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Symplectic Reflection Algebras

KENNETH A. BROWN

1. Introduction

1.1. In this paper I shall describe a beautiful class of associative
algebras, the symplectic reflection algebras of the title, introduced
in a recent paper of Etingof and Ginzburg [11]. These algebras are
deformations of, and so retain some of the properties of, skew group
algebras of finite groups, so it’s with the latter class of algebras with
which we begin in Section 2, in particular with the skew group alge-
bra S(V )∗Γ of a finite group Γ acting linearly on a finite dimensional
complex vector space V , and hence acting on the symmetric algebra
of V , S(V ).

One can deform such an algebra by destroying the commutativity
of S(V ) using a skew-symmetric bilinear form κ : V × V −→ CΓ,
as we explain in (4.1); but in general when this is done the algebra
which results is too “small”, in the sense that there is no natural
vector space bijection with S(V ) ∗ Γ. Remarkably, however, if Γ
consists of symplectic automorphisms of the symplectic space (V, ω)
then there is a class of forms κ derived from ω for which the resulting
deformations do have a natural linear bijection with S(V ) ∗ Γ—that
is, there is a “PBW theorem” in this setting, which we state and
explain in (4.1). The definition of this class of forms requires the
concept of a symplectic reflection, the analogue in the symplectic
world of the pseudo-reflections on an ordinary vector space. So we
define and discuss these symplectic reflections in Section 3, before
going on to state the PBW theorem of Etingof and Ginzburg and
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give the resulting definition of symplectic reflection algebra in Sec-
tion 4. From the definition we can quickly deduce in (4.4) that the
symplectic reflection algebras are noetherian C-algebras with many
attractive algebraic and homological properties.

For a given (V, ω, Γ) with Γ generated by symplectic reflections,
the space of symplectic reflection algebras is parametrised by (t, c) ∈
C×Cr/C∗, where r is the number of conjugacy classes of symplectic
reflections in Γ. There is a dichotomy on this space, corresponding
to the familiar special cases (when V = C2m) of S(V ) ∗ Γ and the
skew group algebra of the Weyl algebra, Am(C) ∗ Γ. Namely, every
symplectic reflection algebra Ht,c is either a finite module over its
centre, when t = 0, or has centre the scalars C when t is non-zero.
I explain this dichotomy in (4.5), and go on in Section 5 to explain
the key tool used in its proof. This is the idea of a Poisson bracket.

The centre Z0,c of H0,c admits a Poisson bracket; more generally
this bracket extends to give an action of Z0,c by derivations on H0,c,
making H0,c into a Poisson Z0,c-order. Further examples of Poisson
orders are provided by most (if not all) quantum groups where the
deformation parameter q is a root of unity (5.4)4.

As well as being crucial for the proofs of many properties of Ht,c,
the presence of a Poisson structure on Z0,c, deforming the one given
by the restriction of ω to S(V )Γ, is one of the main reasons why sym-
plectic reflection algebras are so interesting. For, on the one hand,
this means that one can use these algebras to study the “symplectic
deformations” of the quotient variety V/Γ; in particular one can seek
a “symplectic desingularisation” of this space. On the other hand,
the structure of Poisson order on H0,c has drastic consequences for
the representation theory of this algebra, thanks to the stratification
of the variety maxspec(Z0,c) by its symplectic leaves. We provide a
sketch of some of these ideas in the remainder of Section 5 and in
Section 6.

2. Skew Group Algebras

2.1. Notation and Definitions. Throughout the paper V will de-
note a finite dimensional complex vector space and Γ will be a finite
group acting linearly and faithfully as automorphisms of V , so there
is a monomorphism of groups from Γ into GL(V ). We’ll write vγ for
the action of γ ∈ Γ on v ∈ V . Let S(V ) be the symmetric algebra
on V . The skew group algebra

H = S(V ) ∗ Γ
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is the associative C-algebra which, as a vector space, is S(V )⊗CCΓ,
with the usual multiplication on S(V ) and on CΓ, and with

γv = vγγ

for v ∈ V and γ ∈ Γ.
Of course, such algebras are familiar and much studied objects,

with books (for example [20]) devoted to them and their generalisa-
tions. It’s an easy exercise to check that the centre of H, Z(H), is
given by the algebra S(V )Γ of Γ-invariants in S(V ). By a famous
theorem [1, Theorem 1.3.1] of Hilbert (although the generalisation to
arbitrary characteristic is due to Noether), S(V )Γ is itself an affine
C-algebra and S(V ) is a finitely generated S(V )Γ-module. Thus H is
also a finitely generated S(V )Γ-module. Being finitely generated over
its centre, H is a polynomial identity algebra, or PI-algebra for short,
and the properties of H are closely connected to those of S(V )Γ. In
fact, the study of S(V )Γ has always been one of the main reasons
for studying S(V ) ∗ Γ; and one of the chief motives for introducing
the deformations of H which we’ll come to below is to improve our
understanding of the geometry of the variety V/Γ, whose coordinate
ring is of course S(V )Γ.

2.2. Example. Here is what is perhaps the simplest non-trivial case
of the above construction. It is worth looking at now because it is
one of the types we’ll deform when we come to look at symplectic
reflection algebras. Let V have dimension 2, say

V = Cx⊕ Cy.

Let n be an integer greater than one and let ε be a primitive nth
root of unity. Set

γ =
(

ε 0
0 ε−1

)
∈ SL2(C)

and
Γ = 〈γ〉,

so that Γ acts on V with

xγ = εx and yγ = ε−1y.

Thus

H = S(V ) ∗ Γ
= C〈x, y, γ : xy = yx; γn = 1; γx = εxγ; γy = ε−1yγ〉, (1)
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and it is easy to check that

S(V )Γ = C〈xn, yn, xy〉.
Thus the ring of invariants is isomorphic to the factor of the poly-
nomial algebra C[A,B, C] by the ideal generated by AB −Cn—this
is a Kleinian singularity of type A.

2.3. So far as the geometry of the quotient variety V/Γ is con-
cerned, the simplest possibility is that this variety is itself smooth
(in contrast to Example (2.2)). In fact (since S(V )Γ is N-graded
with S(V )Γ0 = C) this can happen only when S(V )Γ is a polynomial
algebra. Since it will help to motivate the later definition of symplec-
tic reflections, let’s recall the 1954 theorem of Shepherd and Todd
which describes when this happens. An element γ of Γ is called a
pseudo-reflection if the endomorphism (1−γ) of V has rank 1; equiv-
alently, if 1 is an eigenvalue of γ on V of multiplicity dim(V ) − 1.
The groups which are generated by pseudo-reflections in their action
on a complex vector space were classified by Shepherd and Todd [1,
page 81].

Theorem. ([1, Theorem 7.2.1]) S(V )Γ is a polynomial algebra if
and only if Γ is generated by pseudo-reflections for its action on V .

2.4. Skew Group Algebras over the Weyl Algebra. Recall
that, for a positive integer m, the mth Weyl algebra (over C), Am(C),
is the algebra of differential operators with polynomial coefficients on
affine m-space Cm, and so is the C-algebra generated by the elements
{x1, . . . , xm, y1, . . . , ym}, subject to the relations yjxi − xiyj = δij

and xixj − xjxi = 0 = yiyj − yjyi. Am(C) is a simple noetherian
C-algebra, [12, Corollaries 1.13 and 1.15].

A variation of the construction from (2.1) which has also been
well-studied in the past is obtained by replacing the symmetric al-
gebra S(V ) by a Weyl algebra Am(C). So Γ should in this case
be a finite group of “linear” automorphisms of Am(C): that is,
Γ should be a finite group of automorphisms of the vector space
V =

∑
i Cxi +

∑
j Cyj which preserves the non-singular alternating

form ω on V defined by ω(yj , xi) = δij ; ω(xi, xj) = ω(yi, yj) = 0. In
other words, Γ is a finite subgroup of the symplectic group Sp2m(C).
In stark contrast to the “nearly commutative” situation of (2.1),
Am(C) ∗ Γ is as far from being commutative as possible: Am(C) ∗ Γ
is a simple ring [20, Theorem 15.8].
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Notice that when m = 1, Sp2(C) = SL2(C), so that the group Γ of
(2.2) is in Sp2(C). Thus there is a Weyl algebra version of Example
(2.2), with the resulting algebra having the same generators and
relations as (1), except that yx− xy = 1.

3. Symplectic Actions

3.1. Symplectic Reflections. Symplectic reflections are the ana-
logue in the symplectic world of pseudo-reflections in the Euclidean
world. To define them, fix a finite dimensional symplectic C-vector
space V. Thus V admits a non-degenerate alternating bilinear form ω;
V has even dimension 2m, and we can choose a basis {x1, . . . , xm,
y1, . . . , ym} of V such that ω is as in the previous paragraph. Now
let Γ be a finite subgroup of the symplectic group Sp(V )—that is,
Γ ⊆ GL(V ) as before, with

ω(vγ , uγ) = ω(v, u)

for all v, u ∈ V and γ ∈ Γ.
An element s of Γ is called a symplectic reflection (on V ) if

the endomorphism 1− s of V has rank 2. We shall denote the set of
symplectic reflections for the action of Γ on V by S. Clearly, SΓ = S.
We shall say that Γ (in its action on V ) is a symplectic reflection
group if Γ is generated by its symplectic reflections (on V ). As the
brackets suggest, we’ll suppress mention of V where the vector space
and action are clear from the context.

3.2. Examples. 1. Kleinian singularities. Let m = 1, so that
V = Cx ⊕ Cy with ω(y, x) = 1. As observed in (2.4), Sp(V ) =
SL(V ). Moreover, if Γ is a finite subgroup of SL(V ) and 1 6= s ∈ Γ,
then s can’t have 1 as an eigenvalue (since det(s) = 1), so that s is
a symplectic reflection. Therefore Γ is a symplectic reflection group.

2. Dual pairs. Let U be a finite dimensional C-vector space, and
let W be a finite subgroup of GL(U). Suppose that W is generated
by pseudo-reflections in its action on U , in the sense of (2.3). So
the contragredient action of W on U∗ is also generated by pseudo-
reflections. Then V := U ⊕ U∗ is symplectic, with

ω
(
(y, f), (u, g)

)
= g(y)− f(u)

for y, u ∈ U and f, g ∈ U∗. And it’s clear that the pseudo-reflections
for the action of W on U are symplectic reflections for the action on
V , so that W is a symplectic reflection group on V .
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3.3. Classification. In [22, Question 1.3], M. Verbitsky posed the
Problem: Classify the (complex) symplectic reflection groups.
There is a natural notion of an indecomposable symplectic triple
(V, ω, Γ): the triple is indecomposable if there is no non-trivial de-
composition V = U ⊕ W of V into Γ-stable symplectic subspaces.
It’s routine to reduce the above problem to consideration of inde-
composable triples. Following the statement of this problem in my
talk at All Ireland Algebra Days, R. Guralnick was able to carry out
the classification using results from his joint paper with J. Saxl [13];
details will appear as an Appendix to [13]. The result (with details
omitted) is as follows.

Theorem. (Guralnick-Saxl) Let (V, ω,Γ) be an indecomposable sym-
plectic triple.

1. If V is not an irreducible CΓ-module, then (V, ω, Γ) is a dual
pair as in (3.2)2, with U an irreducible CΓ-module.

2. If V is an irreducible CΓ-module, then one of the following
holds:
(i) V = V1 ⊥ . . . ⊥ Vr where each Vi is a 2-dimensional symplectic
subspace of V and Γ permutes the Vi as Sr. Moreover, H, the image
of the stabilizer of V1 in GL(V1), is an irreducible subgroup of Sp(V1)
and Γ embeds in H o Sr;
or
(ii) (V, ω,Γ) is one of a finite list of explicit examples, with dimC(V )
at most 10.

3.4. Symplectic Geometry. Let (V, ω) be a finite dimensional sym-
plectic C-vector space and let Γ be a finite subgroup of Sp(V ). Then
the smooth locus of the quotient variety X := V/Γ admits a natural
symplectic form ω̃ induced from ω. A symplectic resolution of X,

π : X̃ −→ X,

is a resolution of singularities of X such that the pull-back π∗ω̃ of
ω̃ extends to a holomorphic symplectic form on X̃. There is a great
deal of current interest in symplectic desingularisation , motivated
by developments in differential and algebraic geometry and in theo-
retical physics. One fundamental problem which remains open is:
Problem: For which symplectic quotient singularities as defined
above does a symplectic resolution exist?

Here is what is known at present about this question:
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Theorem. Let V , ω and Γ be as above, and set X = V/Γ.
1. (Du Val, [10]) If V has dimension 2 (that is, the Kleinian case),

then X has a symplectic resolution.
2. (Verbitsky, [22, Theorem 3.2]) If X has a symplectic resolution

then Γ is a symplectic reflection group.
3. (Kaledin, [15, Sec.6]) The converse to 2 is false. A counterex-

ample is provided by the dual pair (see Example (3.2).2) of type G2,
so that Γ is Z/2Z× S3 and V has dimension 4.

We shall gain tantalising hints in later sections that the above
problem and the partial solutions outlined in the theorem are closely
linked to the structure of the noncommutative algebras which we are
about to define—the symplectic reflection algebras of the title.

4. Symplectic Reflection Algebras

4.1. Definition and PBW Theorem. Let V and Γ be as in (2.1),
and let

κ : V × V −→ CΓ
be a skew-symmetric bilinear form. Let

T (V ) := C⊕ V ⊕ (V ⊗ V )⊕ . . .⊕ V ⊗n ⊕ . . .

be the tensor algebra of V . Just as with S(V ), the action of Γ on
V extends to an action of Γ on T (V ) by C-algebra automorphisms,
and so we can construct the skew group algebra T (V )∗Γ in the same
way as we formed S(V ) ∗Γ in (2.1). Now define a factor algebra Hκ

of T (V ) ∗ Γ by

Hκ := T (V ) ∗ Γ/〈xy − yx− κ(x, y) : x, y,∈ V 〉. (2)

Examples: 1. If κ ≡ 0 then we recover the skew group algebra
S(V ) ∗ Γ of (2.1), now denoted by H0.

2. Suppose that V is the standard symplectic space (V, ω) of di-
mension 2m described in (3.1), and take κ = ω (where of course we
regard C as embedded in CΓ via the map c 7→ c1Γ). Then Hκ is the
skew group algebra Am(C) ∗ Γ of (2.4).

For a general κ, Hκ is a filtered C-algebra - that is, there are finite
dimensional vector subspaces Fi of Hκ, for i ≥ 0, with Fi ⊆ Fi+1

and FiFj ⊆ Fi+j for all i and j, and Hκ = ∪i≥0Fi. Namely, set

F0 = CΓ; F1 = CΓ + CΓV ; and Fi = (F1)i, for i ≥ 1.
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We can thus form the associated graded ring gr(Hκ) of Hκ,

gr(Hκ) :=
⊕

i≥0

(Fi+1/Fi).

Clearly there is an epimorphism of algebras

ρ : S(V ) ∗ Γ ³ gr(Hκ).

We shall say that PBW holds for Hκ if ρ is an isomorphism; equiv-
alently, if Hκ = H0 = S(V ) ∗ Γ as C-vector spaces. In particular,
PBW holds for both of the examples S(V ) ∗ Γ and Am(C) ∗ Γ given
above. There now arises the natural question: for which (V, Γ, κ)
does PBW hold? The answer to this question in the case of sym-
plectic spaces and actions is surprisingly elegant and includes a huge
range of very interesting algebras, as we shall now see. From now
on, we assume that (V, ω,Γ) are as in (3.1). Note that for γ ∈ Γ
there is a ω-orthogonal decomposition V = Im(1− γ)⊕Ker(1− γ).
For s in the set S of symplectic reflections in Γ, write ωs for the
skew-symmetric form on V which has Ker(1− s) as its radical, and
coincides with ω on Im(1− s).

Theorem. (Etingof-Ginzburg, [11, Theorem 1.3]) Let (V, ω,Γ) be
an indecomposable symplectic triple, and let κ : V × V −→ CΓ be a
skew-symmetric bilinear form. Then PBW holds for Hκ if and only
if there exist a constant t ∈ C and a function c : S −→ C : s 7→ cs,
with c constant on Γ-conjugacy classes, such that

κ(x, y) = tω(x, y)1Γ +
∑

s∈S

csωs(x, y)s (3)

for all x, y ∈ V .

In the light of the theorem one is led to make the

Definition: Let (V, ω, Γ) be an indecomposable symplectic triple,
and let κ be a form which conforms to the description in the theorem.
Then Hκ is called a symplectic reflection algebra.

4.2. First Properties. Observe that the subgroup T := 〈S〉 is nor-
mal in Γ, so that, for κ as in the definition just given,

Hκ = Hκ(T ) ∗ (Γ/T ),

where Hκ(T ) denotes the symplectic reflection algebra constructed
using T in place of Γ (but with all the other ingredients unchanged),
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and the right hand side denotes a crossed product of Γ/T with coef-
ficients from Hκ(T ). (See [20] for the definition of crossed product.)
Hence it makes sense to assume that Γ is generated by its symplectic
reflections when studying a symplectic reflection algebra Hκ.

Let the Γ-conjugacy classes of symplectic reflections be C1, . . . , Cr,
let t ∈ C and let c = (c1, . . . , cr) ∈ Cr. Then we’ll write Ht,c

instead of Hκ when κ is given as in (3), with c(s) = ci for s ∈ Ci. In
particular, we recover the special cases considered in (2.1) and (2.4)
as

H0,0
∼= S(V ) ∗ Γ and H1,0

∼= Am(C) ∗ Γ.

It’s very easy to see from (2) and (3) that Ht,c is isomorphic to
Hλt,λc for all λ ∈ C∗. Thus what we have obtained by means of the
construction just defined is a collection of deformations of S(V ) ∗ Γ
parametrised by Cr+1/C∗ = Pr(C).

4.3. Example. Let V and Γ be as in (2.2). As we observed in
(3.2), this example is symplectic if we set ω(x, y) = 1, and every
non-identity element of Γ is a symplectic reflection. Thus, for each
choice of t ∈ C and c = (c1, . . . , cn−1) ∈ Cn−1, we get a symplectic
reflection algebra

Ht,c = C〈x, y, γ : γn = 1, γx = εxγ, γy = ε−1yγ,

yx− xy = t +
∑n−1

i=1 ciγ
i〉. (4)

4.4. Consequences of the Filtration. Being a finite module over
S(V ), S(V ) ∗ Γ is a noetherian algebra, and faithfulness of the Γ-
action on V ensures that S(V )∗Γ is prime [20, Corollary 12.6]. Since
Ht,c is N-filtered with S(V ) ∗ Γ as associated graded ring, as follows
from the discussion and definition in (4.1), standard filtered-graded
techniques [19, 1.6.3,1.6.9] can be used to see that these prime and
noetherian properties pass to Ht,c. Similarly, thanks to Hilbert’s
syzygy theorem [19, Theorem 7.5.3] and the generalised Maschke
theorem [20, Theorem 4.1], S(V ) ∗ Γ has finite global (homolog-
ical) dimension; and this transfers also to Ht,c by [19, Corollary
7.6.18]. In fact, the more sophisticated homological properties of be-
ing Auslander-regular and Cohen-Macaulay (which we won’t define
here, see for example [17]) can also be deduced for Ht,c as a conse-
quence of the fact that they hold for S(V ) ∗ Γ. (Imitate the proof
for the case dim(V ) = 2 given in [5, Theorem 1.5].) Finally, when
Γ is a symplectic reflection group, S(V ) ∗ Γ is a maximal order by
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[18, Theorem 4.6], and a prime noetherian N-filtered ring whose as-
sociated graded ring is a maximal order is itself a maximal order, by
[21], so that Ht,c is a maximal order in its simple artinian quotient
ring. (For the definition of a maximal order, see [19, 5.1].

We summarise the above in the

Theorem. Let (V, ω, Γ) be an indecomposable symplectic triple, with
Γ generated by its symplectic reflections as in (4.2). Let t ∈ C and
c ∈ Cr. Then Ht,c is a prime noetherian maximal order which is
Auslander-regular and Cohen-Macaulay.

4.5. The Symmetrising Idempotent and the Centre of Ht,c.
The symmetrising idempotent is the element

e =
1
|Γ|

∑

γ∈Γ

γ ∈ CΓ.

Since CΓ ⊆ Ht,c for all choices of t and c, e is an idempotent element
of every Ht,c, (and we’ll use the same symbol e for this element in
every case). Denote the centre of the algebra A by Z(A). It’s well-
known (and an easy exercise) that

eS(V ) ∗ Γe ∼= S(V )Γ = Z(H0,0).

Fix t ∈ C and c ∈ Cr. The filtration {Fi} of (4.1) intersects with
eHt,ce to give an N-filtration of the latter ring (since e ∈ CΓ = F0),
and

gr(eHt,ce) = egr(Ht,c)e = eS(V ) ∗ Γe ∼= S(V )Γ. (5)

It’s worth emphasising this point by stating it another way, since it’s
one of the fundamental reasons for the importance of the algebras
Ht,c: eHt,ce is a deformation of the quotient singularity S(V )Γ, for
every choice of t and c.

There is a second vital feature of eHt,ce: its structure determines
the centre of Ht,c. This is the first part of the following result.

Theorem. Fix an indecomposable symplectic triple (V, ω,Γ) with Γ
generated by symplectic reflections, and let t ∈ C and c ∈ Cr.

1. The map Ht,c −→ eHt,ce : h 7→ ehe restricts to an algebra
isomorphism θ of Zt,c := Z(Ht,c) with Z(eHt,ce).

2. Ht,c satisfies a polynomial identity if and only if Ht,c is a finite
module over its centre if and only if t = 0.

3. Suppose that t = 0. Then im(θ) = eHt,ce, so that

Z0,c
∼= eH0,ce.
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That is, (in view of (5)), Z0,c is a commutative deformation of
S(V )Γ.

4. When t 6= 0, Zt,c = C.

Parts 1 and 3 and the sufficiency of t = 0 in 2 are due to Etingof
and Ginzburg [11, Theorems 3.1 and 1.6]. The remainder is due to
Brown and Gordon [4]. In the case where dim(V ) = 2 all the above
results are due to Crawley-Boevey and Holland [5]. For the proof
of 1, it’s trivial that θ is an algebra homomorphism. One proves that
θ is an isomorphism by constructing an inverse map, the key point
here being that EndeH0,ce(H0,ce) ∼= H0,c, which follows from the fact
that H0,c is a maximal order, Theorem (4.4). The other parts of the
theorem are proved using the Poisson structures which we’ll discuss
in Section 5.

4.6. Example continued. Let’s revisit Example (4.3) in the light
of the above results. Let the primitive idempotents of CΓ be e0, . . . ,
en−1, with e0 being the symmetrising idempotent 1

n

∑n
i=0 γi. It’s

convenient to rewrite the relation defining Ht,c in (4) as

yx− xy =
n−1∑

i=0

fiei,

where fi ∈ C for i = 0, . . . , n − 1. The condition t = 0 of Theorem
(4.5)2 is then restated as

n−1∑

i=0

fi = 0 (6)

—think in terms of traces on the regular CΓ-module. And one cal-
culates easily that, when (6) holds,

e0H0,ce0 = C〈xne0, y
ne0, xye0〉

∼= C[A,B, H : AB = H

n−1∏

i=1

(H + f1 + . . . + fi)].

Notice that the centre is thus filtered, with

deg(xne0) = deg(yne0) = n, deg(xye0) = 2,

so its associated graded ring is isomorphic to C[A,B, H : AB = Hn],
which is S(V )Γ in this case, as predicted in (5). Notice also that the
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centre is smooth here if and only if the polynomial equation

H

n−1∏

i=1

(H + f1 + . . . + fi) = 0

has no repeated roots.

5. Poisson Structures

The rich structure of the algebras Ht,c and eHt,ce stems in large
part from the fact that associated graded algebras of these algebras
(and indeed the algebras themselves when t = 0) admit Poisson
structures. For example, the proof of Theorem (4.5) makes crucial
use of these structures. We provide a sketch of the key ideas in this
section.

5.1. Poisson Orders. Let H be a finitely generated C-algebra,
finitely generated as a module over a central subalgebra Z0. By
the Artin-Tate Lemma [19, 13.9.10], Z0 is itself a finitely generated
C-algebra. Denote the Lie algebra of C-derivations of H by DerC(H).
Let’s suppose that there is a linear map

D : Z0 −→ DerC(H) : z 7→ Dz,

satisfying
(a) Dzz′ = zDz′ + z′Dz for all z, z′ ∈ Z0;
(b) Z0 is stable under D(Z0);
(c) the resulting bracket { | } : Z0 × Z0 −→ Z0, defined by

{z | z′} = Dz(z′), is a Lie bracket.
Then we shall say that H is a Poisson Z0-order. In this case Z0 is a
Poisson algebra, or, in other words, Z = maxspec(Z0) is a Poisson
variety.

5.2. Quantization. Here is one important mechanism giving rise
to a Poisson order. Let Ĥ be a C-algebra, Ẑ a subalgebra, and
t a central non-zero divisor of Ĥ, contained in Ẑ. Assume that
Z0 = Ẑ/tẐ is a finitely generated central subalgebra of H = Ĥ/tĤ,
and that H is a finitely generated Z0-module. Let π : Ĥ −→ H be
the quotient map.

Given any z ∈ Z0 we have a derivation of H, denoted Dz, defined
by

Dz(h) = π([ẑ, ĥ]/t),
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where ẑ ∈ Ẑ and ĥ ∈ Ĥ are preimages under π of h and z re-
spectively. This makes sense because [ẑ, ĥ] ∈ tĤ. The mapping
D : Z0 −→ Der(H), given by z 7→ Dz, satisfies the hypotheses of
(5.1), [14].

5.3. Filtered and Graded Algebras. An important variant of
the above is the following. Let H be an N-filtered C-algebra whose
ith-filtered piece is denoted F iH. Let Z be a subalgebra of H, and
give it the induced filtration. Denote the associated graded rings
of Z and H by grZ and grH respectively. Suppose that grZ is
a finitely generated central subalgebra of grH, such that grH is a
finitely generated grZ-module. Let σi : F iH −→ grH be the ith-
principal symbol map, sending an element of F iH \ F i−1H to its
leading term. Given a graded element of grZ, say σm(z), there is a
well-defined derivation of grH, denoted Dσm(z), given by

Dσm(z)(σn(h)) = σm+n−1([z, h]). (7)

Extending this linearly yields a mapping D : grZ −→ Der(grH),
satisfying the hypotheses of (5.1).

To see that this is really a special case of (5.2), form the Rees
algebras Ĥ =

⊕
i F iHti ⊆ H[t] and Ẑ =

⊕
i F iZti ⊆ Z[t], where t

is a central indeterminate. It can easily be checked that we recover
the derivations in (7) from the construction in (5.2).

5.4. Examples. 1. Let (V =
∑m

i=1 Cxi + Cyi, ω, Γ) be an inde-
composable symplectic triple as in (3.3), with the form defined as
in (2.4). Then of course S(V ) is a Poisson algebra under the ex-
tension of the form on V (using the Leibniz rule (5.1)(a)) to the
“standard” Poisson bracket {−,−} on S(V ). The Γ-invariance of ω
forces Γ-invariance of {−,−}, and this implies that S(V )Γ is a Pois-
son subalgebra of S(V ). This definition extends to give a structure
of Poisson S(V )Γ-order on H = S(V ) ∗ Γ if we set Dz(γ) = 0 for
z ∈ Z(H) = S(V )Γ and γ ∈ Γ.

Notice that this construction is a case of quantization (5.2). For,
starting with (V, ω, Γ) as above and letting t be an indeterminate,
we can take Ĥ to be the C[t]-algebra with the same relations as
H = S(V ) ∗ Γ, except that we now require

[xi, yj ] = δijt

for i, j = 1, . . . ,m, instead of [xi, yj ] = 0. And in a similar way the
construction is also an example of the filtered-graded case (5.3).
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2. H0,c is a Poisson Z0,c-order. Keep (V, ω, Γ) as in (5.4)1,
but assume now that Γ is generated by symplectic reflections in its
action on V , let r be the number of conjugacy classes of symplectic
reflections in Γ, and fix c ∈ Cr. Now let Ĥc be the C[t]-algebra
defined exactly as in (4.1), with relations as in (2) and (3), but with
t in (3) being now an indeterminate rather than a scalar. So now we
are in the setting of (5.2), with Ĥ = Ĥc, and Ĥ/tĤ ∼= H0,c. Also,
Z0 = Z0,c, and we take the subalgebra Ẑ of Ĥ to be the inverse
image of Z0 under the canonical epimorphism from Ĥ onto H0,c. By
Theorem (4.5)3, the conditions of (5.2) are fulfilled, and so H0,c is a
Poisson Z0,c-order.

3. Quantum groups. Both the quantised enveloping algebras
Uε(g) and the quantised function algebras Oε(G) are Poisson orders
when ε is a root of unity, thanks to the mechanism of 5.2. In fact
the central Poisson subalgebra can be taken to be a Hopf subalgebra
in these instances. For details and references, see [2], [6], [7].

5.5. Filtered and Graded Poisson Orders. Suppose that Z0 ⊆
H is a Poisson Z0-order with non-zero bracket

{−,−} : Z0 ×H −→ H.

Suppose that H is N-filtered with ith filtered subspace F iH, and set
F iZ0 = F iH ∩ Z0 for all i ≥ 0. We say that {−,−} has degree d if

{F iZ0, F
jH} ⊆ F i+j+dH

for all i and j, and there exist i, j ∈ N and z ∈ F iZ0, z
′ ∈ F jZ0

such that {z, z′} does not belong to F i+j+d−1H. Then we can define
a structure of Poisson grZ0-order on grH by setting, for z ∈ FmZ0

and h ∈ F lH,

{σm(z), σl(h)} := σm+l+d({z, h}),
where σi for i ≥ 0 denotes the appropriate principal term map.
Conditions (5.1)(a),(b) and (c) are easy to check. Observe that the
Poisson structure induced in this way on grZ0 has degree precisely d.

5.6. Poisson Deformations. It’s not hard to see that the Poisson
structure on H0,c defined in (5.4)2 has degree −2. So (5.5) applies to
the Poisson Z0,c-order H0,c, yielding a structure of Poisson S(V )Γ-
order of degree −2 on H0,0 = S(V )∗Γ, and in particular a degree −2
Poisson structure on S(V )Γ. However, it’s a consequence of Hartog’s
theorem (see [11, Lemma 2.23(i)]) that (up to a scalar multiple) the
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only degree −2 Poisson bracket on S(V )Γ is the restriction (5.4)1
of the bracket on S(V ) induced by the symplectic form on V . We
therefore obtain a more precise version of Theorem (4.5)3:

Theorem. The Poisson Z0,c-order structure of H0,c of (5.4)2 is
a deformation of the “standard” Poisson Z0,0-structure on H0,0 of
(5.4)1.

5.7. Poisson Ideals and Subsets. A two-sided ideal I of the Pois-
son Z0-order H (respectively J of Z0) is called Poisson if it is stable
under D(Z0). Thanks to [9, 3.3.2] if I (respectively J) is Poisson
then so too are both

√
I (respectively

√
J) and the minimal prime

ideals of H (respectively Z0) over I (respectively J). We shall denote
the space of prime Poisson ideals of Z0, with the topology induced
from the Zariski topology on spec(Z0), by P−spec(Z0). Clearly, if I
is a Poisson ideal of Z0 then there is an induced structure of Poisson
algebra on Z0/I. We shall denote the maximal ideal spectrum of Z0

by Z. For a semiprime ideal I of Z0 we write V(I) for the closed
subset of Z defined by I. A closed subset V(I) of Z is Poisson closed
if its defining ideal is Poisson.

Extension (e : J −→ JH) and contraction (c : I −→ I ∩ Z0)
are mappings between the ideals of Z0 and H, which map Poisson
ideals to Poisson ideals. It is an easy exercise using Going Up [19,
10.2.10(ii)] to show that

c ◦ e is the identity on semiprime ideals of Z0. (8)

Clearly, therefore, if I is a semiprime Poisson ideal of Z0 then there
is an induced structure of Poisson Z0/I-order on A/IA, and if J is
a Poisson ideal of H then there is an induced structure of Poisson
Z0/J ∩ Z0-order on H/J.

Note for future use that it’s trivial to check the following:

Lemma. Assume the hypotheses and notation of (5.5). If I is a
Poisson ideal of H or of Z0 then grI is a Poisson ideal of grH or of
grZ0, respectively.

5.8. Symplectic Leaves. As we shall see, the symplectic leaves
of Z provide a key too in the analysis of a Poisson Z0-algebra H.
We begin in this paragraph with a Poisson C-algebra Z0—that is,
we are in the commutative world for now. Each f ∈ Z0 defines
a Hamiltonian vector field {f,−}. Suppose for a moment that Z is
smooth, and let m be a maximal ideal of Z0. Then the symplectic leaf
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containing m is the maximal connected submanifold L(m) of Z such
that m ∈ L(m) and the Hamiltonian vector fields span the tangent
space at each point of L(m).

This definition can be extended to arbitrary (not necessarily
smooth) varieties Z; for the details, see [4]. We shall say that the
leaves are algebraic if each leaf is locally closed—meaning that it is
an open subset of its (Zariski) closure in Z. A particularly tractable
case occurs when there are only finitely many leaves in Z. To state
the result, define the Poisson core P(m) of a maximal ideal m of Z0

to be the (unique) largest Poisson ideal contained in m. By (5.7),
P(m) is a prime ideal.

Proposition. [4] Let Z0 be a (finitely generated, commutative) C-
algebra, and set Z = maxspecZ0.

1. There are only finitely many leaves in Z if and only if (a) the
leaves are algebraic and (b) the Poisson spectrum P − spec(Z0) of
Z0 is finite.

2. Suppose that there are only finitely many leaves in Z. Let
m ∈ Z. Then

L(m) = {n ∈ Z : P(n) = P(m)},
and L(m) consists precisely of the smooth points in the closed subset
of Z defined by P(m).

Of particular relevance in geometric applications is the following
corollary; here, 3 =⇒ 2 =⇒ 1 is immediate from the definition of
a leaf and the proposition, but some further argument is needed for
the remaining implication. Naturally, we say that a Poisson algebra
is Poisson simple if it has no proper Poisson ideals.

Corollary. Let Z0 be a (finitely generated, commutative) C-algebra
which is a domain, and set Z = maxspecZ0. Suppose that there are
only finitely many leaves in Z. Then the following are equivalent:

1. Z is smooth;
2. there is only one leaf in Z;
3. Z0 is Poisson simple.

5.9. Leaves in Symplectic Reflection Algebras—the Classi-
cal Case. Fix (V, ω, Γ) as in (5.4)1. We shall describe the symplectic
leaves of V/Γ. In particular, we’ll see that they are finite in number,
so that Proposition (5.8) applies.
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Given v ∈ V , we let Γv = {γ ∈ Γ : γv = v}, the stabiliser
of v, and given T ≤ Γ, we let Vo

T = {v ∈ V : T = Γv}, and
VT = {v ∈ V : T ⊆ Γv}. Let I(T ) = {xh − x : x ∈ S(V ), h ∈ T}, an
ideal of S(V ), and set

J(T ) = I(T ) ∩ S(V )Γ =
⋂

γ∈Γ

I(T γ) ∩ S(V )Γ,

an ideal of S(V )Γ. Clearly VT is a closed subset of V with I(VT ) =
I(T ), and Vo

T is open in VT , being the complement in VT of the
closed subset of points with stabiliser strictly containing T . Letting
T vary over subgroups of Γ thus gives a stratification of V by locally
closed subsets,

V =
∐

T≤Γ

Vo
T .

Let π : V −→ V/Γ be the orbit map, and for T ≤ Γ set Zo
T = π(Vo

T ),
a locally closed subset of V/Γ which depends only on the conjugacy
class of T in Γ. So there is a stratification of V/Γ by the locally
closed sets Zo

T ,

V/Γ =
∐

T≤Γ

Zo
T , (9)

and
ZT := Zo

T = π(VT ),

with J(T ) being the defining ideal of ZT .
Let’s do the easy calculation to see that J(T ) is a Poisson ideal,

or equivalently that ZT is a Poisson closed subset of Z. Take x, x′ ∈
S(V ), y ∈ S(V )Γ and h ∈ T . Then, since the Poisson bracket is
induced from the symplectic form on V ,

{(xh − x)x′, y} = {xh − x, y}x′ + (xh − x){x′, y}
= ({x, y}h − {x, y})x′ + (xh − x){x′, y},

proving that I(T ), and therefore J(T ), is stable under the Poisson
action of S(V )Γ.

In fact, with more work one can show that the different ideals
J(T ) are the only prime Poisson ideals of S(V )Γ. In other words:

Proposition. [4] The symplectic leaves of V/Γ are precisely the sets
Zo

T as T runs through the conjugacy classes of subgroups of Γ for
which Vo

T 6= ∅.
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Example: Consider once again the Kleinian singularity of type
An−1 of (2.2). So here I({1}) = 0 and I({T}) = 〈V 〉 for every non-
identity subgroup T of Γ. Thus the proposition tells us that there is
only one proper Poisson prime ideal of S(V )Γ, namely 〈xn, yn, xy〉,
and that the stratification of V/Γ into symplectic leaves is

V/Γ = π({0}) ∪ π
(
V \ {0}).

5.10. Leaves in Symplectic Reflection Algebras—the Quan-
tized Case. Now suppose that we are in the deformed setting of
(5.4)2. Analogously to the classical case, we have the

Proposition. [4] Let H0,c be a symplectic reflection algebra with
centre Z0,c as in (5.4)2. Then maxspec(Z0,c) has only finitely many
symplectic leaves.

Unfortunately, there is (at least at present) no precise description
of the leaves in the quantised case, such as we have for the classical
case. Each leaf in the quantum setting is associated, via Propo-
sition (5.8) and the filtered-graded process of Lemma (5.5), with
a semiprime Poisson ideal of S(V )Γ, and this association is well-
behaved with respect to dimension. The semiprime Poisson ideals
of S(V )Γ are known, thanks to Proposition (5.9), but we have no
information as to whether the correspondence just described distin-
guishes the distinct leaves of maxspec(Z0,c). More detailed informa-
tion of this sort would be extremely valuable from the perspective
of symplectic algebraic geometry, to give but one application. For,
one important open question is to understand for which symplectic
reflection algebras it is the case that Z0,c is smooth for some (and
so for a generic) choice of the parameters c. This is because when
Z0,c is smooth it is hoped that it will afford a symplectic resolution
of singularities of V/Γ as defined in (3.4). For definitions and a full
discussion, see [11].

In the particularly significant case of the rational Cherednik alge-
bras, namely those symplectic reflection algebras constructed from
a dual pair (U,W ) as in (3.2)2, with U the Cartan subalgebra of a
complex simple Lie algebra and W its Weyl group, Z0,c is smooth
for a generic choice of c when W has type A or B, but Z0,c is never
smooth when W has type G2 [11, Section 16]. It’s very suggestive
to compare this with Theorem (3.4)3.
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5.11. The Non-PI Case. Recall from Theorem (4.5) that Ht,c sat-
isfies a polynomial identity if and only if t = 0. When t is non-zero
Z(Ht,c) = C by Theorem (4.5)4, and we expect that Ht,c should re-
semble H1,0, a simple ring. For example, in the Kleinian case (3.2)1
studied by Crawley-Boevey and Holland it is known [5] that, for
t 6= 0, Ht,c has only finitely many ideals, and indeed is simple for
generic values of t and c. Naturally therefore one asks:

Question: Are the above conclusions still valid when dimC(V ) > 2?

This question is closely related to the Poisson structure of H0,0,
thanks to the

Lemma. If t 6= 0 and I is an ideal of Ht,c then grI is a Poisson
ideal of H0,0.

Proof. The filtration on Ht,c is that defined in (4.1). Let α ∈ H0,0

and let z ∈ Z(H0,0) = S(V )Γ. Choose α̂ and ẑ with σ(α̂) = α and
σ(ẑ) = z, where σ denotes the principal symbol map. As in (5.3),
defining

{z, α} := σ
(
[ẑ, α̂]

)
(10)

yields a structure of Poisson S(V )Γ-algebra on H0,0. However, this
Poisson structure can be shown to have degree −2, and so, as in
(5.6), it is a non-zero scalar multiple of the restriction of the standard
bracket on S(V ) to S(V )Γ. From (10) it’s clear that if α ∈ grI then
{z, α} ∈ grI, as required. ¤

While the above lemma does provide some information on the
ideal structure of Ht,c for t 6= 0, it’s unsatisfactory in several re-
spects. First, one has the same problem regarding the “fibres” of the
map from ideals to Poisson ideals which we encountered in (5.10);
and secondly, it would be preferable to relate ideals of Ht,c to Pois-
son ideals of H0,c rather than of H0,0. At present we have nothing
positive to report on either of these problems.

6. Representation Theory

6.1. Walking Across a Leaf. The (finite dimensional) represen-
tation theory of the algebras H0,c is intimately connected to the
symplectic geometry of their centres Z0,c, as is made clear by the
following result. A version of this theorem was first proved by De
Concini and Lyubashenko for use in their study of quantised function
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algebras at a root of unity [6]; see also [7]. In those versions the cen-
tral subalgebra Z0 of the Poisson Z0-order H being studied had to be
smooth, with H a projective Z0-module. The present version, due
to Brown and Gordon [4], avoids those hypotheses, but does require
that the leaves are algebraic. Its proof consists in making various
reductions so as to pass to a setting where the additional hypotheses
needed for the argument of De Concini and Lyubashenko hold. The
key point of the latter is to integrate the Hamiltonian vector fields
to get a linear isomorphism, which is then shown to be an algebra
homomorphism.

Theorem. Let H be an affine C-algebra which is a Poisson Z0-
order (as defined in (5.1)). Suppose that the symplectic leaves of
maxspec(Z0) are algebraic. If m and n are maximal ideals of Z0

which belong to the same leaf, then

H/mH ∼= H/nH.

Let’s consider for a moment why the above result is significant for
the representation theory of H. If W is an irreducible H-module then
EndH(W ) = C by a version [19, Proposition 9.1.7] of Schur’s lemma.
Hence, (defining AnnZ0(W ) = {z ∈ Z0 : zW = 0}), it follows that
Z0/AnnZ0(W ) = C. That is, AnnZ0(W ) := m is a maximal ideal
of Z0 and W is an irreducible H/mH-module. Moreover, if U is a
second irreducible H-module with AnnZ0(U) = m′, and there is a
non-split extension X of W by U , then it’s an easy exercise to show
that m = m′ and either mX = 0 or W = U .

In other words, the finite dimensional representation theory of H
reduces in large part to the study of the finite dimensional algebras
H/mH, as m ranges through maxspec(Z0). Hence the relevance
of Theorem (6.1). Note that the significance of the theorem will
be particularly marked when there are only finitely many leaves in
maxspec(Z0), as is the case for symplectic reflection algebras by
(5.10); or when there are only finitely many orbits of leaves under
the action of the group of Poisson automorphisms of H, as is the
case for quantised function algebras at a root of unity [6].

6.2. Azumaya Strata. Let’s see what Theorem (6.1) tells us in the
simplest setting. So we assume that we have a prime Poisson Z0-
order H with Z0 = Z(H); and we assume that there are only finitely
many leaves in maxspec(Z0) (although much of what follows is true
under weaker hypotheses).
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Recall that if R is a prime algebra which is a finite module over its
C-affine centre Z, then a maximal ideal m of Z is called an Azumaya
point of maxspec(Z) if Rm is an Azumaya Zm-algebra, meaning that
Rm is a free Zm-module with

Rm ⊗Zm Rop
m

∼= EndZm(Rm),

[19, 13.7.6]. Thanks to the Artin-Procesi theorem [19, Theorem
13.7.14] this is equivalent to requiring that

R/mR ∼= Mn(C),

(where n is the PI-degree of R). In other words, the Azumaya
points of maxspec(Z) are precisely the points m at which the struc-
ture of R/mR is as simple as possible; such points are generic in
maxspec(Z), [19, Theorem 13.7.14(iii)]. The Azumaya locus AZ of
maxspec(Z) is the open dense subset of Azumaya points of
maxspec(Z), and we call R an Azumaya algebra ifAZ = maxspec(Z).
Now we’re ready to state a noncommutative addition to the equiv-
alences of Corollary (5.8). The first part is immediate from that
corollary and Theorem (6.1).

Corollary. Let H be a prime Poisson Z-order, where Z is the
centre of H. Assume that there are only finitely many leaves in
Z = maxspec(Z).

(a) The following are equivalent:
1. Z is smooth;
2. there is only one leaf in Z;
3. Z is Poisson simple;
4. H is an Azumaya algebra.

(b) Assume that H has finite global (homological) dimension. Then
(generalising (a)), the locus of smooth points of Z is equal to the
Azumaya locus AZ .

Proof. (b) By the last part of Proposition (5.8), the smooth points
of Z belong to a single leaf. Since this set is dense in Z it must meet
the dense set AZ . By Theorem (6.1) we deduce that every smooth
point of Z is Azumaya. Conversely, let m be an Azumaya point of Z.
Then Hm is a projective Zm-module, so, by the hypothesis on the
global dimension of H it follows that Zm has finite global dimension.
That is, m is a smooth point, as required. ¤
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Comments: 1. I’ve chosen to highlight part (a) of the corollary
because—when applied to the symplectic reflection algebras H0,c—
it makes precise the way in which their noncommutative structure
encodes the geometry of the varieties whose coordinate rings are the
algebras Z0,c; and recall that the latter are “symplectic deforma-
tions” of V/Γ.

2. The same conclusion as in part (b) of the corollary is obtained
in an earlier theorem of Lebruyn [16, Proposition 5], Brown and
Goodearl [3, Theorem 3.8]. In the earlier result no Poisson struc-
ture is involved, but much heavier homological conditions have to be
imposed on H, and one has to assume that the complement of AZ

has codimension at least 2 in Z. (In Corollary (6.2)(b) the latter
condition is (implicitly) a consequence of the Poisson structure.)

3. The corollary is the “first step” in a stratification of Z—
one factors H by the ideal generated by the ideal of Z defining the
complement of the Azumaya locus AZ—this is a Poisson ideal—and
repeats the game in the factor algebra. In this way one can realise
H as a sheaf of Azumaya algebras—for details, see [4]. This sort of
approach was pioneered in the case of quantised function algebras at
a root of 1 by De Concini and Procesi [8].
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