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does not work! This is a far ery from starting with a neat, properly
formulated problem.

In my experience, formulation of the problem is possibly the
most important step during the complex process of solving an
industrial problem. A certain amount of basic physics is required,
and at the very least the ability to communicate with physicists
and engineers and ask them the right sorts of questions. Once
the basic physics has been captured, for example by writing down
a systemn of differential equations, physical insight is required to
make reasonable simplifications without losing the essence of the
problemn. Then a full non-dimensionalization should be carried out
leading (usually) to a reduction in the number of parameters in
the problem (via the Buckingham Pi theorem) and the possibility
for further simplification via asymptotic means by exploiting the
occurrence of small parameters. At this point, the system can
hopefully be analysed using asymptotic techniques or, if it is still
too complicated, it can be solved numerically. Having attained
solutions, the applied mathematician is certainly not yet finished.
The (non-dimensional) solutions must now be interpreted to see
what physical insight can be gained. Non-dimensional solutions
often contain a wealth of physical information, but this has to be
translated back into physics and suggestions made for improving
the industrial process under consideration.

To summarize, the applied mathematician’s approach to
industrial problems can be divided into four steps:

(i) formulation (physics to mathematics);

(ii) simplification, non-dimensionalization of mathematical prob-
lem;

(iii) analytical/numerical solution of mathematical problem;

(tv) interpretation (mathematics to physics).

Traditional applied mathematics courses have concentrated
on step (iii). Obviously a certain amount of physical intuition
is required, and one extremely useful way of developing students’
feel for physics is by including a physical fluid mechanics course at
undergraduate level. This has the advantage that it is a subject
rich in physical mechanisms (viscous effects, inertia terms, diffus-
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2. Problem description
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mentioned above exert a force proportional to the second or third
power of the particle radius R. All other factors remaining the
same, if we reduce the particle size then the forces of adhesion
as in equation (1) will eventually dominate the removal forces.
A cleansing technique which just succeeds for R = 1pm will fail
when R = 0.1pm. A new cleansing method is illustrated in fig.1.
The substrate to. be cleaned is immersed in water and as the dirt
particle passes through the liquid/air phase boundary, the surface
tension forces which originate at the contaet line around the sphere
can oppose the adhesion forces, given favourable wetting condi-
tions (contact angles) i.e. conditions which result in a favourable
removal force ag denoted by F,. The crucial factor is that the
capillary forces can be shown to be linear in R, so the method is
essentially independent of particle size because the adhesion forces
(1) which cause the particle to stick to the substrate are also linear
in R. In the next section we summarize some of the experimental

work done.

2.1. Experimental work ‘

Precise details of the experiments are to be found in {2} and [4]. In
summary, a number of silicon substrates were contaminated with
TiO, (rutile), a-Fez O3 (haematite) and SiOp (amorphous silica).
Where necessary, the contaminated substrates were silylated to
change the contact angles favourably. The substrates were then
passed slowly through an air/water interface. Before and after
immersion, the particles were sized and counted using an electron
microscope. In general 70% — 97% of the particles were removed,
given favourable wetting conditions. The method was equally suc-
cessful for particles as small as 0.1pym provided the immersion
velocity was in the range 1pm/sec to several cm/sec. Almost no
particles were removed for velocities of the order of 10 cm/sec or

higher.

3. Develeping a mathematical model

Experiment suggests the existence of a critical velocity above
which the removing process no longer works. We begin by rul-
ing out gravity forces and hydrostatic pressure as being of any
importance, since they will both be O(R?) or smaller and can
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easil igl
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where F,, represents the viscous forces, and it becomes clear that
the time for which the surface tension forces operate, and hence the
veloeity of flusd émmersion, is crucial to ensure that the separation
of the particle from the substrate is large enough, i.e. that the
area under the curve (representing the impulse delivered to the
particle} in fig.3 is as large as possible. We now propose a one
dimensional model for a particle moving away from a substrate.
Before we can proceed with formulating an equation of motion
for the particle, we must first obtain expressions for the different

forces acting.
3.1. Surface tension forces as a function of the time

The basic form of the surface tension forces is given by eqn (2)
with ¢ = ¢(t), the form of ¢ being as yet unknown. We consider
the situation occurring in fig.2 as the fluid level rises. The velocity
at which the undisturbed meniscus at oo rises is constant but will
not be the same as the rate of rise of the circle of contact on the
sphere. The former is given by: dhs/dt = V, where h,, is the
height of the water meniscus far from the particle (at oo}, t.e. the
globally observed height. We thus view the dynamic formation of
the meniscus as a series of quasi-steady state problems and seek
a relationship between the undisiurbed fluid meniscus height and
the position of the contact line on the sphere as indicated by the
angle ¢ or ¢q (see fig.2}).

We will not go into the details of solving this sub-problem
here (see for example [3]), but the shape of the fluid meniscus
is described by a non-linear ordinary differential equation and
on non-dimensionalizing and exploiting the occurrence of a small
parameter, € (~ 1073} which is the ratio between the particle
radius R and the capillary length a = (v/pg)/2, where p is liquid
density and g is gravitational acceleration, we obtain a solution
using matched asymptotic expansions and deduce the following
relationship between the physical height, h (see fig.2), and the

angle ¢ = (7/2 — ¢), defining the position of the circle of contact

as:

h=aeC(lne+In (COS $o + m) “lndta), ()




28 IMS Bulletin 33, 1994 x

Ex

where ¢ = cos(f + ¢y) cos %0, Y. being Euler’s constant. As A ig
known as a function of i, 80 too is @ or ¢g.

3.2. The viscous forces

As a particle starts 10 move away from the substrate {see fig.23,
We expect the occurrence of strong viscous forces Opposing the
Separation. In order to approximate this flow, we note that thig
so-called ‘squeeze Aow’ between the sphere and substrate may be
modelled using the lubrication approximation, ag the layer of Auid
Separating the two bodies is $0 thin. We again neglect the detajls
of this sub-problem. For the case in question where 5 <« R, it

was shown in [3] that the lubrication forces Opposing separation
are given hy:

portional to the velocity of removal. Beer drinkers wil] have exper-

lenced similar ‘squeeze flow’ phenomena while trying to lift thejr
glasses from g smooth wet table top!

4, Formulation, simpliﬁcation, solution and interpreta-
tion

4.1, Fermulation

Referring to fig.2 we consider force balance on 4 sphere moving
away from the substrate, the sphere being considered 2 particle.
Equilibrium occurs as resulg of g balancing of the inertial, sur-
face tension, viscous and adhesion (van der Waals) forces on the
particle. Then, considering eqns (1}, (2) (incorporating (6)) and
(6), we can formulate an initia] value problem non-dimensionalized
using the following scales:

. T « IV
z :_HT; t :7{, (7)

where z(t) is the separation between sphere and substrate. We

"-1
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thus formulate:

i) 1 dz* (8)

K3 = Gltx) = oy~ Mg

where G(tx) = sin [¢p(Rt™ [V)] sin [8 — ¢(Rt* /V)],
20, VEH A Y
K:T’ 6_H27127T’ ¥

i 1 num-
d p, is the density of the particie and Ca is theicszaé:);gg:gd o
be Jgph'le differentiation with respect to the time denoted
gei’ v:;slboundary conditions in dimensionless form
ot.

2(0) =1, &(0)=0, (9)
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d neglecting the O(K} terms (this gives a Bernoulli equation)
and neg
is easily shown to be:
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T 2(t*) = exp (:\Q—{I(t*) - I(O)])

where
4
1) = f G*(r) dr.
4.4. Interpretation
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i-aexl) (;I(t*)) /Ot* exp (H)%I(HO dp, "
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makes the rather crude assumption that the meniscus is axisym-
metric, in order to attain an estimate for the length of time for
which the fluid meniscus remains in contact with the sphere (fig.
1,80 =a=70° R=03um, p = 103%kgm s, 4 =1.510719],
p = 10%kgm™?), predicts a cut-off velocity of the order of 25¢cm/s.
Above this value the process should no longer work, although

‘experiment suggests that it is somewhat lower in the 10-15cm/s

range.

5. Discussion of the physical model

There are a number of factors in the physical process which pro-
duce uncertainties in the results, e.g. the Hamaker constant A4
and initial separation H (see (1)). The latter is taken here to
be Inm but Kim and Lawrence, [1], suggest that a more real-
istic value would be 0.6nm. A further possible source of error is
estimating when a particle is actually free from the substrate. As
the nature of the van der Waals forces is known to change for a
separation of 10nm, we arbitrarily assumed a particle to be free
when it reached this distance, which is ten times the initial separ-
ation. Nevertheless the approximate model derived here captures
the essential features of the experimental process, i.e. the signific-
ance of the viscous forces and the velocity dependent nature of the
mechanism. One dynamic factor missing from the model is the
variation of contact angle with substrate velocity for the simple
reason that no values of the dynamic contact angle for the case
considered in this paper are known, be it theoretically or exper-
imentally. Leenaars [2] assumes that the contact angle remains
constant.

The basic analysis identifies the capillary number as the most
significant dimensionless parameter and indicates that the critical
velocity of immersion can be increased by decreasing the ratio of
g/~ for the cleaning fluid. A further rather obvious improvement
is also indicated: the experimental process as shown in fig.1 has
the disadvantage that part of the removal power of the surface
tension forces is lost due to the effect of the inclination o. The
theoretical set-up in fig.2 removes this problem completely and |
results in a much higher theoretical critical velocity. In practice

~ this arrangement would be difficult to obtain when dealing with
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5- E
submicron particles. However, a more favourable arrangement
than fig.1 could be obtained by submerging the substrates at an
angle, thus striving for g set-up between the extremes of figs.]
and 2. This alsg has the advantage of speeding up the process
and of removing the uncertainty about the contact angle from the
analysis.
substrate
Fig. 2. Removal of particle from horizontal substrate.
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S.B. G, O’Brien, E The International Mathematical Olympiad (IMO) is the most
Centre for Industrial an ; prestigious mathematical competition in the world for pre-
University of Limerick : university students. Tt is held annually and the 1994 contest
Limerick. , L took place in Hong Kong in July. The number of countries and
: regions officially participating was 68. Each participating country
gent a team of up to six members. The competition consisted
of two four and a half-hour examinations, each exam made up
of three problems. Each student competed as an individual and

medals were awarded to the top performers.

IMO problems are celsbrated for their extreme level of dif-
ficulty and some of them can even defeat professional mathem-
aticians. It is no surprise, therefore, to find that a young stu-
dent stands little chance of success in the competition, without
a considerable amount of training. Some countries have a whole
series of mathematics competitions—one for each year of the school
programme-and in this way they can identify and encourage tal-
ented students from an early age. The f{irst task in the process of
choosing a team to represent Ireland in Hong Kong was to identify
suitable candidates for training. Because a certain basis of math-
ematical knowledge is required in order to benefit from the train-
ing programme, generally only students who have completed the
Junior Certificate are eligible. In November 1993 most seccndary
schools were invited to send up to three of their most mathemat-
ically talented pupils to attend training sessions in one of UCC,
UCD, UCG and the University of Limerick. From information
supplied by the Department of Education the top two hundred
performers in the 1993 Junior Certificate mathematics examina-
tion were also personally invited to attend. The training sessions
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