u^\ast xu) = \frac{1}{4}(u^\ast (ux + xu) + (ux + xu)u^\ast) = u^\ast \circ (x \circ u).
\]

Hence, by the Shirshov–Cohn theorem with inverses \([5]\), we have in the general case \((u^\ast \circ x) \circ u = u^\ast \circ (x \circ u)\).

(ii). Since \(b \in \mathcal{Z}(\mathcal{J}) \) and \(u \in \mathcal{U}(\mathcal{J}) \), we get by Lemma 3.3 (iv) that \((b \circ u) \circ u^\ast = b\).

Again by Lemma 3.3 (i),

\[
(u^\ast \circ x) \circ (b \circ u) = T_{(u^\ast \circ x)}T_bu = T_bT_{(u^\ast \circ x)}u = b \circ (u \circ (x \circ u^\ast))
\]

and

\[
u^\ast \circ ((b \circ u) \circ x) = T_{u^\ast}T_xT_bu = T_bT_{u^\ast}T_xu = b \circ (u^\ast \circ (x \circ u))
\]

so by part (i)

\[
(u^\ast \circ x) \circ (b \circ u) = u^\ast \circ ((b \circ u) \circ x).
\]

Thus by (1) and (2),

\[
\{ (b \circ u)u^\ast x \} = \{(b \circ u) \circ u^\ast \} \circ x + (u^\ast \circ x) \circ (b \circ u) - ((b \circ u) \circ x) \circ u^\ast = b \circ x.
\]

We now need a characterisation of the centre in terms of Hermitian operators. These are defined in terms of the numerical range of operators as follows (see \([14]\), for example).

Definition 3.5. If \(\mathcal{J} \) is a complex unital Banach Jordan algebra with unit \(e \) and \(D(\mathcal{J}) = \{ f \in \mathcal{J}^\ast : ||f|| = 1 \} \) then, for \(a \in \mathcal{J} \), the numerical range of \(a \), denoted by \(W(a) \), is defined by \(W(a) = \{ f(a) : f \in D(\mathcal{J}) \} \). The element \(a \) is called Hermitian if \(W(a) \subseteq \mathbb{R} \). The set of all Hermitian elements of \(\mathcal{J} \) is denoted by \(\text{Her} \mathcal{J} \).
The Centre of Unitary Isotopes of JB*-Algebras

The Hermitian elements in a unital JB*-algebra are exactly the self-adjoint elements (see [13]) but we shall need the following characterisation of the Hermitian operators on a JB*-algebra, given in [14].

Theorem 3.6. Let \mathcal{J} be a JB*-algebra with unit e. Then $S \in \text{Her}(\mathcal{B}(\mathcal{J}))$ if and only if $S = T_a + \delta$ where δ is a *-derivation and $a = S(e)$ is self-adjoint.

We can now give a characterisation of the centre of a unitary isotope.

Theorem 3.7. Let \mathcal{J} be a JB*-algebra with unit e and let $u \in \mathcal{U}(\mathcal{J})$. Let A be a JC*-subalgebra of $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} with unit e_A and let $w \in \mathcal{U}(A)$.

(i) If $x \in Z(\mathcal{J})$ then $u \circ x \in Z(\mathcal{J}^u)$.
(ii) If $a \in Z(\mathcal{A}^u)$ then $(a \circ w^*) \circ w = a$.
(iii) If $z \in Z(\mathcal{J}^u)$ then $u \circ (u^* \circ z) = z$.
(iv) Define $\psi : Z(\mathcal{J}) \to Z(\mathcal{J}^u)$ by $\psi(x) = u \circ x$. Then ψ is an isometric *-isomorphism of $Z(\mathcal{J})$ onto $Z(\mathcal{J}^u)$.

Proof. (i). Let $x = a + ib$ where $a, b \in Z(\mathcal{J})_{sa}$. Let $S = T_a \in \text{Her}(\mathcal{B}(\mathcal{J}))$. Then

$$S(e) = T_a(e) = a \circ e = a \quad \text{and} \quad S(u) = u \circ a.$$

As $S \in \text{Her}(\mathcal{B}(\mathcal{J}))$, $S(u) \in (\mathcal{J}^u)_{sa}$ by Theorem 3.6. By Theorem 3.4 (ii),

$$S(y) = T_a(y) = a \circ y = ((a \circ u)u^*y) = (a \circ u)u_y$$

for all $y \in \mathcal{J}$. Therefore, $S(y) = L_{S(u)}^u(y)$ for all $y \in \mathcal{J}$, where operator $L_{S(u)}^u$ stands for the multiplication by $S(u)$ in \mathcal{J}^u. Moreover, as $a \in Z(\mathcal{J})$ we get by [14, Theorem 14] that $S^2 \in \text{Her}(\mathcal{B}(\mathcal{J})) = \text{Her}(\mathcal{B}(\mathcal{J}^u))$ because $\mathcal{B}(\mathcal{J}^u) = \mathcal{B}(\mathcal{J})$ (see Theorem 2.1). So again by [14, Theorem 14], $S(u) \in Z(\mathcal{J}^u)$ as $S = L_{S(u)}^u$. Therefore, $u \circ a \in Z(\mathcal{J}^u)_{sa}$. Similarly, $u \circ b \in Z(\mathcal{J}^u)_{sa}$. Hence $u \circ x = u \circ a + iu \circ b \in Z(\mathcal{J}^u)$.

(ii). By Remark 3.2,

$$Z(\mathcal{A}) = \{x \in \mathcal{A} : xy = yx\}. \quad (3)$$
By Theorem 2.3, the isotope A^w is a JC^*-algebra and
\[Z(A^w) = \{ x \in A : xw^*y = yw^*x \}. \quad (4) \]

Now, if $a \in Z(A^w)$ then (by (4)) $aw^*y = yw^*a$ for all $y \in A$. In particular,
\[aw^* = w^*a. \quad (5) \]

By part (i), $a \circ w^* = e_A \circ w \ a \in Z(A^{w[e_A]}) = Z(A)$. So we have by (4) that
\[(a \circ w^*) \circ w = (a \circ w^*)w = \frac{1}{2}(aw^* + w^*a)w \]

hence by (5)
\[(a \circ w^*) \circ w = (aw^*)w = a(w^*w) = a, \]
as required .

(iii) Now, let v be any unitary in $Z(J^{[u]})$ (the centre of the unitary isotope $J^{[u]}$ of the JB^*-algebra J). Then v is a unitary in J by Theorem 2.5. By [8, Corollary 1.14], $J(e, u, u^*, v, v^*)$ is a JC^*-algebra and $v \in Z((J(e, u, u^*, v, v^*))^{[u]})$. Hence, by (ii),
\[u \circ (u^* \circ v) = v. \quad (6) \]

If $z \in Z(J^{[u]})$, then by the Russo–Dye Theorem (cf. [11]) for C^*-algebras there exist unitaries $v_j \in Z(J^{[u]})$ and scalars $0 \leq \lambda_j \leq 1$ with $\sum_{j=1}^n \lambda_j = 1$ for some $n \in \mathbb{N}$ such that $\sum_{j=1}^n \lambda_j v_j$, because $\|\sum_{j=1}^n \lambda_j v_j\| < 1$ (recall that $Z(J^{[u]})$ is a C^*-algebra). Hence, by (6),
\[u \circ (u^* \circ z) = u \circ (u^* \circ (\|z\| + 1) \sum_{j=1}^n \lambda_j v_j) \]
\[= (\|z\| + 1) \sum_{j=1}^n \lambda_j (u \circ (u^* \circ v_j)) \]
\[= (\|z\| + 1) \sum_{j=1}^n \lambda_j v_j = z. \]

(iv). As $\psi = T_u \mid_{Z(J)}$, ψ is linear and continuous by Lemma 1.2 (i).
Let $z \in Z(J^{[u]})$. Applying part (i) to $J^{[u]}$ we get $e \circ u \ z \in Z(J^{[u]}^{[u]})$. But $J^{[u]}^{[u]} = J$ by Lemma 2.4 and $e \circ u \ z = \{e u^*z\} = u^* \circ z$. Hence $u^* \circ z \in Z(J)$. Moreover, $\psi(u^* \circ z) = u \circ (u^* \circ z) = z$ by part (iii). Thus ψ maps $Z(J)$ onto $Z(J^{[u]})$.
Further, \(\| \psi(x) \| \leq \| u \| \| x \| \) while, by Lemmas 3.3 (i) and 1.2 (ii),
\[
\| x \| = \| T_x T_u u \| = \| T_u T_x u \| \leq \| x \circ u \| = \| \psi(x) \| .
\]
Thus \(\psi \) is an isometry.

Finally, as \(\psi(e) = u \) and \(u \) is the unit of \(J[u] \) it follows from [12, Theorem 6] that \(\psi \) is an isometric \(* \)-isomorphism. \(\blacksquare \)

Corollary 3.8. Let \(J \) be a unital JB*-algebra. Then, for all \(u, v \in U(J) \), \(Z(J[u]) \) is isometrically Jordan \(* \)-isomorphic to \(Z(J[v]) \).

Proof. By Theorem 2.5, \(v \in U(J) \). Hence, by Theorem 3.7, \(Z(J[u]) \) is isometrically \(* \)-isomorphic to \(Z(J[v]) \). However, by Corollary 2.6 (i), \(J[u][v] = J[v] \). This gives the required result. \(\blacksquare \)

An alternative proof of above Corollary 3.8 can be obtained by noting that \(Z(J[u]) \) is isometrically \(* \)-isomorphic to \(Z(J[v]) \) and \(Z(J[v]) \) is isometrically \(* \)-isomorphic to \(Z(J[v]) \) by Theorem 3.7 (applied twice). As the next example shows there need be no inclusion between the centre of a unital JB*-algebra and the centre of its isotopes. In the following discussion \(M_2(\mathbb{C}) \) denotes the standard complexification of the real Jordan algebra of all \(2 \times 2 \) symmetric matrices.

Example 3.9. If \(u \in U(M_2(\mathbb{C})) \setminus Z(M_2(\mathbb{C})) \) then the unit \(e \notin Z(M_2(\mathbb{C})) \).

Indeed, \(M_2(\mathbb{C})[u] \) is a 4-dimensional \(C^* \)-algebra by Theorem 2.3 with 1-dimensional centre by the above Theorem 3.7. As \(u \) does not belong to \(Z(M_2(\mathbb{C})) \), \(u \notin Sp(e) \) where \(Sp(e) \) denotes the linear span of \(e \), and hence \(e \notin Sp(u) \). This gives that \(e \notin Z(M_2(\mathbb{C})[u]) \).

As a final point on the relationships between the centres it should be noted in the proof of Theorem 3.7 (i) that if \(a \in Z(J) \) and \(S = T_a \) then \(S \) is left multiplication in any unitary isotope. In order to study the \(* \)-derivations it might be hoped that if \(T \in Her B(J) \) then there exists a unitary isotope \(J[u] \) such that \(T \) is left multiplication operator in \(Her B(J[u]) \) since as linear spaces \(B(J) = B(J[u]) \) so \(Her B(J) = Her B(J[u]) \). Unfortunately, this fails even when \(J = M_2(\mathbb{C}) \). As all \(* \)-derivations are inner in this case, it follows that \(T \in Her B(M_2(\mathbb{C})) \) if and only if \(T = l_a + r_b \) where \(a, b \in (M_2(\mathbb{C}))_{sa} \) and \(l_a(x) = ax \) and \(r_b(x) = xb \).
Corollary 3.10. If \(a, b \in \mathcal{M}_2(\mathbb{C}) \) are given by
\[
\begin{pmatrix}
1 & 0 \\
0 & 2
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
6 & 0 \\
0 & 23
\end{pmatrix}
\]
and \(T \in \text{Her}(\mathcal{B}(\mathcal{M}_2(\mathbb{C}))) \) is defined by \(T = l_a + r_b \),
then \(T \) is not left multiplication in any unitary isotope.

Proof. It was noted in Example 3.9 that if \(u \in \mathcal{U}(\mathcal{M}_2(\mathbb{C})) \) then
\(\mathcal{M}_2(\mathbb{C})[u] \) is a four-dimensional \(C^* \)-algebra with a one-dimensional
centre so is isomorphic to \(\mathcal{M}_2(\mathbb{C}) \). By [4, Theorem 10], \(\sigma(T) = \sigma(a) + \sigma(b) = \{7, 8, 24, 25\} \).

On the other hand, if \(L_u[c] \in \text{Her}(\mathcal{B}(\mathcal{M}_2(\mathbb{C}))) \) with say \(\sigma(\mathcal{M}_2(\mathbb{C}))[c] = \{\lambda_1, \lambda_2\} \) then \(\sigma(L_u[c]) = \{\lambda_1, \lambda_1 + \lambda_2, \lambda_2\} \) again by [4, Theorem 10],
so \(\sigma(L_u[c]) \) contains only three points. Hence \(\sigma(T) \neq \sigma(L_u[c]) \) for
any unitary \(u \in \mathcal{U}(\mathcal{M}_2(\mathbb{C})) \). \(\square \)

Acknowledgement. The author is indebted to Dr Martin A.
Youngson for his help and encouragement during this work.

References

16 (1971), 115–125.
Soc. 10 (1959), 32–41.
(1967), 315–325.
[7] F. W. Shultz, On normed Jordan algebras which are Banach dual spaces,
[8] A. A. Siddiqui, Positivity of invertibles in unitary isotopes of \(JB^* \)-algebras,
submitted.
[9] H. Upmeier, Symmetric Banach manifolds and Jordan \(C^* \)-algebras,
Amsterdam, 1985.
algebras, Functional Analysis: Surveys and recent results (North Holland,
1977).

Akhlaq A. Siddiqui,
Department of Mathematics,
Prince Sultan University,
P. O. Box 66833,
Riyadh 11586, Saudi Arabia
saakhlaq@gmail.com

Received on 26 September 2006 and in revised form on 9 May 2007.