Outline Solutions of the Problems for the 39th IMO

1. Choose a coordinate system so that AC and BD are the axes and the points A, B, C, D have coordinates (0, a), (b, 0), (0, c) and (d, 0), respectively. The equations of the perpendicular bisectors of AB and DC are

$$2bx - 2ay = b^2 - a^2$$
 and $2dx - 2cy = d^2 - c^2$,

respectively. The coordinates of P are obtained by solving these equations. So, P has coordinates (p,q), where

$$p = (a(d^2 - c^2) - c(b^2 - a^2))/2(ad - bc)$$

and

$$q = (b(d^2 - c^2) - d(b^2 - a^2))/2(ad - bc).$$

Since the triangles ABP and PCD have the same orientation, they have equal areas if and only if

$$-ab + bq + pa = pc - cd + dq,$$

using the formula for the area of a triangle in terms of the coordinates of its vertices. Using the expressions for p and q above, this condition reduces to

$$(ac - bd)((a - c)^{2} + (b - d)^{2}) = 0.$$

Since a and c have opposite signs, we see that the triangles ABP and PCD have the same area if and only if ac = bd. The last condition holds if and only if the triangles ABE and CDE are similar, where E is the point of intersection of AC and BD. It is clear that this last condition holds if and only if ABCD is a cyclic quadrilateral.

2. Consider one contestant. Suppose he receives a "pass" from r judges. Then he receives a "fail" from b-r judges. So, the

number of pairs of judges who agree for this contestant is

$$\binom{r}{2} + \binom{b-r}{2} = \frac{1}{2}(r^2 + (b-r)^2 - b)$$
$$\geq \frac{1}{2}(\frac{1}{2}(r+b-r)^2 - b) = \frac{1}{4}((b-1)^2 - 1).$$

Thus

$$\binom{r}{2} + \binom{b-r}{2} \ge \frac{1}{4}(b-1)^2.$$

Since there are $\binom{b}{2}$ pairs of judges and each pair agrees on at most k contestants, the total number of agreements is at most $k\binom{b}{2}$. Since there are a contestants, we get

$$k\binom{b}{2} \ge \frac{a}{4}(b-1)^2.$$

So, $kb \ge a(b-1)/2$ and the result follows.

3. (Solution by Arkady Slinko.) It is easy to see that d is a multiplicative function and that $d(p^r) = r + 1$ when p is a prime. So, if the prime factorization of n is $p_1^{r_1} \cdots p_m^{r_m}$, then

$$\frac{d(n^2)}{d(n)} = \frac{(2r_1+1)\cdots(2r_m+1)}{(r_1+1)\cdots(r_m+1)}.$$
 (*)

Let k be a positive integer of the form (*). Clearly, k is odd and, when n=1, we get k=1. We claim that every odd integer can be represented in the form (*). We prove this by induction. Suppose that all odd $k_0 < k$ are representable in the form (*). Let $k=2^sk_0-1$, where s and k_0 are positive integers and k_0 is odd. Since k_0 is representable, it suffices to prove that $(2^sk_0-1)/k_0$ can be represented in the form (*). Letting $m=(2^s-1)k_0$, we get

$$\frac{2^{s}k_{0}-1}{k_{0}} = \frac{2^{s}m-(2^{s}-1)}{m}$$
$$= \frac{2m-1}{m} \times \frac{4m-3}{2m-1} \times \dots \times \frac{2^{s}m-(2^{s}-1)}{2^{s-1}m-(2^{s-1}-1)},$$

a telescoping product of the form (*). The result follows.

4. Since

$$b(a^{2}b + a + b) - a(ab^{2} + b + 7) = b^{2} - 7a,$$

if $ab^2 + a + b$ is divisible by $ab^2 + b + 7$, then so is $b^2 - 7a$. Now $b^2 - 7a < ab^2 + b + 7$ and so, if $b^2 - 7a \ge 0$, we get $b^2 - 7a = 0$. Thus $(a,b) = (7t^2,7t)$, for some positive integer t. On the other hand, if $(a,b) = (7t^2,7t)$, for some positive integer t, then $ab^2 + b + 7 = 7(49t^4 + t + 1)$ divides $a^2b + a + b = 7t(49t^4 + t + 1)$.

 $7(49t^4+t+1)$ divides $a^2b+a+b=7t(49t^4+t+1)$. Suppose now that $b^2-7a<0$. Then ab^2+b+7 divides the positive integer $7a-b^2$. If $b\geq 3$, then $ab^2+b+7>9a$. Hence b=1 or b=2. If b=1, then a+8 divides 7a-1 and, since the multiple is at most 6, we get a=11 or a=49. It is easy to see that (a,b)=(11,1),(49,1) are solutions to the problem. Finally, if b=2, then 4a+9 divides 7a-4 and since the only possibility is 4a+9=7a-4, we do not get an integer value for a in this case.

So, the complete list of solutions is:

$$(11,1), (49,1), (7t^2,7t), \text{ for all } t \in \mathbb{N}.$$

5. (Solution by Andy Liu.) It is easy to see that

$$\angle RMB = \angle AML = \angle MKL = \angle BSK$$

and that

$$\angle RBM = \angle BMK = \angle BKM = \angle BSK.$$

So the triangles MRB and KBS are similar. Thus $BR \times BS = BK^2$. Since $\angle RBM = \angle SBK$ and IB bisects $\angle ABC$, the lines IB and RS are perpendicular. Thus

$$IR^{2} + IS^{2} = RB^{2} + BS^{2} + 2IB^{2}$$

> $RB^{2} + BS^{2} + 2BK^{2}$
= $RB^{2} + BS^{2} + 2RB \times BS = RS^{2}$

So, since $IR^2 + IS^2 > RS^2$, the angle RIS is acute.

6. Let $f(n^2(f(m)) = mf(n)^2$ for all m and n in \mathbb{N} . Let f(1) = a. Then

$$f(f(m)) = a^2 m$$
 and $f(an^2) = f(n)^2$

for all $m, n \in \mathbb{N}$. If f(r) = f(s), then $a^2r = f(f(r)) = f(f(s)) = a^2s$ and thus r = s, so that f is injective. Note that $f(a) = f(f(1)) = a^2$.

Now

$$(f(m)f(n))^{2} = f(m)^{2}f(n)^{2} = f(am^{2})f(n)^{2} = f(n^{2}f(f(am^{2})))$$
$$= f(a^{3}m^{2}n^{2}) = f(a(amn)^{2}) = f(amn)^{2}.$$

So, f(amn) = f(m)f(n). In particular, f(an) = af(n). Thus

$$af(mn) = f(m)f(n)$$
 for all $m, n \in \mathbb{N}$.

We claim that a divides f(m) for all positive integers m. For suppose that $a \neq 1$ and let p^k be the highest power of the prime p that divides a. Since $af(m^2) = f(m)^2$, p^r divides f(m) for all m, for some integer $r \geq k/2$. Consider the largest such r. Then p^{k+r} divides $f(m)^2$, for all $m \in \mathbb{N}$. So $k+r \leq 2r$. Thus $r \geq k$ and hence p^k divides f(m) for all m. Thus a divides f(m) for all m.

So, there exists a function $g: \mathbb{N} \to \mathbb{N}$ such that f(n) = ag(n) for all n. Now g(1) = 1 and $g(n^2g(m)) = mg(n)^2$ for all $m, n \in \mathbb{N}$. Since $g(1998) \leq f(1998)$, the least possible value of f(1998) for functions satisfying the given identity will be attained for a function f with f(1) = 1.

Thus, we need only consider functions $f: \mathbb{N} \to \mathbb{N}$ such that

$$f(1) = 1$$
 and $f(n^2 f(m)) = m f(n)^2$

for all $m, n \in \mathbb{N}$. Then f(mn) = f(m)f(n) and f(f(m)) = m for all positive integers m and n. Clearly, a function f with the last two properties also satisfies f(1) = 1 and $f(n^2f(m)) = mf(n)^2$ for all positive integers m and n. By the multiplicative property, once f(p) is determined for each prime p, then f will be completely determined. Let p be a prime and suppose that f(p) = ab for

Ō

certain $a, b \in \mathbb{N}$. Then p = f(f(p)) = f(ab) = f(a)f(b). We may suppose that f(a) = 1. Then since f(1) = 1, the injectivity of f implies that a = 1. Thus f(p) is a prime for all primes p and injectivity implies that f maps distinct primes to distinct primes. Since $1998 = 2 \times 3^3 \times 37$, to find a function satisfying the given conditions such that f(1998) is as small as possible, it is clear that letting

$$f(2) = 3$$
, $f(3) = 2$, $f(37) = 5$

and for each other prime p, f(p) equal any prime not already chosen, will produce the required function. Thus the minimal possible value for f(1998) is $3 \times 2^3 \times 5 = 120$.