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1. Introdu
tion

Geneti
 Algorithms (GAs) are a spe
ial type of evolutionary

algorithms, algorithms that simulate biologi
al pro
esses to solve

sear
h and optimization problems. They were introdu
ed by John

Holland in 1975 [H℄. Given a spe
i�
 problem, potential solutions

are typi
ally en
oded as bit strings, 
onstituting a population.

The bit strings are allowed to reprodu
e on the basis of their

�tness, thus forming a new population. Iterating this pro
ess, the

population evolves a

ording to a `natural sele
tion and survival of

the �ttest' pro
ess similar to the one des
ribed by Charles Darwin

in The Origin of Spe
ies. If the GA is implemented su

essfully,

the �nal population should 
onsist of maximally �t individuals,

approximating an optimal solution for the problem at hand.

The su

ess or failure of a GA for a 
ertain problem is

strongly dependent on the en
oding and several parameters that

we will introdu
e later.

GAs have been implemented for a wide variety of problems,

both real-world (e.g. s
heduling ele
tri
ity generation [A℄) and

abstra
t (e.g. solving NP-
omplete problems [D℄). The bulk of the

GA literature is 
on
erned with pra
ti
al appli
ations. For a very


omplete bibliography, see [G2℄, whi
h 
ontains more than 4000

entries !

In this arti
le we present mathemati
al models that have

been introdu
ed to study the behaviour of GAs. A lot of work in
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this area still has to be done, as a 
omplete understanding of what

happens does not exist yet.

2. Terminology

In this se
tion we will give a brief overview of the GA terminology.

For more detailed information, the reader 
an 
onsult [B℄, [W℄, the


lassi
s [H℄ and [G1℄ or the more re
ent [M℄.

We will �rst introdu
e the relevant 
on
epts as they appear

in the literature. Some of them are usually not de�ned in a very

(mathemati
ally) rigorous way. For now we will follow this tradi-

tion, so that we 
an move on to the des
ription of the GA as soon

as possible. The reader need not pani
 however, we will make

them pre
ise in Se
tion 5.

Consider the binary alphabet � = f0; 1g. (In general other

alphabets 
an be used.) An ordered sequen
e

a = a

`�1

a

`�2

� � � a

1

a

0

; a

i

2 �

is 
alled an individual or a 
hromosome or a string of length `

with genes a

i

at lo
us i. (In general genes 
an 
ontain more than

one letter of the alphabet. Chromosomes 
an be more 
omplex,

e.g. diploid | 
ontaining two sequen
es | instead of haploid |


onsisting of only one sequen
e.) Note that we read a string from

right to left.

Fix ` and let 
 = f0; 1g

`

, the set of all possible length `

strings over �. A population of size n is a multi-set of n elements

of 
 (i.e. a parti
ular string 
an o

ur more than on
e).

Let P be a population of size n 
onsisting of length ` strings.

A �tness fun
tion is a map f : P ! R

+

; x 7! f(x). We 
all f(x)

the �tness (value) of the string x. The �tness fun
tion is determ-

ined by the problem at hand. (For example in an optimization

problem it 
an usually be taken to be the fun
tion one wants to

optimize.) The 
hoi
e of the �tness fun
tion is one of the fa
tors

that determines the su

ess or the failure of the GA.

Sele
tion is an operator that maps a string to multiple 
opies

of itself a

ording to its �tness value. Crossover is an operator

that maps two strings (parents) to two new strings (o�spring)

and that is applied with a probability p




on individual strings.
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Several di�erent 
rossover operators are in use. The simplest one

is one-point 
rossover: given two length ` bit strings a and b, a

lo
us i is sele
ted randomly (0 � i � `� 2) and two new strings

are formed by swapping the substrings of a and b starting at lo
us

i+ 1, again reading from right to left.

Mutation is an operator that is applied with a probability

p

m

(usually low, e.g. p

m

= 0:001) to a string a by pi
king a lo
us

0 � i � `� 1 randomly and repla
ing the bit a

i

by a

i

+ 1 mod 2

(i.e. 0$ 1).

There are many varieties of sele
tion, 
rossover and muta-

tion. The parti
ular varieties 
hosen and the �ne-tuning of the

probabilities p




and p

m


an have a big in
uen
e on the perform-

an
e of the GA. Other operators have been de�ned in the literature.

3. The Simple Geneti
 Algorithm

All GAs 
an be viewed as modi�
ations of a basi
 one, the Simple

Geneti
 Algorithm (SGA), that we will des
ribe in this se
tion.

Suppose that we are given a 
learly de�ned problem, that 
an-

didate solutions are en
oded as bit strings of length `, that the

population size is n and that a �tness fun
tion f is de�ned. Then

the SGA 
onsists of the following steps:

� Start with random population P (0) of size n 
onsisting of binary

strings of length `.

�Until the system stops improving, repeat the following pro
edure,

starting with t = 0:

� Consider population P (t).

� Cal
ulate the �tness f(i) of every string i in P (t).

� Sele
tion. Sele
t n strings from P (t) a

ording to their

relative �tness. These strings 
onstitute an \intermediate

population", 
alled the gene pool.

� Re
ombination. Constru
t new population P (t + 1) as

follows:

As long as size of P (t+ 1) < n repeat the following steps:

{ Randomly sele
t 2 parents from the gene pool.



60 IMS Bulletin 41, 1998 �

{ Crossover. Generate two o�spring by means of one-

point 
rossover. If no 
rossover takes pla
e, form two

o�spring by 
loning the parents.

{ Mutation. Mutate the o�spring.

{ Pla
e the resulting strings in P (t+ 1).

� In
rement t.

Ea
h iteration of this pro
ess is 
alled a generation. The

entire set of generations is 
alled a run.

4. Holland's S
hema Theorem

The �rst attempt to explain rigorously the behaviour of GAs was

made by John Holland [H℄. We will brie
y explain his idea. The

set 
 = f0; 1g

`


an be 
onsidered as 
onsisting of the verti
es of an

`-dimensional 
ube. A given bit string x is an element of several

hyperplanes in this `-
ube. Holland 
alls a hyperplane a s
hema.

A s
hema H 
an 
ontain several bit strings. The average �tness

of a s
hema H is the average �tness of all x 2 H . The idea is that

at a given generation, while the GA is expli
itly evaluating the

�tness of the n strings in the population, it is impli
itly estimating

the average �tness of a mu
h larger number of s
hemata. Holland


alls this behaviour impli
it parallelism.

Consider the alphabet �

0

= f0; 1; �g. A s
hema 
an be

viewed as an element of �

0

`

. For example, when ` = 3, the strings

010 and 011 are both elements of the s
hema 01�. The order o(H)

of a s
hemaH is equal to the number of de�ned bits. (E.g. 1�0 has

order 2.) The de�ning length Æ(H) of a s
hema H is the distan
e

between the outermost de�ned bits. (E.g. Æ(0 � 1) = 3� 1 = 2.)

The approximate dynami
s of the in
rease and de
rease in

s
hema instan
es is des
ribed by the S
hema Theorem, whi
h

roughly states that short, low-order s
hemata with above average

�tness will re
eive exponentially in
reasing numbers of samples

over time. It gives a lower bound on the expe
ted growth of the

number of instan
es of a s
hema from one generation to the next.

Re
ently, Vose has argued that this theorem is not useful at all

[V2℄.
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5. The In�nite Population Model

In this se
tion we will des
ribe Vose and Liepins' formalization of

the SGA. They model geneti
 sear
h dire
tly instead of looking at

s
hemata as in Holland's model. This a

ount is based on [V1℄,

[N℄ and [M℄. The SGA in this se
tion is slightly di�erent from the

one presented in Se
tion 3, in that after 
rossover only one of the

two o�spring is sele
ted (at random) and the other one dis
arded.

This modi�
ation simpli�es parts of the formalization.

Again, let 
 = f0; 1g

`

, the set of length-` binary strings.

Let N = j
j = 2

`

. We 
an view 
 as the set f0; : : : ; N � 1g

by identifying bitstrings with their de
imal value. We 
an also

view 
 as Z=2Z� � � � � Z=2Z, the produ
t of ` 
opies of Z=2Z,

the integers mod 2. This allows us to de�ne two group opera-

tions on f0; : : : ; N � 1g: the 
omponent-wise sum (denoted �) on

the produ
t group a
ts as ex
lusive-or on f0; : : : ; N � 1g and the


omponent-wise multipli
ation (denoted 
) a
ts as logi
al-and on

f0; : : : ; N � 1g.

Let n

t

i

denote the number of instan
es of string i in the

population at time t. Let f : 
! R

+

denote the �tness fun
tion.

Suppose the population size is n.

We introdu
e a ve
tor p

t

2 R

N

that represents the popula-

tion at time t. Its 
omponents are de�ned as follows,

p

t

i

=

n

t

i

n

;

the proportion 
onsisting of string i in the population at time t.

Another ve
tor s

t

2 R

N

is de�ned by its 
omponents as

follows,

s

t

i

=

f(i)n

t

i

P

N�1

j=0

f(j)n

t

j

;

the probability that string i will be sele
ted for re
ombination (i.e.

sele
ted for the gene pool that will be used to 
onstru
t the pop-

ulation at time t+ 1).

Remarks.

� p

t

i

= s

t

i

= 0 when string i is not in the population at time t.
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� p

t

and s

t

both have at most n non-zero entries.

� Sin
e both p

t

and s

t

have non-negative entries that sum to

1, they are sto
hasti
 ve
tors.

Example. Suppose that ` = 2 and the population 
onsists of

2 
opies of 11 and one 
opy ea
h of 01 and 10. Then p

t

=

(0; 0:25; 0:25; 0:5). Suppose that �tness is equal to the number

of ones in the string. Then f(00) = 0, f(01) = f(10) = 1 and

f(11) = 2. Hen
e

P

j

f(j)n

t

j

= 6. Hen
e s

t

= (0; 1=6; 1=6; 4=6) =

(0; 0:1667; 0:1667; 0:6667).

Under the assumption that the �tness fun
tion does not


hange during the evolution of the population, we have the fol-

lowing

De�nition 5.1. The sele
tion operator F is de�ned to be the

N �N diagonal matrix with F

ii

= f(i); 8i 2 f0; : : : ; N � 1g.

We de�ne a relation � on R

N

n f0g by x � y i� 9� > 0 su
h

that x = �y. Clearly � is an equivalen
e relation. Furthermore,

for any equivalen
e 
lass we 
an always �nd a representative with

norm 1 (y = x=jjxjj � x and jjyjj = 1).

Sin
e sele
tion is performed proportional to relative �tness,

we expe
t the following to hold,

Fp

t

� s

t

:

Indeed, it is easy to show that

(Fp

t

)

k

= fs

t

k

; 8k 2 
:

where

f =

1

n

N�1

X

j=0

f(j)n

t

j

is the average �tness of the population at time t.

In the GA literature the term geneti
 operator is often used

without being 
learly de�ned. This short
oming is over
ome by
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Naudts [N℄ who formalizes the notion of a geneti
 operator as fol-

lows: 
onsider a map

G : 
� P

1

� � � � � P

m

! 


where P

1

; : : : ; P

m

are m parameter sets. Usually 1 � m � ` and

P

i

= f0; : : : ; ` � 1g. Values for the parameters will be 
hosen at

random immediately before the operator is applied.

De�nition 5.2. A map G as de�ned above is a geneti
 operator

a
ting on one string i� for ea
h parameter tuple (p

1

; : : : ; p

m

) 2

P

1

� � � � � P

m

,

G(�; p

1

; : : : ; p

m

) : 
! 


is a bije
tion.

Next 
onsider a map

C : 


2

� P

1

� � � � � P

m

! 


2

where the P

i

's are again parameter sets. Let C

1

denote the �rst

proje
tion of C and C

2

the se
ond.

De�nition 5.3. A map C de�ned as above is a geneti
 oper-

ator a
ting on a 
ouple of strings i� for ea
h parameter tuple

(p

1

; : : : ; p

m

) 2 P

1

� � � � � P

m

,

(1) C((�; �); p

1

; : : : ; p

m

) : 


2

! 


2

is a bije
tion;

(2) C

1

((i; j); p

1

; : : : ; p

m

) = C

2

((j; i); p

1

; : : : ; p

m

); 8(i; j) 2 


2

.

Example. Crossover is a geneti
 operator C : 


2

� P

1

! 


2

.

When two strings i = i

`�1

� � � i

1

i

0

and j = j

`�1

� � � j

1

j

0

are sele
-

ted, a 
rossover point p is sele
ted at random in P

1

, 0 � p � `� 1

and 
rossover is applied to the strings i and j as follows,

C((�; �); p) : 


2

! 


2

; (i; j) 7! (i

0

; j

0

);

where i

0

= i

`�1

� � � i

p+1

j

p

� � � j

1

j

0

and j

0

= j

`�1

� � � j

p+1

i

p

� � � i

1

i

0

.

If p = `� 1, no 
rossover o

urs and C a
ts as the identity.
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Remarks.

� If a geneti
 operator whi
h normally a
ts on one string, is to

a
t on a 
ouple, it is de�ned to a
t independently on both


omponents.

� The se
ond de�nition may be generalized to geneti
 operat-

ors a
ting on tuples 
ontaining more than two strings.

Now the re
ombination pro
ess 
an be formalized as follows:

as long as the new population is not full, two strings i and j

are sele
ted from the gene pool, and a �nite sequen
e (H

i

)

h

i=1

of

geneti
 operators is applied to them,

(o

1

; o

2

) = H

1

ÆH

2

Æ � � � ÆH

h

(i; j);

resulting in a 
ouple (o

1

; o

2

), 
alled the o�spring of (i; j). Then

one of the two o�spring is 
hosen with a probability of 0:5 to


ontribute to the next generation.

De�nition 5.4. For every k 2 
 we de�ne an N �N matrix r(k)

with 
omponents

r

i;j

(k) = P(k results from the re
ombination pro
ess

based on parents i and j):

These matri
es are 
alled re
ombination probabilities. They have

the following properties:

�

P

N�1

k=0

r

i;j

(k) = 1; 8i; j 2 
;

� r

i;j

(k) = r

j;i

(k); 8i; j; k 2 
.

In what follows we will require that re
ombination 
onsists of

a sequen
e of geneti
 operators whi
h 
ommute with group trans-

lation. In other words:

� If a geneti
 operatorX a
ts on one string only, we must have

k � l = X(i) () k = X(i� l)

for all parameters of X (left out here for 
onvenien
e).
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� If a geneti
 operator C a
ts on 2 strings, we must have for

the proje
tions C

1

and C

2

that

k � l = C

m

(i; j) () k = C

m

(i� l; j � l) (m = 1; 2):

It is easily observed that both one-point 
rossover and muta-

tion 
ommute with group translation.

The following result is now obvious,

Lemma 5.1. The re
ombination probabilities satisfy

r

i;j

(k � l) = r

i�l;j�l

(k):

De�nition 5.5. M is de�ned to be the N � N matrix having

entries m

i;j

= r

i;j

(0).

The following theorem shows that for the purpose of re
om-

bination it is suÆ
ient to know the matrixM . That is why we 
all

M a mixing matrix.

Theorem 5.1. The matrix M determines the matri
es r(k), is

nonnegative and symmetri
 and satis�es

X

k

m

i�k;j�k

= 1; 8i; j 2 
:

Proof: From the previous lemma we have that

r

i;j

(k) = r

i�k;j�k

(0) = m

i�k;j�k

; 8i; j; k 2 


and the re
ombination probabilities sum to 1. M is nonnegat-

ive sin
e its elements are probabilities and symmetri
 be
ause the

re
ombination probabilities are symmetri
.

To get M positive rather than nonnegative we have to sup-

pose that mutation is nonzero.
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De�nition 5.6. The Walsh matrix W = (w

i;j

) is de�ned by

w

i;j

=

`

Y

k=1

r

k(bi2

`�k


 mod 2)

(j);

where the Radema
her fun
tions r

i

: 
! f�1; 1g are given by

r

i

(x) = 1� 2

�

b

x2

i

N


 mod 2

�

:

The Walsh fun
tions also map to f�1; 1g, are symmetri


and orthogonal,

`�1

X

k=0

w

i;k

w

j;k

=

�

N for i = j

0 for i 6= j

:

Furthermore, the rows of the Walsh matrix are group 
hara
ters,

w

i�j;k

= w

i;k

w

j;k

:

Vose and Liepins show that 
onjugation of the positive matrix M

by W results in a sparse matrix.

De�nition 5.7. The twist ofM , denotedM

�

, is de�ned as follows,

(M

�

)

i;j

= m

i�j;i

:

They also show that 
onjugation byW triangulates the twist

M

�

of M .

Lemma 5.2. Let E denote expe
tation, then

E (p

t+1

k

) =

X

i;j

s

t

i

s

t

j

r

i;j

(k):
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Proof: The expe
ted proportion of string k in the next generation

is 
omputed by summing over all possible ways of produ
ing k. If

k results from reprodu
tion based on parents i and j, then i (resp.

j) is sele
ted for reprodu
tion with probability s

t

i

(resp. s

t

j

) and

k is the result of re
ombination with probability r

i;j

(k).

If we now take the limit as population size n!1, the law

of large numbers gives us p

t+1

k

! E (p

t+1

k

).

De�ne permutations �

j

on R

N

by

�

j

hs

0

; : : : ; s

N�1

i

T

= hs

j�0

; : : : ; s

j�(N�1)

i

T

;

where ve
tors (between h; i) are regarded as 
olumns, and T

denotes transpose.

De�ne the operator M by

M(s) = h(�

0

s)

T

M�

0

s; : : : ; (�

N�1

s)

T

M�

N�1

si

T

:

Theorem 5.2. E (s

t+1

) � FM(s

t

).

Proof:

E (p

t+1

k

) =

X

i;j

s

t

i

s

t

j

r

i;j

(k)

=

X

i;j

s

t

i

s

t

j

r

i�k;j�k

(0)

=

X

i�k;j�k

s

t

i�k

s

t

j�k

r

i;j

(0)

= (�

k

s

t

)

T

M�

k

s

t

Sin
e s

t+1

� Fp

t+1

, the result follows.

The expe
ted behaviour of a simple GA is therefore determ-

ined by two matri
es: �tness information appropriate for sele
tion

is 
ontained in F and M en
odes mixing information appropriate

for re
ombination.

Furthermore, the relation

s

t+1

� FM(s

t

)
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is an exa
t representation of the limiting behaviour as population

size n!1.

Based on the previous results Vose and Liepins formalize

the SGA as follows:

De�nition 5.8. Simple geneti
 sear
h 
orresponds to the operator

G = F Æ M, where F is the sele
tion operator and M is any

mixing matrix satisfying Theorem 5.2 and su
h that WM

�

W is

lower triangular. An initial population is modelled by a point

s

0

2 R

N

, and the transition between generations is determined by

s

t+1

� G(s

t

).

This formalization generalizes the re
ombination indu
ed by

mutation and one-point 
rossover, and regards GAs with �nite

populations as approximations to the ideal of simple geneti
 sear
h.

Vose and Liepins give a geometri
 interpretation of simple

geneti
 sear
h by regarding the operator G as a map G : S ! S,

where S is the set of points with nonnegative 
oordinates of the

unit sphere in R

N

, sin
e every equivalen
e 
lass of � has a member

of norm 1.

An initial population then 
orresponds to a point on S, iter-

ates of G are traje
tories on S and 
onvergen
e of the geneti


algorithm 
orresponds to a �xed point of G.

The general problem of �nding the �xed points of G was

not solved by Vose and Liepins. They did however study the

�xed points of F and M separately. Fixed points of F (sele
tion

alone) 
orrespond to populations that have 
ompletely 
onverged

to strings of equal �tness.

Only one 
lass of these �xed points is stable: the set of �xed

points 
orresponding to the maximally �t strings in the sear
h

spa
e. So, we 
an interpret F as being a fo
using operator that

moves the population towards a state in whi
h only the maximally

�t individuals of the initial population are present.

Vose and Liepins then investigate the set of �xed points of

M, M

�xed

. They prove a suÆ
ient 
ondition for a �xed point to

be an attra
tor:

Theorem 5.3. Let x 2M

�xed

. If the matrix M is positive, then

x is asymptoti
ally stable whenever the se
ond largest eigenvalue
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of M

�

is less than 1=2.

They also determine the group of symmetries of M

�xed

:

Theorem 5.4. For all j, and for every mixing matrix M ,

M(�

j

x) = �

j

M(x). In parti
ular, �

j

M

�xed

= M

�xed

, and

v = hN

�1=2

; : : : ; N

�1=2

i 2 M

�xed

.

This last theorem implies in parti
ular that the dynami
al

system on S 
orresponding to M looks the same at ea
h member

of the population. In other words, M is a di�using operator.

Based on these qualitative results they shed light on the

phenomenon of pun
tuated equilibria that typi
ally 
hara
terizes

geneti
 sear
h: relatively long periods of no improvement pun
-

tuated by qui
k rises in �tness. Intuitively they arise from the


ombination of the fo
using properties of F and the di�using prop-

erties of M. Periods spent near one of the unstable �xed points

of F 
orrespond to stasis and the periods of rapid improvement


an be a

ounted for by a movement (under the di�using for
e of

re
ombination) from the vi
inity of one �xed point to another.

In the 
ase of one-point 
rossover with mutation, Vose and

Liepins 
al
ulate the matrix M expli
itly. Its entries are equal to

m

i;j

=

(1� �)

`

2

(

�

jij

 

1� �+

�

`� 1

`�1

X

k=1

�

��

i;j;k

!

+ �

jjj

 

1� �+

�

`� 1

`�1

X

k=1

�

�

i;j;k

!)

;

where � is the 
rossover probability, � the mutation probability,

� = �=(1� �), jij is the number of 1's in the bit string represent-

ation of the integer i and

�

i;j;k

= j(2

k

� 1)
 ij � j(2

k

� 1)
 jj:

On the basis of several 
omputer runs 
al
ulating the spe
-

trum of M

�

, they �nd support for the following

Conje
ture. If 0 < � < 0:5, then
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1. The se
ond largest eigenvalue of M

�

is 1=2� �.

2. The third largest eigenvalue of M

�

is 2

�

1�

�

`�1

�

�

1

2

� �

�

2

.

This 
onje
ture was later proved by Koehler [K℄, who also

showed:

Theorem 5.5. The entire spe
trum of M

�

is given by

1

2

(1� 2�)

jij

�

1�

�wid(i)

`� 1

�

; i = 0; : : : ; 2

`

� 1;

where wid(i) is the di�eren
e in position of the last 1 bit and the

�rst 1 bit of i. If i has a single 1 bit or i = 0, then wid(i) = 0.

Theorems 5.3 and 5.5 imply that every �xed point of M is

an attra
tor when 0 < � < 0:5. Finally, Vose and Liepins also give

a plausible argument for v = hN

�1=2

; : : : ; N

�1=2

i (i.e. all possible

strings represented equally) to be the unique �xed point of M.

This still has to be proved though.

� � �

In Part II, whi
h will appear in the next issue of this Bul-

letin, we will dis
uss a �nite population model and statisti
al me
h-

ani
al approa
hes to modelling GAs.
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