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Abstract: There have been only a few really positive resaliz cou-
ceyming the order structure of spaces of compact operaters on Banach
lattices, althcugh many related open guestions have been posed over
the years, Recent results by the authors show why this is so—those
few positive resuits describe virtually all that is trus!

1 Imtroduction.

We will consider linear operators between rea! Banach lattices.
A Banach lattice is & Banach space, E, which 5 alsc a vec-
tor lattice with the two structures related by the implication
i < |yl = =} < |ly|| for &ll z,y € E. If £ and # are Banach
lattices then we will be considering various subspaces of the spaces
£{E, F) of bounded linear operators, and K{E, F') of compact lin-
£ar operators.

If ¥ and F are Banach lattices then an cperatox T: B = F
ig termed positive if x > 0 = Tz > 0. The linear span of the
positive operators is the space of regular operators, denoted by
LT(E,F). Usually £7(E,F) is a proper subspace of L(E F).
When we order L7(E, F)} by defining § > T & § - T i3 posit-
ive, the space L7(E, F} is certainly made into 2 partially ordered
vector space, but is not, in general, a lattice. The most import-
ant case in which it is a lattice is when F is Dedekind complete,
i.e. when every non-empty set with an upper bound must have a
least upper bound (the corresponding assertion for lower bounds
follows automatically). In this case £L7(E, F) is itself a Dedekind
complete vector lattice. The basic results of the theories of Banach
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lattices and of positive operators may be found in [8], [29] or [37]
as well as in several other texts.

One reason for studying compact operators is that there
seemed, at least for some years, a good chance that the order
structure of, say, the compact regular operators might be rather
better than that of regular operators. There are of course other
reasons for their study. The work of Krengel that we describe
in the mext section had its origins in ergodic theory, whilst the
Dodds-Fremlin theorem has applications in theoretical physics
(see [11]}. A reasonable hope might have been that the compact
operators between two Banach lattices formed a lattice under
the operator order. This turns out not t¢ be true but slightly
lower expectations would still seem to be reasonable. These hopes
turned out to be forlorn in general. There are socme partial pos-
itive results, for the statements of which we need to give a few
definitions.

In this survey, we have concentrated solely on the order struc-
ture of spaces of compact operators. There are many other top-
ics in the theory of compact positive operators which lie off the
main direction chosen for this survey and ot which substantial
progress has been made in recent years. Topics that we could
have mentioned include results in {10], [13], [14], [17], [18], [21],
[35], [36] and [39] on factorizing compact positive operators; the
vast literature on the spectral theory of compact positive oper-
ators; a special and important part of the latter stemming from
the Andé-Krieger theorem and culminating in de Pagter’s proof,
in [33], that an irreducible compact positive operator has strictly
positive spectral radius and in further refinements obtained in [3};
and many other areas.

2. Some Banach lattice terminoclogy.

There are two special classes of Banach lattices that have been
studied almost as long as Banach lattices themselves. An AM-
space is a Banach lattice in which |z V y|| = ||z|| V {ly|| whenever
z,y > 0. It was shown in [23] and in [25] that each AM-space is
isometrically order isomorphic to a closed sublattice of some space
C{K) where K is a compact Hausdorff space. An Al-space is a
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Banach lattice in which ||z + y|| = ||z|| + |iy|| whenever z,y > 0.
Again it was shown in [22] that each AL-space is isometrically
order isomorphic to an L!(u)-space for some measure p.

The normed dual, F, of 2 Banach lattice £ may be naturally
ordered by defining f > ¢ & f(z) 2 g(z) for all 9 < z € E.
Under this order £’ is also a Banach lattice (and is even Dedekind
complete). The concepts of AM- and AL-spaces are mutually dual,
i.e, the dual of an AM-space is an AL-space whilst the dual of an
Al-space is an AM-space.

A subspace J of a Banach lattice FE is an ideal whenever
z € E,ye Jand |z| < |y imply that € J. A band is an ideal
with the extra property that if a subset of J has a supremum in
E then that supremum mugt actually Le in J.

A Banach lattice has an order continuous norm if every down-
ward directed family with infimmum equal to zero must converge in
norm to zero. An equivalent condition is thai the Banach lattice
be an ideal in its bidual. Banach lattices with an order continu-
ous norm are Dedekind complete. If 1 < p < oo then each space
LP{1} has an order continuous norm. Spaces C(K) have an order
continuous norm only if K is 2 finite set.

A Banach lattice is a K B-spoce {(=Kantorovich-Banach space)
if 11 has an order continusus norm, and every norie-bounded
upward directed set has a supremum. Varicus equivalences of
this are known. One is that the Banach lattice is wealkly sequen-
tially complete, another is that it be a band in iis bidual. Al
the spaces LP{u), for 1 < p < oo are KB-spaces. The space of
all mull-sequences, ¢g, with the suprerum norm and the pointwise
ordering, is an example of a Banach lattice which has an order
continuous norm but which is not a KB-space.

An atom in a Banach lattice is a non-zero positive element e
such that if 0 < z < e then x is a multiple of e. A Banach lattice
is atomic if for every 0 < = € E there is an atom e with ¢ < z.
L?(1) is atomic if and only if u is a discrete measure, whilst C(K)
is atomic precisely when A has a dense subset of isclated points.
Below, at some point we will meet the notion of atomic Banach
lattices with an order continuous norm. Archetypal examples are
£, for 1 < p < oo and cp.
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3. Krengel’s results.

There are several possible questions that one might ask about
the order structure of a subspace T of the space of bounded oper-
ators. We certainly want to know whether or not I is posit-
ively generated and whether or not it is a lattice. Furthermore
if T is a lattice, then we want to know whether or not the lat-
tice operations in T are also the corresponding lattice operations
in the space of all regular operators. In general we cannot talk
about T being a sublattice of the space of all regular operators
as the latter space need not be a lattice (unless, for example, the
range is Dedekind complete). There is no suitable terminology in
the literature describing this situation; so it seems reasonable to
extend the definition of sublattices as follows. If 7 is a partially

“ordered vector space and I a subspace of J then we say that

T is a (generalized) sublattice of J if T is a lattice and for each
z,y € I the supremum of x and ¥ calculated in 7 is also their
supremum in 7. In the case when .7 is a vector lattice this is the
usual definition of a sublattice. We will often omit the adjective
“ceneralized” unless it is necessary to emphasize that the ambient
space is not a lattice.

Using the properties of the compact subsets of C(K)-spaces,
Krengel, in [26], established the first positive result in this area
by proving the following.

Theorem 3.1. [Krengel] If E is an arbitrary Banach lattice and
F an arbitrary AM-space then K(E, F) is a generalized sublattice
of LT(E, F).

In particular this means that every compact operator taking
values in an AM-space does have a modulus (in £L7(E, ') and this
modulus is again compact. A simple duality argument establishes
a similar result if F is an AlL-space and F is a KB-space. Later
we shall see that this result can be improved somewhat.

In [27], Krengel gave two important examples, showing that
these results are certainly not true in general. Much work in this
area since then has been devoted to trying to rescue some remnant
of his earlier positive results for spaces different from AM-spaces.
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Example 2.2. [Krengel] There is a Dedekind complete Banach
iattice E and a corupact operator T on E such that |T| exists in
LT(E), but is not compact.

The crucial feature of the corresponding censtruction is as
follows. Consider a 2" x 2™ matrix with orthogonal rows and
with all entries being +1. If this matrix is regarded as an oper-
ator §, on 2"-dimensional Hilbert space, E,, then [|S,| = 2/2
whilst ||]Sn||| = 2™, The required example is produced by taking
a suitable weighted sum of the operators 3, acting on (3 Eﬂ)cﬂ,
the cg-sum of the spaces K., whose elements are sequences {x,,)
with z,, € E, and ||z,]] — 0. All the examples subsequently pro-
duced in this field are based on modifications of various degrees
of complexity of this construction.

This exammple shows already that even on Dedekind complete
Banach lattices, the compact operators do not form a sublattice
of the lattice of all regular operators. Although the operator T
in Example 3.2 is a regular operator, it is easy to verify that T
is not the difference of two compact positive operators, so that
the space of compact operators on E is not positively generated.
In fact a modification of the previous example shows that the
compact operators are not even a subspace of L7(E).

Example 3.3. [Krengel] There is a Dedekind complete Banach
lattice E and a compact operator T on E such that |T| does not
exist in LM{E).

Compact regular operators taking valies in a Dedekind com-
plete Banach lattice must have a modulus as all regular operat-
ors then do, so that the operator in Example 3.3 is not regular.
Krengel’s examples left open the possibility that for compact reg-
ular operators the condition of Dedekind completeness could be
. dropped. However, using Krengel’s basic finite-dimensional build-
ing blocks, we constructed in [6] an example to show that this also
was false. '

Example 3.4. [Abramovich & Wickstead] There is a Banach lat-
tice E and a compact regular operator T on E such that |T| does
not exist in L7{E).
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In the example that we constructed in [6] the operator T
is not the difference of two positive compact operators. This
led us to the believe that the correct space to study. was the
linear span of the positive compact operators rather than the
space of all compact operators. We denote the space of differ-
ences of positive compact operators from E into F by K" (E, F).
Thus, X™(E, F'} is a subspace of K(E,F)N L7(E,F). By either
locking at Krengel’s proof of Example 3.2 or using its statement
together with the Dodds-Fremlin theorem (Theorem 4.1 below),
one can see that even when ¥ is assumed to be Dedekind com-
plete K™(E, F) # K(E,F)n L™{E,F). Although this space X"
must surely be better behaved than, say, the space of compact
regular operators K(E, F)N LT(E, F), it does not behave all that
well. In [7] we, again using Krengel's basic building blocks, pro-
duced two more examples.

Example 3.5. [Abramovich & Wickstead] There is a Banach lat-
tice £ and T € K" (E) which does not have a modulus either in
K™(E) orin £7(F).

If E were Dedekind complete then operators in X" (E) must
certainly have a modulus in £7(E), however. ..

Example 3.6. [Abramovich & Wickstead] There is a Dedekind
complete Banach lattice E and T € KX"(E) which does not have a
modulus in KT™{E}. :

In particular the modulus of T, computed in £7(E) is not
compact.

There seems to be little left to conjecture as being true in
great generality. How much further can we extend Krengel's pos-
itive results? His proof of Theorem 3.1 actually establishes that
in that case KL(E, F) is a Banach lattice under the operator order
and the usual operator norm (there is another norm used in the
study of regular operators, but we have no need of it in this sur-
vey). There are few cases where this holds that Krengel did not
already deal with. The following theorem is due to Krengel [26],
Cartwright and Lotz [12], and Schwarz {38, Theorem 8.1}. A
simple proof of Schwarz’s contribution will appear in {42].
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Theorem 8.7. If E and F are Banach lattices then K(E, F) is
a Banach lattice under the operator order and norm if, and only
if, either E is an AL-space or F is an AM-space.

Certainly if either F is isomorphic to an AL-space or F is iso-
morphic to an AM-space then (E, F) is isomorphic to a Banach
lattice. However, there is no isomorphic version of Theorem 3.7.
As pointed out in [2], it follows from an example in [1] and The-
orem in [19] that the next result is true.

Example 3.8. There are Dedekind complete Banach lattices E
and F such that F is not isomorphic to an AL-space and F is not
isomorphic to an AM-space but K(E, F) coincides with K7 (E, F)
and is isomorphic to a Banach lattice.

4. The Dodds-Fremlin theorem and its consequences.

Apart from Krengel’s examples, little positive had been known
about the order structure of spaces of compact operators until
Dodds and Fremlin published their now celebrated theorem in
[15]. In retrospect it is clear that there are many antecedents of
this result in the literature, including [28], [31], [24, Theorem 5.10],
[34] and [37, Theorem 10.2], but at the time the result came to
most people as a complete surprise.

Theorem 4.1. [Dodds & Fremlin] If E and F are Banach lattices
such that both E' and F have order continuous norms, T : E — F
is a positive compact linear operator and S : E — F is a linear
operator such that 0 < S < T then S is compact.

We refer to the conclusion of this theorem as the compact
domination property. The Dodds-Fremlin condition (i.e. the con-
tinuity of norms in E' and F') is not the only one that guarantees
the compact domination property. The other two, found in [40},
are very strong conditions and the proofs of the compact domina-
tion property in these latter cases is rather simple. The conditions
are that E' (resp. F) be atomic and have an order continuous
norm. Some important, but easily deduced, consequences of the
compact domination property are the following:
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(@) If F is Dedekind complete {which is automatic if the
Dodds-Fremlin condition holds) then X7(E, F) is an {order) ideal
in L7(E, F) and therefore K™ (E, F) is a Dedekind complete vector
lattice. In particular if 5,7 : E — F are two positive compact
operators then SV T, which automatically exists in L7(E, F), is
compact and thus belongs to K™(E, F).

(@) If F is only assumed to be Dedekind ¢-complete then
K™(E, F) is a Dedekind o-complete vector lattice. The only reason
we cannot say that K"(E,F) is an ideal in £7{E, F} is that the
latter space need not be a lattice.

Even in as apparently nice a context as that of operators into
an AM-space, no analogue of the first conclusion in (o) is true,
i.e. KT(E, F) may easily fail to be Dedekind complete. To demon-
strate this let F be an AL-space and X be a compact Hausdorf
space. It has been known since (32] that C(X) is Dedekind com-
plete if and only if X is Stonean, i.e. the closure of every open
subset of X is again open. There is an isometric crder isomorph-
ism between K(E,C(X)) and C(X,E’). Since E' is a Dedekind
complete AM-space, it can be identified with a space C(Y') for
some compact Hausdorff Stonean spare Y. We may now identify
C(X,E") with C(X,C(Y)) and hence with C{X x ¥ for both
the norm and order structure. It follows from a well-known, but
unpublished, result of W. Rudin (see [16] for a short proof using
order theoretic notions) that X » ¥ is Stonean oniy when one
factor is finite and the other Stonean. Thus as long as beth E
and C(X) are infinite dimensional the space K{E, (X)) cannot
be Dedekind complete {or even Dedekind ¢-complete).

There is an obvious interest in sxtending these known condi-
tions which guarantee the compact domination property. At firsi
sight it looks plausible that there is a whole spectrum of conditions
that will do, with the two extremes being when either E or F' is
atomic with an order continucus norm, and the Dodds-Fremlin
theorem simply identifying an easily described case somewhere in
the middle of the range. Howevar, as recently shown in {41}, that
is not the case, and this makes the Dodds-Fremlin result all the
more remarkable
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Theorem 4.2. [Wickstead] The pair of Banach lattices E and
F' has the compact domination property if and only if one of the
following three non-exclusive conditions holds:

(2) Both E' and F have an order continuous norm:
(b) E’ is atomic and has an order continuous norm.
(c) F is atomic and has an order continuous norm.

It is similarly surprising that the compact domination prop-
erty is not just a simple sufficient condition for proving the two
consequences {a} and (8) mentioned above. The following two
results are proved in [42].

Theorem 4.3. [Wickstead] If £ and F are Banach lattices then
K"(E, F) is a Dedekind complete vector lattice if and only if the
pair (E, F') has the compact domination property and F is Dede
kind complete.

Theorem 4.4. [Wickstead] If E and F' are Banach lattices then
K™(E,F) is a Dedekind o-complete vector lattice if and only if
the pair (E,F) has the compact domination property and F is
Dedekind o-complete.

Notice now that the second conclusion in {«), that the
supremum of two positive compact operators exists and is com-
pact, is not an equivalence of the compact domination property.
For example, by Thecrem 3.1, this is aiso the case whenever #
is an AM-space. Moreover, in all previously known cases the
supremum of two positive compact operators was always com-
pact whenever it existed, in particular whenever F was Dedekind
complete. This led C. D. Aliprantis and O. Burkinshaw to ask for
a counterexample to or a proof of this phenomenon. The ques-
tion was posed by them at a Riesz Spaces and Operator Theory
meeting at Oberwoifach in 1982, and reiterated in [20, Problem
6]. Unfortunately, the answer is negative; namely the examples
in [6] show the following:

Example 4.5. [Abramovich & Wickstead] There is a Dede-
kind complete Banach lattice E and compact positive operators
S.T: E — E such that Sv T Is not compact.
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Example 4.6. [Abramovich & Wickstead] There are Banach lat-
tices & and F and compact positive operators 5,7 : E — F such
that SV T does not exist in K™{E, F).

Before leaving this ssction we should mention, although the
results are not directly related te the study of the order struc-
ture of spaces of compact operators, the extensions of the Dodds-
Fremlin theorem proved by C. I Aliprantis and Q. Burkinshaw,
in their remarkable work [8]. They managed to find some “hid-
den” compactness in positive cperators dominated by a compact
positive operator by proving the following theorem.

Theorem 4.7. [Aliprantis & Burkinshaw] Let 0 £ £ £ T be two
positive operators on a Banach lattice £ and assume that T is
compact. Then operator 8° is compact, If either & or B has
order continuous norm, then 5% is compac.

This theorem has many applications, of which the most inter-
esting are in connection with the spectral properties of positive
operators [3], [33] and with the invariant subspace problem for
positive operators [4], [5]. For some applications in connection
with positive semigroups we refer 4o [30] and references therein.

5. What is left to prove?

Although many conjectures have now been disposed of, there do
remain some open questions in this area. We have character-
ized the cases in which X"{F, ¥} is either a Dedekind complete
or Dedekind o-complete vector lattice. There is still no answer
known to:

Question 5.1. For what pairs of Banach Iattices F and F s
KT(E,F) a vector lattice?

The answer will certainly not be that the palr satisly the
compact domination properiy, since the conclusion alse holds
whenever F' is an AM-space or F is an Al-space. On the other
hand Example 4.6 shows that X" (E, F'} may fail to be a vector
lattice. In all the cases that we do hawe a lattice, K"(E, F)
is a generalized sublattice of L7(E, F). - Possibly the following
question might be rather more tractable.




42 IMS Bulletin 32, 1994 b

Question 5.2. For what pairs of Banach lattices E and F is
K7(E, F) a generalized sublattice of LT(E, F)?

However both of these questions seem rather difficult at pre-

sent. Perhaps the best that we might hope for will be an answer
to:

Question 5.3. If C"(E, F) is a vector lattice, must it be a gen-
eralized sublattice of L™(E, F)7

If it is so difficult for spaces of compact operators to have
& lattice structure, is there some useful weaker order theoretic
structure that we can look for? The Riesz separation property
states that if x5,z < 2,2z, then there is y with z;,z; < y <
#1,%g. This condition is (slightly) weaker than that of being a
lattice but has some important consequences. For example it,
together with a fairly natural condition relating the norm and
order, are equivalent $o the dual of an ordered normed space being
a Banach lattice under the dual ordering. In [43] the second author
showed that it is possible to find Banach latiices F and F such
that L7(E, F) has-the Riesz separation property, but is not &
lattice. It is also possible to choose E and F such that £7(E, F)
does not have the Riesz separation property. The proofs used in
[43] do not answer the corresponding questions for X" (E, F), so

these questions remain open. It is probably too much to expect
an answer to:

Question 5.4. For what pairs of Banach Iattices E and F does
K7(E, F) have the Riesz separation property?

But we would certainly hope for answers to the next two

questions. In particular we feel that the answer to Question 5.6
is almost certainly positive,

Cuestion 5.5. Are there Banach lattices E and F such that
K"(E,F) has the Riesz separation property, but is not a lattice?

Question 5.8. Are there Banach lattices E and F such that
KT(E, F) does not have the Riesz separation property?
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