GENETIC ALGORITHMS: A SURVEY OF
SOME MATHEMATICAL MODELS — PART 1

Thomas Unger!

1. Introduction

Genetic Algorithms (GAs) are a special type of evolutionary
algorithms, algorithms that simulate biological processes to solve
search and optimization problems. They were introduced by John
Holland in 1975 [H]. Given a specific problem, potential solutions
are typically encoded as bit strings, constituting a population.
The bit strings are allowed to reproduce on the basis of their
fitness, thus forming a new population. Iterating this process, the
population evolves according to a ‘natural selection and survival of
the fittest’ process similar to the one described by Charles Darwin
in The Origin of Species. If the GA is implemented successfully,
the final population should consist of maximally fit individuals,
approximating an optimal solution for the problem at hand.

The success or failure of a GA for a certain problem is
strongly dependent on the encoding and several parameters that
we will introduce later.

GAs have been implemented for a wide variety of problems,
both real-world (e.g. scheduling electricity generation [A]) and
abstract (e.g. solving NP-complete problems [D]). The bulk of the
GA literature is concerned with practical applications. For a very
complete bibliography, see [G2], which contains more than 4000
entries !

In this article we present mathematical models that have
been introduced to study the behaviour of GAs. A lot of work in
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this area still has to be done, as a complete understanding of what
happens does not exist yet.

2. Terminology

In this section we will give a brief overview of the GA terminology.
For more detailed information, the reader can consult [B], [W], the
classics [H] and [G1] or the more recent [M].

We will first introduce the relevant concepts as they appear
in the literature. Some of them are usually not defined in a very
(mathematically) rigorous way. For now we will follow this tradi-
tion, so that we can move on to the description of the GA as soon
as possible. The reader need not panic however, we will make
them precise in Section 5.

Consider the binary alphabet ¥ = {0,1}. (In general other
alphabets can be used.) An ordered sequence

4= a¢_10¢_3---A109, G; € X

is called an individual or a chromosome or a string of length ¢
with genes a; at locus i. (In general genes can contain more than
one letter of the alphabet. Chromosomes can be more complex,
e.g. diploid — containing two sequences — instead of haploid —
consisting of only one sequence.) Note that we read a string from
right to left.

Fix ¢ and let Q = {0,1}¢, the set of all possible length ¢
strings over ¥. A population of size n is a multi-set of n elements
of  (i.e. a particular string can occur more than once).

Let P be a population of size n consisting of length /¢ strings.
A fitness function is a map f: P — RY, 2 = f(z). We call f(z)
the fitness (value) of the string z. The fitness function is determ-
ined by the problem at hand. (For example in an optimization
problem it can usually be taken to be the function one wants to
optimize.) The choice of the fitness function is one of the factors
that determines the success or the failure of the GA.

Selection is an operator that maps a string to multiple copies
of itself according to its fitness value. Crossover is an operator
that maps two strings (parents) to two new strings (offspring)
and that is applied with a probability p. on individual strings.
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Several different crossover operators are in use. The simplest one
is one-point crossover: given two length ¢ bit strings a and b, a
locus i is selected randomly (0 < i < £ — 2) and two new strings
are formed by swapping the substrings of a and b starting at locus
i + 1, again reading from right to left.

Mutation is an operator that is applied with a probability
Pm (usually low, e.g. p,, = 0.001) to a string a by picking a locus
0 <i < /¢ —1 randomly and replacing the bit a; by a; + 1 mod 2
(i.e. 0 1).

There are many varieties of selection, crossover and muta-
tion. The particular varieties chosen and the fine-tuning of the
probabilities p. and p,, can have a big influence on the perform-
ance of the GA. Other operators have been defined in the literature.

3. The Simple Genetic Algorithm

All GAs can be viewed as modifications of a basic one, the Simple
Genetic Algorithm (SGA), that we will describe in this section.
Suppose that we are given a clearly defined problem, that can-
didate solutions are encoded as bit strings of length ¢, that the
population size is n and that a fitness function f is defined. Then
the SGA consists of the following steps:

o Start with random population P(0) of size n consisting of binary
strings of length /.

o Until the system stops improving, repeat the following procedure,
starting with ¢ = 0:

e Consider population P(t).

e Calculate the fitness f(i) of every string i in P(t).

e Selection. Select n strings from P(t) according to their
relative fitness. These strings constitute an “intermediate
population”, called the gene pool.

¢ Recombination. Construct new population P(t 4+ 1) as
follows:

As long as size of P(t + 1) < n repeat the following steps:
— Randomly select 2 parents from the gene pool.
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— Crossover. Generate two offspring by means of one-
point crossover. If no crossover takes place, form two
offspring by cloning the parents.

— Mutation. Mutate the offspring.

— Place the resulting strings in P(¢ + 1).

e Increment t.

Each iteration of this process is called a generation. The
entire set of generations is called a run.

4. Holland’s Schema Theorem

The first attempt to explain rigorously the behaviour of GAs was
made by John Holland [H]. We will briefly explain his idea. The
set 2 = {0, 1}¢ can be considered as consisting of the vertices of an
{-dimensional cube. A given bit string x is an element of several
hyperplanes in this /-cube. Holland calls a hyperplane a schema.
A schema H can contain several bit strings. The average fitness
of a schema H is the average fitness of all z € H. The idea is that
at a given generation, while the GA is explicitly evaluating the
fitness of the n strings in the population, it is implicitly estimating
the average fitness of a much larger number of schemata. Holland
calls this behaviour implicit parallelism.

Consider the alphabet ¥’ = {0,1,%}. A schema can be

viewed as an element of ¥'*. For example, when £ = 3, the strings
010 and 011 are both elements of the schema 01x. The order o(H)
of a schema H is equal to the number of defined bits. (E.g. 1x0 has
order 2.) The defining length §(H) of a schema H is the distance
between the outermost defined bits. (E.g. §(0%1) =3 —-1=2.)

The approximate dynamics of the increase and decrease in
schema instances is described by the Schema Theorem, which
roughly states that short, low-order schemata with above average
fitness will receive exponentially increasing numbers of samples
over time. It gives a lower bound on the expected growth of the
number of instances of a schema from one generation to the next.
Recently, Vose has argued that this theorem is not useful at all
[V2].
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5. The Infinite Population Model

In this section we will describe Vose and Liepins’ formalization of
the SGA. They model genetic search directly instead of looking at
schemata as in Holland’s model. This account is based on [V1],
[N] and [M]. The SGA in this section is slightly different from the
one presented in Section 3, in that after crossover only one of the
two offspring is selected (at random) and the other one discarded.
This modification simplifies parts of the formalization.

Again, let Q = {0,1}¢, the set of length-¢ binary strings.
Let N = | = 2. We can view Q as the set {0,...,N — 1}
by identifying bitstrings with their decimal value. We can also
view Q as Z/27 x --- x Z/27, the product of ¢ copies of Z/27,
the integers mod 2. This allows us to define two group opera-
tions on {0,...,N —1}: the component-wise sum (denoted @) on
the product group acts as exclusive-or on {0,..., N — 1} and the
component-wise multiplication (denoted ®) acts as logical-and on
{0,...,N—1}.

Let n! denote the number of instances of string 7 in the
population at time ¢. Let f : @ — R denote the fitness function.
Suppose the population size is n.

We introduce a vector pt € RY that represents the popula-
tion at time t. Its components are defined as follows,

the proportion consisting of string i in the population at time ¢.
Another vector st € RY is defined by its components as
follows,

' f(i)n;

i T N1 ..
Zj:o f (])nz
the probability that string i will be selected for recombination (i.e.

selected for the gene pool that will be used to construct the pop-
ulation at time ¢ + 1).

)

Remarks.
e pt = st =0 when string 7 is not in the population at time ¢.
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e pt and s! both have at most n non-zero entries.
e Since both p! and s have non-negative entries that sum to
1, they are stochastic vectors.

Example. Suppose that / = 2 and the population consists of
2 copies of 11 and one copy each of 01 and 10. Then pf! =
(0,0.25,0.25,0.5). Suppose that fitness is equal to the number
of ones in the string. Then f(00) = 0, f(01) = f(10) = 1 and
f(11) = 2. Hence }_; f(j)n} = 6. Hence s* = (0,1/6,1/6,4/6) =
(0,0.1667,0.1667,0.6667).

Under the assumption that the fitness function does not

change during the evolution of the population, we have the fol-
lowing

Definition 5.1. The selection operator F is defined to be the
N x N diagonal matrix with Fj; = f(i), Vi € {0,...,N —1}.

We define a relation ~ on R™ \ {0} by z ~ y iff I\ > 0 such
that © = Ay. Clearly ~ is an equivalence relation. Furthermore,
for any equivalence class we can always find a representative with
norm 1 (y = z/||z|| ~ = and [|y[| = 1).

Since selection is performed proportional to relative fitness,
we expect the following to hold,

Fpt ~ st
Indeed, it is easy to show that
(Fpt)k :?Slltca Vk € Q.

where

Z
L

f= F(G)nj

S
Il
=}

J
is the average fitness of the population at time ¢.

In the GA literature the term genetic operator is often used
without being clearly defined. This shortcoming is overcome by
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Naudts [N] who formalizes the notion of a genetic operator as fol-
lows: consider a map

G:QOXP XX Py >0

where Py,..., P, are m parameter sets. Usually 1 < m < ¢ and
P, = {0,...,£ —1}. Values for the parameters will be chosen at
random immediately before the operator is applied.

Definition 5.2. A map G as defined above is a genetic operator
acting on one string iff for each parameter tuple (p1,...,pm) €
P x---x Pm;

G('apla s 7pm) =0

is a bijection.
Next consider a map

C:P®xP x-X Py =0

where the P;’s are again parameter sets. Let C} denote the first
projection of C' and C5 the second.

Definition 5.3. A map C defined as above is a genetic oper-
ator acting on a couple of strings iff for each parameter tuple
(pla---;pm) €P1 X e X_Pm,

(1) C((5,-),p1,--+,Pm) : 2 = Q2 is a bijection;

(2) Cl((iaj)apla B 7pm) = CQ((j,i),}h, s 7pm)a \V/(’L,]) € 0.
Example. Crossover is a genetic operator C' : Q2 x P, — Q2.
When two strings ¢ = 4,1 ---4149 and 7 = jy—1 - - - j1jo are selec-
ted, a crossover point p is selected at random in P, 0 <p</-—1
and crossover is applied to the strings ¢ and j as follows,

C((a )ap) : Q2 - 027 (Zaj) = (ilajl)a

where i’ = g1 - -ipy1dp---jijo and j' = jr_1 - fpriip - - i10.
If p = ¢ — 1, no crossover occurs and C' acts as the identity.
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Remarks.

e If a genetic operator which normally acts on one string, is to
act on a couple, it is defined to act independently on both
components.

e The second definition may be generalized to genetic operat-
ors acting on tuples containing more than two strings.

Now the recombination process can be formalized as follows:
as long as the new population is not full, two strings ¢ and j
are selected from the gene pool, and a finite sequence (H;)" | of
genetic operators is applied to them,

(01,02) = Hy o Hyo---0 Hy(i,j),

resulting in a couple (o01,02), called the offspring of (i,j). Then
one of the two offspring is chosen with a probability of 0.5 to
contribute to the next generation.

Definition 5.4. For every k € Q we define an N x N matrix r(k)
with components
rij(k) = P(k results from the recombination process
based on parents i and j).
These matrices are called recombination probabilities. They have
the following properties:

o Y orig(k) =1, Vi,j e
o 1 (k) =r;ik), Vi, j ke Q.

In what follows we will require that recombination consists of
a sequence of genetic operators which commute with group trans-
lation. In other words:

e If a genetic operator X acts on one string only, we must have
kol=X() < k=X({i®l)

for all parameters of X (left out here for convenience).
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e If a genetic operator C' acts on 2 strings, we must have for
the projections C and Cs that

Edl=Chn(i,j) & k=Cpn(i®lLj®l) (m=12).

It is easily observed that both one-point crossover and muta-
tion commute with group translation.
The following result is now obvious,

Lemma 5.1. The recombination probabilities satisfy

7ij(k © 1) = rignjer (k).

Definition 5.5. M is defined to be the N x N matrix having
entries m;j = Ti,j (0)

The following theorem shows that for the purpose of recom-
bination it is sufficient to know the matrix M. That is why we call
M a mizing matriz.

Theorem 5.1. The matrix M determines the matrices r(k), is
nonnegative and symmetric and satisfies

> migkjor =1, Vi,j € Q.
k

Proof: From the previous lemma we have that
rij(k) = rigrjor(0) = migkjor,  Vi,j,k €0

and the recombination probabilities sum to 1. M is nonnegat-
ive since its elements are probabilities and symmetric because the
recombination probabilities are symmetric. m

To get M positive rather than nonnegative we have to sup-
pose that mutation is nonzero.
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Definition 5.6. The Walsh matrizc W = (w; ;) is defined by
¢
wi,j = H Th(li2t~* | mod 2)(J)s

k=1

where the Rademacher functions r; : @ — {—1,1} are given by
91
ri(z)=1-2 <L%J mod 2) .

The Walsh functions also map to {—1,1}, are symmetric
and orthogonal,

-1
Z Wi _ { N fori= ]
i,k ],k — f . ..
Pt 0 fori#j
Furthermore, the rows of the Walsh matrix are group characters,

Wigjk = Wi,k Wy, k-

Vose and Liepins show that conjugation of the positive matrix M
by W results in a sparse matrix.

Definition 5.7. The twist of M, denoted M,, is defined as follows,
(My)ij = Migji-

They also show that conjugation by W triangulates the twist
M, of M.

Lemma 5.2. Let E denote expectation, then

E(pit) = sishris(k).
i
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Proof: The expected proportion of string k& in the next generation
is computed by summing over all possible ways of producing k. If
k results from reproduction based on parents ¢ and j, then 7 (resp.
j) is selected for reproduction with probability st (resp. s?) and
k is the result of recombination with probability r; ; (k). m

If we now take the limit as population size n — oo, the low
of large numbers gives us pt+1 — IE( t“)

Define permutations o; on RN by

Uj(So, . .,SN,1>T = <Sj@0, . .,Sj@(N_l))T,

where vectors (between (,)) are regarded as columns, and T
denotes transpose.
Define the operator M by

M(s) = ((o0s) " Mags,...,(ox-18)" Mox_1s)T

Theorem 5.2. E(st*!) ~ FM(s?).
Proof:
i) Zszsarw

Zs siriwk,jok (0)

= Z Si@k Sj@kriﬂ' (0)

1Dk, jOk
= (UkSt)TMO'kSt

t+1

Since sf*t! ~ Fptt!, the result follows. m

The expected behaviour of a simple GA is therefore determ-
ined by two matrices: fitness information appropriate for selection
is contained in F and M encodes mixing information appropriate
for recombination.

Furthermore, the relation

L~ FM(sY)
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is an exact representation of the limiting behaviour as population
size n — 0.

Based on the previous results Vose and Liepins formalize
the SGA as follows:

Definition 5.8. Simple genetic search corresponds to the operator
G = F o M, where F is the selection operator and M is any
mixing matrix satisfying Theorem 5.2 and such that WM, W is
lower triangular. An initial population is modelled by a point

s® € RY, and the transition between generations is determined by
s+~ G(s).

This formalization generalizes the recombination induced by
mutation and one-point crossover, and regards GAs with finite
populations as approximations to the ideal of simple genetic search.

Vose and Liepins give a geometric interpretation of simple
genetic search by regarding the operator G as amap G : S — S,
where S is the set of points with nonnegative coordinates of the
unit sphere in RN , since every equivalence class of ~ has a member
of norm 1.

An initial population then corresponds to a point on S, iter-
ates of G are trajectories on S and convergence of the genetic
algorithm corresponds to a fixed point of G.

The general problem of finding the fixed points of G was
not solved by Vose and Liepins. They did however study the
fixed points of F' and M separately. Fixed points of F' (selection
alone) correspond to populations that have completely converged
to strings of equal fitness.

Only one class of these fixed points is stable: the set of fixed
points corresponding to the mazimally fit strings in the search
space. So, we can interpret F' as being a focusing operator that
moves the population towards a state in which only the maximally
fit individuals of the initial population are present.

Vose and Liepins then investigate the set of fixed points of
M, Mgxeq- They prove a sufficient condition for a fixed point to
be an attractor:

Theorem 5.3. Let © € Mgyeq. If the matrix M is positive, then
x is asymptotically stable whenever the second largest eigenvalue
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of M, is less than 1/2.
They also determine the group of symmetries of Mgyed:

Theorem 5.4. For all j, and for every mixing matrix M,
M(ojxz) = o;M(z). In particular, cjMegxed = Mepxed, and
v=(N"Y2...,N"?) € Mgged.

This last theorem implies in particular that the dynamical
system on S corresponding to M looks the same at each member
of the population. In other words, M is a diffusing operator.

Based on these qualitative results they shed light on the
phenomenon of punctuated equilibria that typically characterizes
genetic search: relatively long periods of no improvement punc-
tuated by quick rises in fitness. Intuitively they arise from the
combination of the focusing properties of F' and the diffusing prop-
erties of M. Periods spent near one of the unstable fixed points
of F' correspond to stasis and the periods of rapid improvement
can be accounted for by a movement (under the diffusing force of
recombination) from the vicinity of one fixed point to another.

In the case of one-point crossover with mutation, Vose and
Liepins calculate the matrix M explicitly. Its entries are equal to

(1-p' XS
m; :T {nl| (1 —x+ g_—l ZnAi.j,k>
k=1
Y -1
+ n|]| <1 —x+ [_—1 ZnAi,]‘.k> } ,
k=1

where x is the crossover probability, u the mutation probability,
n = pu/(1— ), |¢| is the number of 1’s in the bit string represent-
ation of the integer ¢ and

Aije=12" -1 i -|2"-1) ®j|

On the basis of several computer runs calculating the spec-
trum of M,, they find support for the following

Conjecture. If0 < p < 0.5, then



[A]

[B]

[G1]

70 IMS Bulletin 41, 1998 i

1. The second largest eigenvalue of M, is 1/2 — p.

2. The third largest eigenvalue of M, is 2 (1 - ﬁ) (2 - u)2.

This conjecture was later proved by Koehler [K], who also
showed:

Theorem 5.5. The entire spectrum of M, is given by

1 ; xwid(7) .
201 — gl [ = AR — b _
2(1 2u) <1 —1 )¢ 0,...,2° =1,

where wid(7) is the difference in position of the last 1 bit and the
first 1 bit of i. If i has a single 1 bit or i = 0, then wid(7) = 0.

Theorems 5.3 and 5.5 imply that every fixed point of M is
an attractor when 0 < p < 0.5. Finally, Vose and Liepins also give
a plausible argument for v = (N~1/2 ... N~'/2) (i.e. all possible
strings represented equally) to be the unique fixed point of M.
This still has to be proved though.

% k %k
In Part II, which will appear in the next issue of this Bul-
letin, we will discuss a finite population model and statistical mech-
anical approaches to modelling GAs.
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