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Modules With Only Finitely Many Direct Sum
Decompositions up to Isomorphism

ALBERTO FACCHINI * AND DOLORS HERBERA **

Abstract. In this paper we study almost Krull–Schmidt
modules, that is, modules with only finitely many direct sum
decompositions up to isomorphism. This is a finiteness con-
dition on modules that has nothing to do with the other
finiteness conditions usually considered in the mathematical
literature, like being noetherian, or AB5∗, or having finite
Goldie dimension, or finite dual Goldie dimension, or finite
Krull dimension. Then we compute bounds on the number
and the lengths of the direct sum decompositions of modules.

1. Introduction

Two direct sum decompositions M =M1 ⊕ · · · ⊕Mt =N1 ⊕ · · · ⊕Ns

of a module M into finitely many direct summands M1, . . . , Mt,
N1, . . . , Ns are isomorphic if t = s and there is a permutation σ
of {1, . . . , t} such that Mi

∼= Nσ(i) for all i = 1, . . . , t.
Considerable attention has recently been paid to the modules for

which the Krull–Schmidt Theorem holds, that is, the modules with
exactly one direct sum decomposition into indecomposable submod-
ules, up to isomorphism. The aim of this paper is to draw the
reader’s attention to the modules that have only a finite number

2000 Mathematics Subject Classification. 16D70, 16L30, 16P99.
* Partially supported by Gruppo Nazionale Strutture Algebriche e Geomet-

riche e loro Applicazioni of Istituto Nazionale di Alta Matematica, Italy, and
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of direct sum decompositions into non-zero summands, up to iso-
morphism. This class of modules, almost overlooked until now, was
already considered by Vámos in [12]. He called these modules al-
most Krull–Schmidt modules (AKS modules for short). For instance,
torsion-free abelian groups of finite rank are AKS Z-modules [11].

In the first part of the paper we derive and develop the elemen-
tary properties of AKS modules, and give a number of examples.
The property of being an AKS module is completely determined by
the endomorphism ring of the module, because MR is an AKS mod-
ule if and only if in its endomorphism ring End(MR) the identity
can be written in only finitely many ways as a sum of pair-wise or-
thogonal non-zero idempotents, up to isomorphism of idempotents
(Theorem 2.1). We shall call AKS rings the rings with this property.
Examples of AKS modules and rings are very easy to find, and this
contrasts with what happens for modules with the Krull–Schmidt
property, that is, for modules having a unique direct sum decompo-
sition into indecomposables up to isomorphism. The modules with
the Krull–Schmidt property turn out to be almost exceptions. On
the contrary, AKS modules are very common.

The class of AKS modules is not closed for the most common
closure properties, for instance, the direct sum of two AKS mod-
ules is not necessarily AKS. A very powerful technique to construct
AKS modules with strange pathologies is furnished by a result due
to Bergman and Dicks (Theorem 3.1). Using Bergman and Dicks’
Theorem, we show that being an AKS module, which is a finite-
ness condition on the module, has nothing to do with the other
finiteness properties usually considered in the literature, like being
noetherian, or being AB5∗, or having finite Goldie dimension, or
finite dual Goldie dimension, or finite Krull dimension, and so on
(Examples 4.2).

The last section of the paper is devoted to computing bounds on
the number and the lengths of the direct sum decompositions of a
module. Bergman and Dicks’ Theorem is again useful to us in order
to construct examples showing that almost everything can happen.

The authors thank Professor T. Y. Lam for discovering a serious
error in a previous version of the paper.

Throughout, ring means associative ring with identity 1 6= 0. If
R is a ring, we shall denote the Jacobson radical of R by J(R). All
modules will be unital right modules unless otherwise specified. The
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symbols N,N∗,Z,Q,R will denote the set of all non-negative inte-
gers, positive integers, integers, rational numbers and real numbers,
respectively.

2. First Examples and Properties

A right R-module MR is said to be an almost Krull–Schmidt module
(AKS module for short) if it has only a finite number of direct sum
decompositions into non-zero summands up to isomorphism [12]. In
particular, an AKS module has only finitely many direct summands
up to isomorphism.

If MR is an AKS module, then any direct sum decomposition of M
is finite, because if M = ⊕λ∈ΛMλ is a direct sum of infinitely many
non-zero modules Mλ, then there is a direct sum decomposition of
MR into n direct summands for every n ≥ 1, hence MR cannot be
AKS. Moreover, any decomposition of an AKS module M can be
refined into a direct sum of indecomposable submodules.

In our first result we show that the property of being an AKS
module is completely determined by the endomorphism ring of the
module. Recall that two idempotents e, f in a ring R are called
isomorphic if the principal right ideals eR, fR are isomorphic right
R-modules, or, equivalently, if the principal left ideals Re, Rf are
isomorphic left R-modules [1, Exercise 7.2]. We say that a ring R
with identity 1 is an almost Krull–Schmidt ring (AKS ring) if 1 can be
written in only finitely many ways as a sum of pair-wise orthogonal
non-zero idempotents, up to isomorphism of idempotents.

Theorem 2.1. Let MR be an R-module and let E = End(MR) be
its endomorphism ring. The following conditions are equivalent:

(a) The right R-module MR is an AKS module.
(b) The ring E is an AKS ring.
(c) The right E-module EE is an AKS module.

Proof. The equivalence of (b) and (c) is trivial.
Let add(MR) be the full subcategory of Mod-R whose objects are

all modules isomorphic to direct summands of direct sums Mn of
finitely many copies of M , and let proj-E be the full subcategory
of Mod-E whose objects are all finitely generated projective right
E-modules. The functors HomR(MR,−) : Mod-R → Mod-E and
−⊗EMR : Mod-E → Mod-R induce an equivalence between the cate-
gories add(MR) and proj-E [5, Theorem 4.7]. In this equivalence, for
every idempotent e ∈ E, the object eE of proj-E corresponds to the
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direct summand eM of MR. It follows that MR has only a finite num-
ber of direct sum decompositions up to isomorphism if and only if EE

has only a finite number of direct sum decompositions up to isomor-
phism.
This proves the equivalence of (a) and (c). ¤

One of the most important properties as far as direct sum decom-
positions are concerned is the so-called exchange property. For the
terminology relative to the exchange property and the definition of
exchange ring we refer the reader to Warfield’s original paper [13] or
to the monograph [5, Chapter 2].

Theorem 2.2. An exchange ring is an AKS ring if and only if it is
semiperfect.

Proof. The fact that every semiperfect ring is AKS follows immedi-
ately from [5, Theorem 2.12 and Proposition 3.14]. Conversely, let
R be an AKS exchange ring. As RR is an AKS module, it must
be a finite direct sum of indecomposable modules RR = ⊕n

i=1eiR.
Since RR is an exchange module, the indecomposable modules eiR
must have the exchange property, so that their endomorphism rings
eiRei must be local. This proves that R is semiperfect [5, Theo-
rem 3.6]. ¤

From Theorem 2.2 one immediately obtains that AKS von Neu-
mann regular rings are exactly semisimple artinian rings. Similarly,
AKS strongly π-regular rings are semiperfect rings.

Recall that a ring R is F -semiperfect if R/J(R) is von Neumann
regular and idempotents can be lifted modulo J(R). F -semiperfect
rings are exchange rings. Therefore an F -semiperfect ring is AKS if
and only if it is semiperfect.

By Theorems 2.1 and 2.2, an injective (quasi-injective, pure-
injective, continuous) module is AKS if and only if it is a direct
sum of finitely many indecomposable modules.

Let A be a commutative additive monoid. The monoid A is said
to be reduced if a + b = 0 implies a = b = 0 for every a, b ∈ A, that
is, if no non-zero element a of A has an additive inverse −a in A.

If a and b are two elements of A, define a ≤ b if b = a+ c for some
c ∈ A. The relation ≤ is reflexive, transitive and invariant under
translations (that is, for any d ∈ A, a ≤ b implies a+d ≤ b+d). Thus
≤ is a pre-order on A, usually called the algebraic pre-order of A. An
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element u of A is an order-unit if it is 6= 0 and for any a ∈ A there
exists an integer n ≥ 0 such that a ≤ nu. The pre-order relation on
A allows us to define intervals, that is, if a, b ∈ A and a ≤ b, we can
consider the interval [a, b], i.e., the set [a, b] = {c ∈ A | a ≤ c ≤ b}.

We shall now consider the category of commutative monoids with
order-unit, which is defined as follows. Its objects are the pairs
(A, u), where A is a commutative monoid and u ∈ A is an order-unit.
The morphisms f : (A, u) → (A′, u′) are the monoid homomorphisms
f : A → A′ such that f(u) = u′.

Let MR be a right R-module. We shall denote by 〈NR〉 the iso-
morphism class of any object NR of add(MR). Let V (MR) be the set
of isomorphism classes of all objects of add(MR); there is a natural
addition on V (MR) defined as 〈N1〉+ 〈N2〉 = 〈N1 ⊕N2〉 for any el-
ements 〈N1〉, 〈N2〉 ∈ V (MR). This addition gives V (MR) a monoid
structure, and 〈MR〉 is an order-unit in V (MR).

Notice that 〈N1〉 ≤ 〈N2〉 means that N1 is isomorphic to a direct
summand of N2. Therefore V (MR) is a reduced monoid, and if a
module MR is AKS, then the interval [0, 〈MR〉] in V (MR) is finite.

For any ring R, there is a duality between the full subcategory
proj-R of Mod-R whose objects are all finitely generated projective
right R-modules and the full subcategory R-proj of R-Mod whose
objects are all finitely generated projective left R-modules. The
duality, defined by PR 7→ Hom(PR, RR), induces an isomorphism of
commutative monoids with order-unit

(V (RR), 〈RR〉) → (V (RR), 〈RR〉).

Therefore there is no ambiguity in denoting the monoid V (RR) ∼=
V (RR) simply by V (R).

Let MR denote a right R-module and E its endomorphism ring.
The category equivalence between add(MR) and proj-E (proof of
Theorem 2.1) induces an isomorphism of commutative monoids with
order-unit (V (MR), 〈MR〉) → (V (E), 〈E〉).
Lemma 2.3. Let I be a two-sided ideal in a ring R.

(a) If I ⊆ J(R) and R/I is an AKS ring, then R also is an AKS
ring.

(b) If idempotents lift modulo I and R is an AKS ring, then R/I
also is an AKS ring.
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Proof. The canonical projection π : R → R/I induces a morphism
of monoids with order-unit V (π) : (V (R), 〈R〉) → (V (R/I), 〈R/I〉).

(a) If I ⊆ J(R), then V (π) is an injective monoid morphism,
because if P, Q are finitely generated projective right R-modules and
P/PI ∼= Q/QI are isomorphic, then the projective covers P, Q of
P/PI ∼= Q/QI are isomorphic. Thus if 〈R/I〉 can be written as
a sum of elements in V (R/I) in only finitely many ways, then, a
fortiori, 〈R〉 can be written as a sum of elements in V (R) in only
finitely many ways. In other words, R/I AKS implies R AKS.

(b) If idempotents lift modulo I, the morphism V (π) induces a
surjective mapping of the interval [0, 〈R〉] in V (R) onto the inter-
val [0, 〈R/I〉] in V (R/I). It follows that the number of direct sum
decompositions of R up to isomorphism is greater or equal to the
number of direct sum decompositions of R/I up to isomorphism. ¤

Examples 2.4. (1) Every torsion-free abelian group of finite rank
is an AKS Z-module [11].

(2) Every ring with finitely many idempotents is an AKS ring. In
particular, every integral domain is an AKS ring.

(3) Two idempotents of a commutative ring R are isomorphic if
and only if they are equal. Moreover, as over a commutative ring
the product of idempotents is idempotent, two direct sum decompo-
sitions of R have a common refinement. Therefore a commutative
ring R is AKS if and only if its identity 1 is the sum of finitely many
primitive (i.e., indecomposable) idempotents, that is, if and only if R
is the direct product of finitely many rings each of which has no non-
trivial idempotents. Thus if R is a commutative AKS, the module
RR has a unique direct sum decompositions into indecomposables.

(4) A ring R is semilocal if R/J(R) is semisimple artinian. Since
semisimple artinian rings are trivially AKS, every semilocal ring is
an AKS ring by Lemma 2.3(a). In particular, right artinian rings
are AKS rings. If M is a linearly compact module, then End(M) is
semilocal [10, Corollary 5], so that M is an AKS module by Theo-
rem 2.1. In particular, artinian modules are AKS.

(5) The Jordan–Zassenhaus Theorem states that, if R is a Dede-
kind domain whose field of quotients Q is a global field and S is
an R-order in a semisimple Q-algebra, then every S-lattice, that is,
every right S-module that is finitely generated and projective as an
R-module, is an AKS S-module [8].
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3. Construction of AKS Rings via Bergman and Dicks’
Theorem

The following wonderful result, due to Bergman and Dicks [3, p. 315],
will be one of our main tools to construct examples of AKS modules.

Theorem 3.1. Let k be a field, and let A be a commutative reduced
monoid with order-unit u. Then there exists a right and left hered-
itary k-algebra R such that (A, u) and (V (R), 〈R〉) are isomorphic
monoids with order-unit.

The history of this result is the following. In [2, Theorems 6.2
and 6.4], Bergman proved Theorem 3.1 for finitely generated reduced
monoids with order-unit. Bergman’s method and the fact that tak-
ing the semigroup V (R) commutes with colimits yield that if (A, u)
is a commutative reduced monoid with order-unit, then there ex-
ists a k-algebra R, isomorphic to a colimit of hereditary k-algebras,
such that (V (R), 〈R〉) is isomorphic to (A, u). In [3], Bergman and
Dicks proved that certain classes of colimits of hereditary algebras
are also hereditary [3, Corollary 3.2], and their results imply that
the algebra obtained through Bergman’s coproduct constructions is
also hereditary.

As a consequence of Theorem 3.1 we obtain:

Corollary 3.2. Let k be a field, and let A be a commutative reduced
monoid with order-unit u, with the property that u can be written as
a sum of non-zero elements of A in only finitely many different ways.
Then there exists a hereditary AKS k-algebra R such that (A, u) and
(V (R), 〈R〉) are isomorphic monoids with order-unit.

We have already remarked that AKS modules have only finitely
many direct summands up to isomorphism. The converse does not
hold, that is, there exist modules with only finitely many direct
summands up to isomorphism that are not AKS, as the following
example shows.

Example 3.3. Let A be any commutative reduced finite non-zero
monoid. Then A has order-units, for instance the sum of all elements
of A, which cannot be zero because A is reduced. Moreover, every el-
ement of A has a multiple that is idempotent, because every element
of A generates a cyclic finite submonoid of A, which contains a finite
subgroup, whose identity is idempotent. Thus A has an idempotent
order-unit. By Theorem 3.1, there exists a ring R with V (R) ∼= A
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and RR ⊕ RR
∼= RR. Then RR

∼= Rn
R for every n is not AKS, but

has only finitely many direct summands up to isomorphism, because
A is finite.

Notice that the fact that a module MR has only finitely many
direct summands up to isomorphism is reflected in the monoid with
order-unit (V (MR), 〈MR〉) by the fact that the interval [0, 〈MR〉] is
finite. There is no relation between the fact that the commutative
monoid A is finitely generated and the fact that the interval [0, u] is
finite, as the following two examples show.

Example 3.4. (a) Example of a finitely generated commutative re-
duced monoid A with order-unit u but with [0, u] infinite.

Let ∼ be the congruence on the additive monoid N × N defined
by

(x, y) ∼ (x′, y′) if





x = x′ and y = y′

or
x, y, x′, y′ are all ≥ 1 and x + y′ = y + x′.

Let A = N × N/ ∼ be the quotient monoid and u = [(1, 1)] be
the congruence class of (1, 1). Notice that u = [(n, n)] for every
n ≥ 1, that [(n, 0)] = {(n, 0)} and that [(0, n)] = {(0, n)}. Thus
u = [(n, 0)] + [(0, n)] in infinitely many different ways. The element
u is an order-unit in A because for every [(x, y)] ∈ A one has that
[(x, y)] + [(y + 1, x + 1)] = [(x + y + 1, y + x + 1)] = u. Moreover
the monoid A is reduced, because if [(x, y)]+[(x′, y′)] = [(0, 0)], then
(x, y)+(x′, y′) ∼ (0, 0), so that x+x′ = 0 and y+y′ = 0, from which
x = x′ = y = y′ = 0. Thus A has the required properties.

(b) Example of a commutative reduced monoid A with order-unit u,
u indecomposable in A, but A not finitely generated as a commutative
monoid.

It suffices to consider the submonoid

A = {(0, 0)} ∪ { (x, y) ∈ R× R | x ≥ 1, y ≥ 1 }
of the additive abelian group R× R with u = (1, 1).

If R is a semiperfect ring (that is, R is the endomorphism ring of a
finite direct sum of modules each of which has a local endomorphism
ring [5, Proposition 3.14]), then the monoid V (R) is isomorphic to
Nt, where t is the number of non-isomorphic simple R-modules. More
generally, if R is a semilocal ring, then V (R) is isomorphic to a full
affine submonoid of Nt [6]. For an AKS ring R, the monoid V (R) is



Modules With Only Finitely Many Direct Sum Decompositions 59

not necessarily torsion-free. For instance, let k, n, u be three positive
integers with u < k, and let ∼k,n denote the congruence on the
additive monoid N defined by

x ∼k,n y if





x = y
or
x ≥ k, y ≥ k and x ≡ y (mod n)

for every x, y ∈ N. Let A be the monoid N/ ∼k,n. By Corollary 3.2,
there exists an AKS ring R with (V (R), 〈R〉) ∼= (A, u). In particular,
V (R) is not torsion-free.

4. Closure Properties. AKS versus other Finiteness
Conditions

In this section we analyze the class of AKS modules with respect
to the most usual closure properties of classes of modules, and we
compare the property of being an AKS module with other finiteness
conditions for modules, like being noetherian, AB5∗, of finite Goldie
dimension, or of finite dual Goldie dimension. Clearly, a direct sum-
mand of an AKS module is an AKS module. In Example 4.1(1) we
show that a direct sum of two AKS modules is not necessarily an
AKS module.

Examples 4.1. (1) Example of a ring R such that RR is AKS and
(R⊕R)R is not AKS.

(2) Example of a finitely generated module over a Dedekind do-
main that is not an AKS module.

(3) Example of a right and left noetherian ring that is not AKS.
Let R be a Dedekind domain with field of fractions Q. Recall

that a fractional ideal of R is an R-submodule I of Q for which
there exists a non-zero r ∈ R with rI ⊆ R. The class group of R
is the group whose elements are the isomorphism classes 〈I〉 with
I non-zero fractional ideal of R. Every abelian group is the class
group of a Dedekind domain [4]. Let R be a Dedekind domain with
infinite class group. Since R is an integral domain, the module RR is
AKS. Every ideal of a Dedekind domain R is isomorphic to a direct
summand of R ⊕ R. Since R has infinitely many non-isomorphic
ideals, the R-module (R ⊕ R)R is not AKS. This gives the example
required in (1) and (2). For (3) it suffices to consider the ring M2(R)
of 2× 2 matrices with entries in R, and apply Theorem 2.1.
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For a different example of (1), let A be the submonoid of the
additive group R×R whose elements are (0, 0) and all the elements
(x, y) ∈ R× R with x ≥ 0, y ≥ 0 and x + y ≥ 2, and set u = (1, 1).
Now apply Theorem 3.1 to (A, u).

Compare Example 4.1(2) with the fact that every finitely gener-
ated module over a principal ideal domain is an AKS module (every
finitely generated module over a principal ideal domain is a direct
sum of indecomposable modules in a unique way up to isomorphism).

By Theorem 2.1 and Example 4.1, there exist AKS rings R for
which the ring M2(R) of 2 × 2 matrices with entries in R is not
AKS. Notice that if R is a Dedekind domain like those considered in
Examples 4.1, that is a Dedekind domain with infinite class group,
and Q is the field of fractions of R, then (Q ⊕ Q)R is an AKS R-
module, but its submodule (R⊕R)R is not AKS. Thus a submodule
of an AKS module is not necessarily an AKS module. This example
also shows that a subring of an AKS ring is not an AKS ring (consider
the rings M2(R) ⊆ M2(Q)). On the contrary, every subring of a
commutative AKS ring, i.e., a commutative ring with only finitely
many idempotents, is still an AKS ring.

We conclude this section by comparing the most common finite-
ness conditions for modules with the property of being an AKS mod-
ule.

Examples 4.2. (1) There exist noetherian modules that are not
AKS. There exist AKS modules that are not finitely generated; in
particular, they are not noetherian.

See Example 4.1(2) for a noetherian module that is not AKS. Any
infinitely generated indecomposable module, e.g., QZ, is an example
of an infinitely generated AKS module.

(2) There exist modules of finite Goldie dimension that are not
AKS and AKS modules that are not of finite Goldie dimension.

Example 4.1(2) shows that there exist modules of finite Goldie
dimension that are not AKS. Any non-commutative integral domain
that is not a right Goldie ring is an example of an AKS right module
that is not of finite Goldie dimension.

(3) There exist modules of finite dual Goldie dimension that are
not AKS and AKS modules that are not of finite dual Goldie dimen-
sion.

Every commutative integral domain E is isomorphic to the endo-
morphism ring of a local module MR, that is, a cyclic module MR of



Modules With Only Finitely Many Direct Sum Decompositions 61

dual Goldie dimension 1 [10, Example 10(1)]. As in Examples 4.1,
let E be a Dedekind domain with infinite class group. If MR is a lo-
cal module with End(MR) ∼= E, then the module MR⊕MR has dual
Goldie dimension 2, but its endomorphism ring, which is isomorphic
to the ring M2(E) of 2×2 matrices with entries in E, is not an AKS
ring. Therefore MR⊕MR is not an AKS module. (Notice that every
module of dual Goldie dimension 1 is indecomposable, hence it is an
AKS module.)

Conversely, the abelian group Z is an AKS Z-module of infinite
dual Goldie dimension.

We remark that a ring of finite dual Goldie dimension is semilocal
[5, Proposition 2.43], hence it is an AKS ring (Example 2.4(4)).
Conversely, there are AKS rings that are not semilocal, for instance,
the ring Z.

(4) There exist modules of finite Krull dimension that are not
AKS and AKS modules which fail to have Krull dimension.

The Dedekind domains that are not fields have Krull dimension 1.
Let R be the Dedekind domain of Examples 4.1(1) and (2). Then
MR = (R⊕R)R has Krull dimension 1 and is not AKS. Conversely,
if R is a valuation domain whose value group is divisible, then R
turns out to be an AKS ring which fails to have Krull dimension.

Notice that if M is a module of Krull dimension ≤ 0, then M is
artinian, hence it is an AKS module (Example 2.4(4)).

(5) There exist rings R that are not AKS and whose V (R) is finite,
and AKS rings R whose V (R) is not finitely generated.

For an example of the first type of rings, see Example 3.3. For
an example of the second type of rings, apply Theorem 3.1 to the
monoid with order-unit (A, (1, 1)) of Example 3.4(b). The ring R
obtained in this way has no non-trivial idempotents, hence it is an
AKS ring, but V (R) ∼= A is not finitely generated as a commutative
monoid.

(6) There exist AB5∗ modules that are not AKS and AKS modules
that are not AB5∗.

An infinite direct sum of pair-wise non-isomorphic simple modules
is an example of an AB5∗ module that is not AKS. The Z-module
Q/Z is another example with these properties. Any integral domain
that is not local is an example of a ring that is AKS and not AB5∗.



62 Alberto Facchini and Dolors Herbera

5. Bounds on the Number of Direct Summands

In this section we shall consider the following problem. Suppose we
know the direct sum decompositions of two R-modules M and N .
What can we say about the direct sum decompositions of the R-
modules M ⊕N and Mn (n ≥ 1)? The answer is, as we shall see in
this section, that we can say very little. Practically everything can
happen.

Firstly, we consider the direct sum decompositions of M⊕N . For
every R-module M , let ν(M) denote the number, up to isomorphism,
of decompositions of M as direct sums of indecomposables. Thus
ν(M) is either a non-negative integer or +∞. Moreover, if M is an
AKS module, then ν(M) is a positive integer. Suppose we know
ν(M) and ν(N) for two R-modules M and N . What can we say
about ν(M ⊕N)? If M and N have no isomorphic non-zero direct
summands (that is, if for every R-module P that is isomorphic both
to a direct summand of M and to a direct summand of N one has
that P = 0), then ν(M⊕N) ≥ ν(M)ν(N). The next example shows
that the inequality ν(M ⊕N) ≥ ν(M)ν(N) may not hold if M and
N have isomorphic non-zero direct summands.

Example 5.1. Let R be a ring whose monoid V (R) is isomorphic
to the submonoid A of the additive monoid N × N generated by
{(2, 0), (1, 1), (0, 2)} (Theorem 3.1). Let M = N be the R-module
corresponding to the element (2, 2) of A. Since (2, 2) = (2, 0) +
(0, 2) = 2(1, 1) are the only sum decompositions of (2, 2) up to the
order, it follows that M and N have only two decompositions, up
to isomorphism, as direct sums of indecomposables. Thus ν(M) =
ν(N) = 2. But M ⊕N corresponds to the element (4, 4) of A, and
(4, 4) = 2(2, 0)+2(0, 2) = 4(1, 1) = (2, 0)+(0, 2)+2(1, 1). Therefore
ν(M ⊕N) = 3.

To be able to construct examples with a more complicated be-
haviour it is better to use constructions of monoids through gen-
erators and relations. The next lemma, essentially taken from [7,
Lemma 2.7], will be helpful in controlling such monoids.

First we recall that a submonoid B of a monoid C is said to be
a full submonoid of C if for any x ∈ B and any y ∈ C, x + y ∈ B
implies y ∈ B [7]. If f : B → C is a monoid monomorphism such that
f(B) is a full submonoid of C, then f is said to be a full embedding.
Observe that if C is cancellative, f is a full embedding if and only
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if f is an embedding of pre-ordered monoids. In the particular case
that C = Nr, f is said to be a full affine embedding, and f(B) a full
affine monoid.

Lemma 5.2. Let f : B → C be a full embedding of cancellative
monoids, and let J ∈ B be such that nJ 6= 0 for every positive
integer n. Let B′ be the monoid obtained by adjoining to B two
elements p, q and the one relation p + q = J . Let g : B → B′ be the
canonical homomorphism. Then:

(a) g is a full embedding.
(b) There exists a full embedding f ′ : B′ → C × C defined by

f ′(g(b)) = (f(b), f(b)) for every b ∈ B, f ′(p) = (f(J), 0) and f ′(q) =
(0, f(J)).

(c) Let b ∈ B and x, y ∈ B′ \ g(B). Then g(b) = x + y if and only
if there exist b1, b2 ∈ B and n > 0 such that b = b1 + b2 + nJ and
either x = g(b1) + np and y = g(b2) + nq, or x = g(b1) + nq and
y = g(b2) + np. In particular, g(b) = x + y for x, y ∈ B′ \ g(B) if
and only if J ≤ b.

(d) If C is reduced, then p and q are indecomposable elements
of B′.

Proof. Statement (b) and the fact that g is injective is proved in [7,
Lemma 2.7]. In order to show that g is a full embedding, let b, b0 ∈ B
and x ∈ B′ be such that g(b) + x = g(b0). Then f ′(g(b) + x) =
(f(b), f(b)) + f ′(x) = (f(b), f(b)) + (c1, c2) = (f(b0), f(b0)). As C is
cancellative and f is a full embedding, c1 = c2 ∈ f(B). Hence, as f ′

is injective, x ∈ g(B).
To show (c) it suffices to prove the only if part. Notice that, by

the definition of B′, its elements can be written either in the form
g(b0) + np or g(b0) + mq. Let b ∈ B be such that g(b) = x + y for
x, y ∈ B′ \ g(B). Assume that there exist b1 ∈ B and n > 0 such
that x = g(b1) + np. Then

f ′(g(b)) = (f(b), f(b)) = f ′(x) + f ′(y) =

(f(b1), f(b1)) + (nf(J), 0) + (c1, c2).

As f is a full embedding and C is cancellative, c1 = f(b2) and c2 =
f(b2) + nf(J) for some b2 ∈ B. Since f ′ is injective, y = g(b2) + nq.
An analogous argument works if x = g(b1) + nq.

It remains to show (d). Assume that there exist x 6= 0 and y
elements of B′ such that x + y = p. Then f ′(p) = (f(J), 0) =
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f ′(x) + f ′(y). As C is reduced, f ′(x) = (c1, 0) and f ′(y) = (c2, 0)
for suitable c1, c2 ∈ C. Now x = g(b) + np + mq for suitable b ∈ B
and n,m ≥ 0, so that (c1, 0) = f ′(x) = f ′(g(b)) + f ′(np) + f ′(mq) =
(f(b)+nf(J), f(b)+mf(J)). Since C is reduced, f(b) = mf(J) = 0.
As f is injective, b = 0 and m = 0. Thus x = np and n > 0, so
p = np + y. Thus 0 = (n − 1)p + y, from which n = 1 and y = 0.
This shows that p is indecomposable. By symmetry, q also is inde-
composable. ¤

Theorem 5.3. Let m,n, p be positive integers with p ≥ mn. Then
there exist two finitely generated projective modules M,N over a suit-
able ring R with no isomorphic non-zero direct summands such that
ν(M) = m, ν(N) = n and ν(M ⊕N) = p.

Proof. Let B0 be the free commutative monoid freely generated by
I and J . Consider the commutative monoid A obtained from B0 in
r = m + n + (p−mn) steps by subsequently adding the generators
x1i, x2i and the relation I = x1i + x2i (i = 1, 2, . . . , m), then the
generators y1j , y2j and the relation J = y1j + y2j (j = 1, 2, . . . , n),
and, finally, the generators z1k, z2k with the relation

I + J = z1k + z2k (k = mn + 1,mn + 2, . . . , p.)

Let f0 : B0 → N × N be the isomorphism of monoids defined by
f0(I) = (1, 0) and f0(J) = (0, 1). By applying Lemma 5.2 r times,
it follows that f0 can be extended to a full affine embedding f : A →
N2r+1

. In particular, A is a reduced monoid. Since f0(I+J) = (1, 1),
f(I + J) = (1, . . . , 1). Therefore I + J is an order-unit in A.

By Theorem 3.1 there exists a right and left hereditary ring R
such that (A, I + J) and (V (R), 〈R〉) are isomorphic monoids with
order-unit.

Let M and N be the projective R-modules corresponding to the
elements I and J of A. The direct sum decompositions, up to iso-
morphism, of M , N and M⊕N , correspond to the decomposition in
A of I, J and I + J respectively. It follows from Lemma 5.2(d) that
the elements xti’s, ytj ’s and ztk’s are indecomposable. It remains to
check that I, J and I + J have no other decompositions than those
ones imposed through the relations.

The elements I and J are uncomparable in B0, therefore by
Lemma 5.2(a) they remain uncomparable at each step of the con-
struction. Moreover, at each step, I and J are strictly smaller that
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I + J . Then, by Lemma 5.2(c), the only decompositions of I and J
into indecomposable elements are those given in the relations. In a
similar way, it is possible to prove that I + J has exactly p decom-
positions into indecomposable elements of A. ¤

Remark. The monoid A in the proof of Theorem 5.3 is full affine.
We proved in [6] that this is exactly the class of monoids that can
be realized as V (R) for a semilocal ring R. Therefore the ring R in
the statement of the theorem can be taken semilocal.

Now let M be an arbitrary right module. For every n ∈ N put

Xn = {t ∈ N | Mn is the direct sum of t indecomposable modules}.
Obviously, the cardinality of Xn is ≤ ν(Mn).

If X, X ′ are subsets of N, we shall write X +X ′ to denote the set
of all t + t′ with t in X and t′ in X ′. Notice that X + X ′ = X ′ + X
and X +∅ = ∅ for every X,X ′ ⊆ N. The following properties for the
subsets Xn of N are easily verified:

(a) X0 = {0}.
(b) Either 0 /∈ Xn for every n 6= 0, or Xn = {0} for every n ∈ N.
(c) 1 /∈ Xn for every n 6= 1.
(d) Either 1 /∈ X1 or X1 = {1}.
(e) Xn + Xm ⊆ Xn+m for every n,m ∈ N.

The two cases in (b) correspond to the two cases M 6= 0 or M = 0,
and the two cases in (d) correspond to the two cases M decomposable
or M indecomposable.

Theorem 5.4. For every n ∈ N let Xn be a subset of N. Suppose
that the family {Xn}n∈N satisfies conditions (a) to (e) above. Then
there exists a finitely generated projective right module M over a
suitable ring R with the property that for every n, t ∈ N one has
that t ∈ Xn if and only if Mn is a direct sum of t indecomposable
modules.

Notice that for every assignment n 7→ Xn satisfying properties (a)
and (e), the set S = {n ∈ N | Xn 6= ∅ } turns out to be a submonoid
of the additive monoid N.

To prove the theorem, we will construct a suitable reduced monoid
with order-unit and then the result will follow from Theorem 3.1.
For the construction, in general, we shall need to use Lemma 5.2 an
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infinite number of times. To this aim it will be useful to have in
mind the following easy, but technical, lemma.

Lemma 5.5. For every monoid C, let ∆: C → C×C be the monoid
homomorphism defined by ∆(c) = (c, c). Let {Bn}n∈N be a family of
monoids, and for any n ≥ 0 let gn : Bn → Bn+1 and fn : Bn → C2n

be full embeddings. Assume that for any n ≥ 0, fn+1 ◦ gn = ∆ ◦ fn.
Then the induced map f : lim−→Bn → lim−→C2n

is a full embedding.

Here is a sketch of the proof of Theorem 5.4. If Xn = {0} for
every n ∈ N, it suffices to take M = 0. Thus we may suppose that
0 /∈ Xn for every n 6= 0.

Consider the submonoid S = {n ∈ N | Xn 6= ∅ } of N. Let A be
the commutative additive monoid having as generators

(G1) I,

(G2) x(n,t,i), where n, t, i are integers, n ≥ 1, t ∈ Xn and i ∈
{1, 2, . . . , t},

(G3) y(n,i1,i2,...,im), where n ∈ N \S, m ≥ 1, and the i1, i2, . . . , im
are equal to 0 or 1,
subject to the relations

(R1) nI = x(n,t,1) + · · ·+x(n,t,t) for every n ≥ 1 and every t ∈ Xn,

(R2) nI = y(n,0) + y(n,1) for every n ∈ N \ S,

(R3) y(n,i1,i2,...,im) = y(n,i1,i2,...,im,0) + y(n,i1,i2,...,im,1) for every
n ∈ N \ S, every m ≥ 1 and every i1, i2, . . . , im.

Note that if S = N, that is, if Xn 6= ∅ for every n ∈ N, then there
are only the generators in (G1) and (G2) subject to the relations
(R1).

Let B0 be the free monoid generated by I, and let f0 : B0 → N be
the monoid isomorphism defined by f0(I) = 1. By suitably ordering
the generators (G2) and (G3) and the relations (R1), (R2), (R3), it
follows from Lemma 5.2 that we may construct a sequence of monoids
Br (r > 0) and full embeddings gr : Br → Br+1 and fr : Br → N2r

(r ≥ 0) such that lim−→Br = A. By Lemma 5.5, A is a full submonoid
of lim−→N2r

.
Now we apply Bergman and Dicks’ Theorem 3.1 to the reduced

monoid with order-unit (A, I). Arguing as in the previous proofs
in this section it is possible to see that the module M = RR corre-
sponding to I has the required properties.
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Remark. Let k be a field. A k-algebra T is said to be ultramatri-
cial if it is the colimit of finite direct products of matrices over k.
Ultramatricial algebras are von Neumann regular [9, p. 219].

If (A, u) is a monoid with order-unit that is a countable colimit of
monoids with order-unit of the form (Nr, u), it follows from Elliott’s
Theorem [9, Theorem 15.24] that there exists an ultramatricial k-
algebra T such that (V (T ), 〈T 〉) is isomorphic to (A, u). Moreover
V (T ) of any ultramatricial algebra T is of this type.

For example, the monoid C = lim−→N2r

, with the image of 1 as
order-unit and taking as maps N2r → N2r+1

the maps defined by
c 7→ (c, c), is the monoid V (T ) of the ultramatricial algebra T =
lim−→M2r (k), taking as morphisms M2r (k) → M2r+1(k) the morphisms
defined by α 7→ ( α 0

0 α ) for any α ∈ M2r (k).
Let A = lim−→Br be the submonoid that appears in the proof of

Theorem 5.4. By construction, each Br is a full affine submonoid of
N2r

and A is a full submonoid of C. By [6], (Br, I) can be realized
as (V (Rr), 〈Rr〉) for some semilocal ring Rr. The techniques used in
[6] can be used to construct a countable directed system of semilo-
cal rings, such that if R = lim−→Rr and J(R) denotes the Jacobson
radical of R, then (A, I) ∼= (V (R), 〈R〉) and R/J(R) ∼= lim−→M2r (K).
Therefore the ring in the statement of Theorem 5.4 can be taken von
Neumann regular modulo its Jacobson radical.

We have already remarked that for every module M the set S of
the natural numbers n for which Mn is a direct sum of indecompos-
ables is a submonoid of the additive monoid N. From Theorem 5.4
we get the following corollary.

Corollary 5.6. Let S be a submonoid of the additive monoid N.
Then there exists a finitely generated right module M over a suitable
ring R such that for every n ∈ N the module Mn is a direct sum of
indecomposable modules if and only if n ∈ S.

Proof. For every n ∈ N let Xn = {n} if n ∈ S and Xn = ∅ if
n /∈ S. Then the assignment n 7→ Xn satisfies the hypotheses of
Theorem 5.4, so that there exists a finitely generated right module
M over a suitable ring R with the property that for every n, t ∈ N
one has that t ∈ Xn if and only if Mn is a direct sum of t inde-
composable modules. Thus M has the properties required in the
statement of the corollary. ¤
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Finally, we consider a further mapping that measures the direct
sum decompositions of Mn. Let M 6= 0 be a module. Define a
function µM : N∗ → N∗ ∪ {+∞} by

µM (n) = sup{ t | Mn = M1 ⊕ · · · ⊕Mt for suitable

non-zero modules M1, . . . , Mt }.
Obviously, µM (n) + µM (m) ≤ µM (n + m) for every n and m.

Notice that there is a relation between the function µM and the
sets Xn considered in Theorem 5.4, because if µM (n) ∈ N∗, then
Xn 6= ∅ and sup Xn = µM (n). But if µM (n) = +∞, then we can say
very little, because either Xn = ∅, or Xn 6= ∅ and sup Xn = +∞, or
Xn 6= ∅ and sup Xn can be any integer ≥ 2.

From Theorem 5.4 we get the following characterization of the
functions µM that arise in this way.

Corollary 5.7. . Let µ : N∗ → N∗ ∪ {+∞} be a function such that
µ(n) + µ(m) ≤ µ(n + m) for every n,m ∈ N∗. Then there exists a
module M 6= 0 over a suitable ring R such that µ = µM .

Proof. Let µ : N∗ → N∗ ∪ {+∞} be a function with µ(n) + µ(m) ≤
µ(n + m) for every n,m ∈ N∗. Define the sets Xn ⊆ N for every
n ∈ N as follows: X0 = {0}, Xn = { t ∈ N | 2 ≤ t ≤ µ(n) } for every
n ≥ 2, and X1 = {1} if µ(1) = 1 or X1 = { t ∈ N | 2 ≤ t ≤ µ(1) }
if µ(1) > 1. Then the assignment n 7→ Xn satisfies the hypotheses
of Theorem 5.4. The module M satisfying the thesis of Theorem 5.4
has the property that µM = µ. ¤

If Mn is an AKS module, then µM (n) ∈ N∗ and Xn is a finite
non-empty set whose largest element is µM (n). In particular, sup-
pose that MR is a module whose endomorphism ring End(MR) is
semilocal. Then End(MR) has finite dual Goldie dimension d. It
follows that End(Mn

R) has finite dual Goldie dimension nd for every
n, so that µM (n) ≤ nd for every n ∈ N.
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[12] P. Vámos, The Holy Grail of Algebra: Seeking Complete Sets of Invariants,
in “Abelian Groups and Modules”, A. Facchini and C. Menini Eds., Math.
and Its Appl. 343, Kluwer, Dordrecht, 1995, pp. 475–483.

[13] R. B. Warfield, Jr., Exchange rings and decompositions of modules, Math.
Ann. 199 (1972), 31–36.

Alberto Facchini,

Dipartimento di Matematica Pura e Applicata,

Università di Padova,

35131 Padova, Italy,

facchini@math.unipd.it

Dolors Herbera,

Departament de Matemàtiques,
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