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NOTES ON APPLYING
FOR I.M.5. MEMBERSHIP

1. The Trish Mathematical Society has reciprocity agreements

with the American Mathematical Society and the Irish Math-
ematics Teachers Association.

. The current subscription fees are given below.

Institutional member R£50.00
Ordinary member ®R£10.00
Student member RL4.00
ILM.T.A. reciprocity member RL5.00

The subscription fees listed above should be paid in Irish
pounds (puint) by means of a cheque drawn on a bank in
the Irish Republic, a Furocheque, or an international money-
order. -

. The subscription fee for ordinary membership can also be

paid in a currency other than Irish pounds using a cheque
drawn on a foreign bank according to the following schedule:

¥ paid in United States currency then the subscription fee is
US$18.00.

If paid in sterling then the subscription fee is £10.00 stg.

If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$18.00.

The amounts given in the table above have been set for the
current year to allow for bank charges and possible changes
in exchange rates.

. Any member with a bank account in the Irish Republic may

pay his or her subscription by a bank standing order using
the form supplied by the Society.

. The subscription fee for reciprocity membership by members

of the American Mathematical Society is US$10.00.

it




. Subscriptions normaliy fall due on 1 February each year.

. Cheques should be made payable to the Irish Mathematical
Society. If a Eurocheque is used then the card number should
be written on the back of the cheque.

. Any application for membership must be presented to the
Committee of the LM.S. before it can be accepted. This
Committee meets twice each year.

. Please send the completed application form with one year's
subscription fee to

The Treasurer, I.IM.S.
Department of Physics

Regional Technical Cellege, Cork
aiso University College, Cork
Ireland
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MAURICE KENNEDY
Obituary

It was with great regret that the Irish mathematical community
learned of the death, following a long, serious illness, of Professor
Maurice Kennedy on 15 January 1994. He had retired, on grounds
of ill-health, from University College Dublin in 1983. At the time
of his retirement he held the offices of Registrar and Associate
Professor of Mathematics. He is survived by his brother and his
sister.

Maurice Kennedy was born in Dublin in 1924, the son of
a distinguished figure of the early days of the new Irish State,
Dr Henry Kennedy {(an active member of the cooperative move-
ment). Maurice received his secondary education at Belvedere
College and he won an Entrance Scholarship to University College
Dublin in 1942. He spent his first year studying engineering, but
switched to Mathematical Science in his second year, graduating
with a first class honours B.Sc. in 1945. He gained his M.Sc. in
1946 and was appointed an assistant in the departments of math-
ematics and mathematical physics in 1847, In 1951 he went to the
California Institute of Technology on a Smith-Mundt Scholarship.
Although he used frequently bemoan the inadequacy of his math-
ematical background as a preparation for graduate study, he com-
pleted his Ph.D. degree under Samnel Karlin in three years with a
thesis entitled Ergodic theorems for a certain class of Markov pro-
cesses. These results were later published in the Pacific Journal of
Mathematics {3]. Maurice returned to Ireland in 1954 and took up
an appointment as an assistant lecturer in mathematics in UCD.
Apart from a sabbatical year in Stanford university in 195859 he
spent the rest of his academic life in University College Dublin,
becoming College Lecturer in 1959, Associate Professor in 1966
and Registrar in 1974.
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When Maurice was a graduate student at Caltech he did work
related to the famous Bateman Manuscript Project. Harry Bate-
man had been a professor of mathematics there and, at the time
of his death in 1946, had been working on a large project to give
an up-to-date account of the properties of the special functions
of mathematical physics. The results of his work were contained
on a card index file occupying some dozens of shoe boxes. Arthur
Erdélyi had been appointed to a professorship at Caltech with the
specific task of completing the Bateman project. The results of
sl this work appeared as Higher Transcendental Functions (three
volumes) and Tables of Integral Transforms (two volumes) and
were published by McGraw-Hill, beginning in 1953. The work
that Maurice did in this connection was done as part of his duties
as a research assistant and was published in [1, 2]. Inspired by
his year in Stanford, where he again met Samuel Karlin, Maurice
published a second paper on stochastic processes [4]

Professor Kennedy was an outstanding teacher and was par-
ticularly inspiring to weaker students. His presentations were
meticulous in every detail. He pioneered the teaching of measure
theory, functional analysis and stochastic processes at UCD. At a
different level he was involved in giving courses to school teachers
to help them implement changes in the school curriculum [5]. In
the early 70s he organized a memorable series of seminars based on
the book Geometry of Quantum Theory (vol. 1) by V. 8. Varada-
rajan {Van Nostrand, 1970). His idea was to get a topic which
would contain mathematics that would appeal to the widest pos-
sible audience. As well as lecturing himself, he always summed up
and commented on the lectures of the other speakers. In his later
vears at UCD he took a very great interest in general topology
and foundations of analysis and produced some results in these
areas which were never published.

Maurice Kennedy became very active in all aspects of College
life. He-had very deeply held views on the nature of the university,
he had very high standards and he argued his views at all levels of
the College, from Arts Faculty to Governing Body. He was deeply
suspicious of the academic value of a number of the newer discip-
lines. Since 1972 he was a member of the Senate of the National
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University of Ireland and served on its Standing Committee and
Board of Studies. From 1978 to 1980 he acted as executive sec-
retary of the Committee of Heads of Irish Universities and rep-
resented the Committee at meetings in Brussels, Strasbourg and
Helsinki. Almost all his waking hours were devoted to the work
of UCD. However, he did have an abiding interest in Irish polit-
ics, as befitted someone who came from a famnily that was heavily
involved in political life in the early days of the State. His cne
recreation was grand opera and he never missed the opportunity
to attend a performance if he was visiting a major European city.

What distinguished Maurice Kennedy’s participation in aca-
demic life was his deep understanding of the nature of the uni-
versity as an academic institution. Even those who disagreed
with him respected the dedication and integrity with which he
defended and promoted academic ideals and values. No matter
whotn he was dealing with he never compromised his values for
any short-term gain.

Publications

1. (With A. Erdélyi and J. L. McGregor) Parabolic cylinder func-
tions of large order, J. Rational Mech. Anal.3, 459-485 (1954).

2. (With A. Erdélyi and J. L. McGregor) Asymptotic forms of
Coulomb wave functions I, Tech. Report 4, Department of Math-
ematics, California Institute of Technology, Pasadena, 1955, 29pp.

3. A convergence theorem for a certain class of Markov processes,
Pacific J. Math. 7(1957), 1107-1124.

4. A stochastic process associated with the ultraspherical polyno-
mials, Proc. Roy. Irish Acad., Sect. A, 61{1961), 89-1G0.

5. (With R. Ingram, S. O’Brien and J. R. Timoney) Mathemat-
ics for Teachers, Department of Mathematics, University College
Dublin, 1963.




Minutes of the Meeting
of the Irish Mathematical Society

Ordinary Meeting
21st December 1993

The Trish Mathematical Society held an ordinary meeting at 12.15
pm on Tuesday 2ist December 1993 at the DIAS, 10 Burlington
Road. 15 members were present. The president, B. Goldsmith,
was in the chair.

1. The minutes of the meeting of 8th April 1993 were approved
and signed.

2. There were no matters arising.

3. The following correspondence was received:

(i} A lstter from the Mathematics Fund For Bosnia-Hercegovina
asking for financial contributions from societies and individuals.
It was decided that the IMS should not contribute.

(ii) A circular from 1. Halperin about the Campaign For Human
Rights - An End To Apartheid (South Africa).

(iti) Two letters regarding the Bulletin and two letters regarding
the new draft constitution (see below).

4. Bulletin

The Committee has received and accepted a letter of resignation
from the editor, J. Ward. The President thanked him for his
services. R. Gow has been appointed as the new editor.

The current issue of the Bulletin has been distributed to most
individual members of the Society, but 100 more copies need to
be printed to cover institutional members and journal exchanges.
These will be printed in Bolton Street.

The Committee has decided not to use the Eolas printers in
future. P. Mellon had obtained a quote of £690 for printing 400
copies of the Bulletin by O’Brien Printing Ltd, but that company
is now defunct. G. Lessells has obtained a quote of £1 per copy
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for a similar sized batch from the University of Limerick print-
ers. G. Lessells and E. Gath will be responsible for printing and
distributing of the next issue of the Bulletin,

It was remarked that the Bulletin is the most important func-
tion of the Society, and that once it is running smoothly the Soci-
ety should be able to increase its annual membership fees.

Members who are currently refereeing articles for the Bulletin
are urged to send their reports to R. Gow as soon as possible.

5. IMS Constitution

A new draft constitution and draft rules have been circulated to
members with the last issue of the Bulletin. . Tipple proposed
that the meeting adopt these. This was seconded by M. O Searcéid
and unanimously accepted by the meeting. D. Tipple then pro-
posed certain amendments to the new constitution and rules. The
amendments were seconded by M. O Searcéid and unanimously
accepted by the meeting.

6. European Mathematical Society

B. Goldsmith has been invited to join the EMS subcommitiee on
mathematics for developing countries. S. Dineen announced that
there will be a meeting of the EMS next August in Ziirich.

7. Treasurer’s business

The treasurer reported that the Society has arcund 240 members
and that the annual fee is £10 (or $10 for reciprocity members).
Eolas support has diminished over the years, and will possibly be
nonexistent next year. The income for next year may therefore
be as low as £2400. The Society currently has around £1800 in
the bank. In view of this unhealthy financial situation it will be
necessary to reduce the Society’s support for conferences in the
immediate future. He reiterated the suggestion that, once the
Bulletin is running smoothly, membership fees may need to be
raised. '

The President thanked the treasurer for his hard work over
the last four years.
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8. Elections
The following were elected, unopposed, to the Committee (Re-
election to the Committee is denoted by »):

Committee member Proposed Seconded

P. Mellon* {Secretary)  R. Timoney M. O Searcéid
M. Vandyck (Treasurer) D. Hurley J. Pulé

E. Gath* J. Pulé . Lessells

R. Gow M. O Searcdid D. Tipple

C. Nash M. O Searcéid P. Mellon

R. Timoney* B. Goldsmith 5. Dineen

The following have one more year of office: B. Goldsmith (Pres-
ident), D. Hurley (Vice-President), G. Lessells, B. McCann,
M. O Searcéid, J. Pulé.

The Committee is to co-opt cne member from UCG.

The following bave left the Committee: G. Ellis, D. Tipple

The President thanked the out-going Secretary for his services
over the last four years.

9. September meeting 7
8. Dineen and S. Gardiner are orgamzing the 1994 annual meeting
at UCD for 5th and 6th September. It will be followed by a
three day conference on polynomials and holomorphic functions.
Accommodation will be available on the UCD campus at £13.50
per night.

The 1995 annual meeting will be held at the University of
Limerick.

10. There was no other business.

The meeting closed at 1.00 pm.

Graham Ellis
University College
Galway -

A VIEWPOINT ON MINIMALITY IN TOPOLOGY

P. T. Matthews and T. B. M. McMaster

Introduction.

Given a family F of topological spaces whose point-sets all have
the same cardinality, and a particular space X in F, what should
we mean by saying that X is mintmal in F, and what use can be
made of such a concept?

Well, it depends both on the nature of the family and, crit-
ically, on the ordering relation between the spaces which belong
to it. If for example we take F as a collection of spaces all hav-
ing the same underlying point-set S, and order them by refine-
ment of topology (writing {5,m1) < (9,72) if and only if every
T1-0pen set is T2-open) then we are looking at part of the lat-
tice of topologies on 5. Here the interpretation of minimality is
entirely unambiguous and straightforward: (S, 7) is minimal in F
if, whenever (S,7') < (8,7) and (S,7') € F, then 7 = 7. The
techniques required, however, to access minimal objects in this
context can on occasions be extremely complex and subtle (see,
for instance, Larson [3], Johnston and McCartan [5,6], McClus-
key [10], McCluskey and McCartan [11,12,13]} and the resulting
insights correspondingly deep: indeed, as has been persuasively
argued, “In seeking to identify those [topologies on §] which min-
imally satisfy an invariant property, we are, in a very real sense,
examining the topological essence of the invariant” [11].

Nevertheless there are aspects of general topology for which
this approach to minimality is not appropriate. It is often the
correct practice {especially when the discussion is in any sense
categorical) to co-identify spaces which are homeomorphic to one

7
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another, in effect working with the homeomorphism classes in pref-
erence to the multitude of examples within each class. This device
is not readily compatible with ‘refinement of topology’ since it
is eagy to exhibit on any infinite set two homeomorphic topolo-
gies one of which is strictly finer than the cther, and in any case
the ‘same underlying point-set’ phrase is rendered meaningless
by focussing on classes. A different ordering relation is therefore
needed here, and the one most readily available is that of ‘embed-
dability as a subspace’, the binary relation sub defined by X sub
Y iff X is homeomorphic to a subspace of Y. This has several
desirable features, such as respecting homeomorphic equivalence,
relating nicely to hereditary classes of spaces, and being reflexive
and transitive. But it is not antisymmetric (the open and closed
intervals (0,1) and [0,1] are by no means the same space, yet (0,1)
sub [0,1] and [0,1] sub (0,1) are both true) and herein lies the dif-
ficulty: how can we assign a meaning to minimality of elements in
a set which is not paertially ordered but only quasi-ordered? And,
of course, why should we bother to do so? ‘

This note considers two suggestions for answering the first
question. One is effectively that adopted in Ginsburg and Sands’
paper [2] and in the unresolved “Toronto problem’ which is asso-
ciated with it. We use the other to establish a proposition, previ-
ously unnoticed so far as we have been able to determine, about
that best-known of all topological spaces, the real line; it will then
be seen to play a key role in characterizing the circumstances in
which Bankston'’s ‘Anti-’ operation [1] exhibits a certain beha-
viour. Hopefully these findings will be perceived as a partial
answer to the second question above!

We thank the referee for helpful and perceptive criticisms of
this article.

Strong and weak quasi-minimality.

Take an infinite cardinal &, T (a) to denote the family of all topo-
" logical spaces on « points, F a subfamily of 7{«), X a member of
F and sub as described in the Introduction. Let us agree to call
X strongly quasi-minimal in F if

Y sub XY € F imply Y homeomorphic to X,

x| Minimality in topology 9

and weakly quesi-minimal in F if
Y sub X, Y € Fimply X sub Y.

The abbreviations sqgm and wgm will be employed, and the fol-

lowing remarks are immediate:

Proposition.

(i} sgm in F implies wgm in F (for any F).

(ii) The converse is not always valid (consider the two-space
counterezample
F = {(0,1),{0,1}}).

(i#) Tn any F which is partially ordered by sub {after identification
of homeomorphic spaces) the sgm, wgm end minimal elements
coincide.

Of particular interest for our applications is the case F =

T (a), so we shall compactify our notation further and write ‘X is

.sqgm’ (or wgm) rather than ‘X is sqm in 7{a)’ (or wqm in 7(c)).

So an sqm space is homeomorphic to each of its equicardinal sub-
spaces, a wgm space is embeddable into each of its equicardinal

_ subspaces. What do these spaces look like?

Well, in the case @ = No Ginsburg and Sands give a complete
and remarkably tidy answer {2]. They observe that on the set of
positive integers the discrete, trivial, cofinite, initial-segment and
final-segment topologies give sqm spaces, and they demonstrate
that every infinite space contains a copy of one or more of these
five (let us call them GS spaces).

Theorem (Ginsburg and Sands).
(i) In T(¥o) the sqm and the wgm spaces are precisely the five
GS spaces.
(ii) T(Xo) is “supported” by its wqm.members, in the sense that
for each X in T(Rg) there is some wgm Y in T(Ro) such that
Y sub X. .

Corollary. In the class T, N T(¥o) of denumerable Hausdorff
spaces, only the discrete space is sqm {or wgm) and this space on
its oun supports To N T(Mp).

At present it is far from clear what happens to these results
when Ny is replaced by a larger cardinal. Certainly not every
uncountable Hausdorff space contains a discrete equicardinal sub-
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space, so for part (ii) of the theorem to be generalizable to ¥,
or beyond we should require uncountable non-discrete Hausdorfl
sqm spaces; the Toronto problem [14, p.15] asks whether such
objects exist, and it has yet to be answered. Cur contribution to
the debate is to observe that if they do exist, then there are “not
enough of them to support their colleagues” in the above sense,
even if we relax sqm to wgm. More precisely, we show (subject to
set-theoretic assumptions) that for some uncountable cardinals «,

(a) the wqm spaces in T{a) do not support 7 {(a),

(b) the wqm spaces in T2 N 7 (a) do not support Ty N T {«),

(¢) any subfamily of 7(a) which does support the entire

family must have fairly large cardinality.

The proof, embodied largely in the following three lemmas, con-
sists of a transfinite-induction construction combined with a vari-
ant of a standard argument relating the weight of a space to the
number of its autohomeomorphisms.

Lemma A. Let o be a regular cardinal, X a set of cardinality
a, and {Sg : § < «} a family of a subsets of X each having
o elements. Then there is an a-element subset T of X which
contains none of the sets Sg.

Proof: Suppose for convenlence that X is a. We define a
strictly increasing transfinite sequence {zz, < a) in such a way
that 25 € S and zg > (z4)' for each 3, the “dash” indicating
successor in «. Initialize by choosing
zo= the least element of 5g.
Now assuming (for typical non-zero 8 < «) that the z, for v < 3
have been chosen in accordance with the desired criteria, we note
that the set {x. : v < B} has smaller cardinality than a and must
therefore be bounded above in (regular) o. Select an upper bound
u for it, notice that Sg cannot be bounded in o, and choose
15= the least element of Sy strictly greater than u'.
Now that induction guarantees the existence of the required
(zg, B < @), we observe that the set of successors of its terms
, T={z:3<a}
includes none of the z, and thus contains none of the 3.

& Minimality in topology 11

Lemma B. Suppose that for cardinals o and 3 we have
o <27 and

~v < B implies 27 < 3.

Then there is a Hausdorff topology on a set of cardinality o in
which every subspace has a dense subset of cardinality 3 or less.

Proof: We first consider the power set P{3) of 3. For each
v < f and each subset & of v put

[v,G}={H € P(8) : HNy=G}.
Whenever 1, < 72 in 3 we see that

[v1,G11N [, Ga] = {E{’,W,Gz] ftli?rgg; “

and it follows that B = {[y,G] : v < 8,G € 7} is a base for a
topeclogy T on P(73). Given distinct elements 4, B of P(3) it will
always be possible to find v < 3 such that v belongs to exactly
cne of A and B; then [, ANy} and [v/, BN~'] are disjoint 7-open
neighbourhoods of A and B, so t is Hausdorfl. The cardinality
of Bis Y. 27 which, under the stated supposition, is 5. Every

r<8

subspace of P(3) therefore has a base (and consequently a dense
subset) with at most 3 members. Now any set of cardinality o
can be injected into P(3) to inherit a topology with the same
property.

Lemma C. Suppose that X is a Hausdorff space of regular car-
dinality o whose subspaces all have dense subsets of 3 or fewer -
points, and that o = «. Let there be given a family {S, : v < a}
of o subsets of X each possessing « elements. Then every a-
element subspace Y of X has an a-element subspace into which
none of the S, can be homeomorphically embedded.

Proof: Fix Y. For each v < ¢, any homeomorphism £ from
S, onto a subset of ¥ is completely determined by its values on
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a dense subset of S,; since this subset may be taken to comprise
no more than 3 elements, there cannot be more than of = o of
these homeomorphisms, for which reasen the number of subsets
of ¥ that are homeomorphic to any of the various 5, is at most
o o = 0. Lemma A now assures us that ¥ has an a-element
subset containing no homeomorph of any S,

Notice that if we put 5§, = ¥ for every v < v in Lemma C, it
tells us that ¥ is not wgm. Consider now the following composite
assertion Qmin{a) concerning an uncountable cardinal o

(a) neither T(a) nor T3 N T(a) is supported by its wgm

members, and

(b) any subfamily of T (a) or of ToN7 (@) which does support

the whole

family moust have more than o members . ... [Qmin(a)]
Our three lemmas now permit us to probe the relationship
hetween set-theoretic axioms and the values of & for which this is
a valid conclusion, thus:

Theorem.
(i) The assumption R° = R; gives us Qmin(¥,).

(ii) If ¢ = 2" is regular [note: this is a consequence of Martin’s
Axiom (M A), see [4, p.284]] then we get Qmin(c).

(iii) The continuum hypothesis CH (2% = R;) implies Qmin(¥;).

(iv) If the generalized continuum hypothesis GCH (2% is the suc-
cessor of o for each a > Rp) is assumed, we get Qmin{«) for
every successor cardinal o.

Preof: Both (i) and (ii) follow directly from Lemma C without
recourse to Lemma B, since the real line (or an ¥;-element subset
of it) will suffice for the space X, choosing 3 = ¥g. (iii) follows
immediately from (ii). If we assume GCH, then every successor
cardinal « is of the form 27 (where 3 is its immediate predecessor)
and Lemma B supplies the Hausdorff space needed by Lemma C;
also o = (2°)P = @ to complete the evidence for (iv).

Corollary (to Lemma C). CH (or M A) implies that the real
line contains no Toronto space (sgm uncountable non-discrete
Hausdorff space).

& Minimality in topology 13

Application to Bankston’s “Anti-”.

Paul Bankston [1} developed a procedure, based on the connec-
ted/totally disconnected relationship, for converting any given
topological invariant P into another, “anti-P”: a space X is anti-
P when the only subspaces Y of X that are P are those for which
every topology on a set of ¥’s cardinality is P. A comprehensive
survey of this topic up to 1989 will be found in an earlier issue of
this Bulletin [7], to which we refer the reader for details.
Suppose now that P is a given hereditary (non-universal)
property and that Ap denotes the smallest cardinality of the non-
P spaces. Matier and McMaster have identified the circumstances
in which there is a hereditary invariant @ satisfying anti-@2 = P (a
hereditary pre-anti for P) [8,9] and in the case Ap = No they use

‘the Ginsburg and Sands theorem to identify amongst these prop-

erties @ one which is logically strongest. The question they leave
unresolved, of whether it is possible to do this also when Ap > Ng,
will now be shown to depend on the existence of ‘enough’ wgm
spaces of cardinality Ap. i

Let us first examine the special case in which no space of
cardinality Ap or more is P. Topologically this is of extreme tri-
viality, since P then is the property of having fewer than Ap points
(such an invariant has been referred to as cardinaily decisive!) but
it turns out to provide an adequate illustration of techniques and
results so far obtained.

Lemma 3. When P is cardinally decisive, then (} is a hereditary
pre-anti for P if and ouly if '
{i) @ is hereditary,
(i) Ag = Ap,
(iii) T(Ap) is supported by @ N T(Ap).

Proof: Almost immediate from the definitions.

Proposition. A cardinally decisive property P possesses a
strongest hereditary pre-anti if and only if T(Ap) is supported by
its wgm members.

Procf: Supposing that 7(Ap) is so supported, we define S
to comprise all spaces on fewer than Ap points together with all
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wqm spaces on exactly Ap points. Using Lemma D, this is easily
checked to be one of the hereditary pre-antis for P. If @ is any of
the latter properties and X is wgm in T{Ap) then ¥ sub X for
some @ space Y in 7 (Ap), and consequently X sub Y also, which
shows X to be Q; hence every S space is @, s¢ 5 is indeed the
strongest such invariant.

Conversely, suppose that there is a space X in T{Ap) none
of whose equicardinal subspaces is wqm. Given any hereditary
pre-anti @ for P, there must be a space ¥ in QN7 {Ap) such that
Y sub X, and since ¥ is not wgm we can find Z in T(Ap) with
Z sub Y but not (Y sub Z}. We define:

Q" ={T €Q: not (Y subT)}.

Another appeal to Lemma D readily shows Q" to be a hereditary
pre-anti for P which, since it excludes the @ space Y, is strictly
stronger than . We conclude that no strongest hereditary pre-
anti for P can exist.

Corollary.

(i) [9] The strongest hereditary pre-anti for the class of finite
spaces comprises the five GS spaces together with all the finite
spaces.

(ii) Assuming CH, the class of countable spaces has no strongest
hereditary pre-anti. :

(iii) Assuming GCH, for each successor cardinal o the class of
spaces having cardinalities less than o has no strongest hered-
itary pre-anti.

No very radical transformation of the argument above is
needed to generalize from the cardinally decisive case to that in
which some P spaces have Ap or more elements. We obtain the
following conclusions:

Lemma BE.
(i} A wqm space of cardinality Ap is anti-P if and only if it is
non-P. :
(ii) If X sub Y where Y is wqm and X has the same cardinality
as Y, then X is wgm.

{1l
[2]
3]
4l
(5]
f6]
[7]
(8]
[9]

=
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Theorem. Let P be a topological invariant which possesses
hereditary pre-antis. There exisis a strongest hereditary pre-anti
for P if and only if the class of non-F spaces in 7 (Ap) is suppor-
ted by its wqgm members. When it exists, it consists of the wgm
non-P spaces of cardinality Ap together with all spaces of smaller
cardinality.

Amongst the questions so far unresolved in our investigations
of this tepic, the following appear to be most pressing:
Problem 1. Find a wqm space which is not sqm. More generally,
for which values of o are wqm and sqm in 7(2) equivalent?
Problem 2. Will any reasonable set-theoretic assumptions enable
us to prove or disprove @min{a) where « is an uncountable Emit
cardinal?
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EPIMORPHISMS ACTING ON BURNSIDE
Des MacHale and Robert Sheehy

The Burnside group B(r, n) is the group of exponent n, generated
by r elements z;, ¥2, . .., Z.. It is well known that B(r, n) is finite
for n = 2, 3, 4 and 6 for all r but that for n > 865 and n odd,
B(r,n) is infinite when r > 1. In addition, it has recently been
shown that for n > 248, B(r,n) is infinite for r > 1, [1].

Let B be the set of all positive integers n for which B{r,n}
is finite for all v. Since the relation ¢® = 1 can be written as
g™t = g = (¢)] where T is the identity antomorphism, we ask
the following question.

Suppose & is a finitely generated group and the map o given
by go = g* for all g € G and a fixed positive integer &, is an
automorphism of G. What values of k force G to be finite?

In fact, in what follows, we can replace ‘automorphism’ by
‘epimorphism’, that is, an endomorphismn of G onto &, and prove
the following resulit.

Theorem. Suppose that n belongs to B and that G is a finitely
generated group such that the map o given by ga = g™ for all
g € G Is an epimorphism of G. Then G is finite.

Proof: For all @ and b in G, (ab)a = (ab)*t! = a™*1p™+1, s0 by
cancellation (ba)™ = a™b™. Then (ba)"*! = (ba)"ba = a™b"ba,
whence b™a™ = g™b"t1. Since « is onto, ga™ = a"g for all @
and ¢ in G, and so a™ € Z(G) for all a € G, where Z((7) denotes
the centre of G.

Now G/Z(G), being a factor group of a finitely generated
group, is finitely generated of exponent n and since n € B, G/Z(G)
is finite. Thus Z(G), being a subgroup of finite index in a finitely
generated group, is a finitely generated abelian group.

17
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If Z(G) is finite we are finished, so assume that Z(G) is infin-
ite. Then
Z(@) 2T x Cpo X % Cx

is the direct product of a finite group T and finitely many infinite
cyclic groups. Now Z(G) is invariant under all epimorphisms of G
onto &, but clearly o : £ — z™1! is not onto on any of the infinite
cyclic factors. This contradiction establishes the result.
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THE POISSON KERNEL
AS AN EXTREMAL FUNCTION

D. H. Armitage

It has long been known that for certain classical inequalities

involving positive harmonic functions on the open unit ball B

of RV the Poisson kernel of B (with some fixed pole on 9B)
is extremal (that is, a function for which equality holds in the
inequalities}. In recent years several new inequalities for positive
harmonic functions on B have been discovered; again the Poisson
kernel and functions related to it appear in extremal roles. This
article, which is based on part of a talk given at the Society’s
Meeting at Waterford in September 1992, surveys some such
inequalities, both old and new.

i. Harmonic functions and the Poisson kernel

1.1. Harmonic functions

A real-valued function b is harmonic cn a non-empty open subset
Q of the Euclidean space RY, where N > 2, if h is smooth (that
is, h € C%(f2)) and satisfies Laplace’s equation (that is, AL = 0
on 2, where A = 82/9z2 +...+8%/8z%). Harmonic functions are
also characterized by Gauss’ mean value property: h is harmonie
on {1 if and only if h is continuous on {1 and, for each closed ball
B C 11, the value of h at the centre of J is equal to its average
value over the boundary 88 of 3 (see, e.g., Hayman and Kennedy
[13, §1.5.5]).
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¥or ease of reference, we list the classes of harmonic functions
that we shall consider:

Hy = {h: his harmonic on B},
Hi={heHy:h>0o0n B h(0) =1},
HHp, n = {h: his a homogeneous harmonic polynomial
of degree m cn RV},
Hm,n = {h: his a harmonic polynomial of degree at
most m on RV},

H:;,N ={h€Hyn:h>00onBA0)=1}

Clearly the spaces Hy, HH,, v and H,, y are real vector spaces
(0 € HH,, v by convention). The normalization h({(0) = 1 in the
definitions of H; and H;t‘ w s convenient and involves no real
loss of generality.

1.2 The Poisson kernel

The Poisson integral and hence implicitly the Poisson kernel for
B were introduced in the 1820’s (Poisson {186], {17]) for N = 2,3
in a construction aimed at solving (what later became known as)

the Dirichlet problem for B. The Poisson kernel K of B is defined
on B x 0B by

K(z,y) = 1 - fl=[*)lix -~ y||7", (1.2.1)

where || - || is the Euclidean norm on RY. A calculation (see, e.g.,
(13, p.32]) shows that if y € 8B is fixed, then K(-,y) € H¥. If u
is a finite signed measure on 8B, then the Poisson integral P, of
4 is defined on B by

Pu(e) = ]8 _ Kag)duty).  (122)

Passing the operator A under the integral sign in (1.2.2), we
deduce from the harmonicity of the functions K(-,y) that
P, € Hy; if, further, p is a probability measure on 9B (that
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is 4 > 0 and u(8B) = 1), then P, € Hf. The importance of the
Poisson integral lies partly in the converse result which, following
Doob [7, 1.IL4}, we call the Riesz-Herglotz representation theorem:
if h € H;, then h = P, for some probability measure p on
aB.
(A proof can also be found, e.g., in Helms [14, Theorem 2.13].)
We explain in passing the connection between Poisson integ-
rals and the Dirichlet problem, mentioned above. ¥ g = fo,
where f : 3B - R is continuous on 8B and ¢ is surface meas-
ure on &5 normalized so that o(8B) = 1, then P, € Hy and
P,(z) - f(y) as ¢ — y for all y € B; that is to say, P, solves
the classical Dirichiet problem for B with boundary function f.
Our aim here is to illustrate the extremal role of the Pois-
son kernel in relation to inequalities involving three classes of

functions.

2. Inequalities for positive harmonic functions

We mention three inequalities (two classical, one recent) for func-
tions of class Hy.

2.1 Harnack’s inequalities
It is easv to see that

(-l a+|zI) Y < K(z,9) < Q+|laiDL-lal) Y (2.01)

for all z € B and all y € 8B. If A € HY, then, by the Riesz-
Herglotz theorem, kh = P, for some probability measure g on
AB. Integrating each member of (2.1.1) with respect to du(y), we
obtain the Harnack inequalities [12]: '

For h€ HY,z € B,

(1—II$II)(i+lI$II)1‘N < hz) < (14 el - l=l) 7. (2-1.2)

For (2.1.2) the Poisson kernel is extremal: more precisely, examin-
ing cases of equality in {2.1.1), we find that if z € B\{0}, the
left-hand (respectively, right-hand) inequality in (2.1.2) is strict
unless h = K{-,y) for some y € 8B and £ = —oy (respectively,
z = ay) for some a € {0,1).
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2.2 A corollary of Harnack’s inequaolities
From (2.1.2) it follows easily that if » € H;, then

llzllalz) — R(O)] < N+ O(|2ll)  as||=il > 0,

whence
IVAO) SN (he HE), (2.2.1)

where V is the gradient operator: V = (9/0z,,...,8/8zy). In
particular,

[(Br/z)O)| <N (he HE). (2:2.2)

Calculations show that equality holds inn (2.2.1) if h.€ K(-,y) for
some y € 08 and in (2.2.2) if h = K(-,y) with y = (£1,0,...,0);
with a little more trouble one can show that these are the only
cases of equality.

2.3 A generalization of (2.2.2.)

Goldstein and Kuran [10] generalized (2.2.1) and (2.2.2). As a
sample of their work, we state a generalization of {2.2.2) in the
case N=3 form=1,2,... '

—ml(2m+1) < (™k/0zT)(0) < m!(2m+1) (he H}): (2.3.1)

moreover, equality holds on the right hand side if and only if
h=K(-(1,0,0}). (The question of sharpness in the left-hand
inequality is another story; see [3].) A proof of (2.3.1) is out of
the question here, but the idea is to write h as a Poisson integral,
pass the operator 8™ /9z7 under the integral sign in (1.2.2), and
then (the hard part) estimate (6™ /8z7*)K(z,y) at x = 0. In §4.1
we indicate the significance of the factor 2m + 1 in (2.3.1).
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3. Inegqualities for trigonometric polynomials

3.1 Trigonometric polynomials and harmonic polynomials

To study trigonometric polynomials is essentially to study plane
harmonic polynomials, as we now explain. We identify R? with
C in the usual way. For a positive integer 7, the functions Re(z?)
and Im{z7)} span HH;,. Thus a typical element » of H,, o bas
the form

h(re®®) = ap + Erj(aj cos j8 + b; sin j8), (3.1.1)

j=t

where the coefficients are real. Let T, denote the space of real-
valued trigonometric polynomials (defined on the unit circle) of
degree at most m. A typical element f of T\, can be written as

fle?®) =ag + z(aj cos j@ + b; sin 36). - (31.2)
=1

The isomorphism & : T, = H,, 2 mapping the function in (3.1.2)
to that in (3.1.1) clearly maps each f € T, to the solution of the
Dirichlet problem in the unit disc D with boundary function f.
Let

2m
TH={feT,:f>00ndD, f(e%) df = 2x}.
¢

Note that the elements of Hjhg and T} are normalized so that
ag = 1 in the representations (3.1.1) and (3.1.2) respectively. It
follows from the well-known minimum principle for harmonic fune-
tions that ®(T5) = H, ,. Thus results for T, can be interpreted

for H, ,.

3.2 An inequality of Fejér
Fejér [8] proved that

supf<m+1 (feTh. (3.2.1)
aD ,
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Here is a quick proof. Write f € T} in the form (3.1.2). Since
Ff > 0on 8D and ap = 1, for all # we have

F(e®) < Zf(ei(ﬂ+2k1r/(m+1}) (3.2.2)
k=0
=m+1+
EZ{ajcos(jB—f— Jﬂ)—‘rbjsin(jﬁ-}- zjkﬂ)}
F=1 k=0 m+1 mtl
=m+ 1;

the last step uses the equation

m
Do) =g (j=1,...,m).
k=0

It is easy to see that in working with f € Tf, there is no
real loss of generality in supposing that sup f = f(1). It was
ab

also shown by Fejér that there is exactly one f € T.} such that
sup f = f{1) = m + 1, and this function is
ap '

Fm(e®)y=1+2(m+ 1)7! f:(m +1—j)cosjh.
g=1

{A proof can be based on the observations that equality holds

in (3.2.2) with 8 = 0 if and only if f(e**7/(m+1)) = 0 for all

k=1,...,m and that f,, has this property, since
fm(€?) = (m+1) T sin®((m+1)8/2)/sin(8/2) (0 <8 < 2m).)
Interpreted for harmonic polynomials, these results say that

suph<m+1 (heH,) (3.2.3)
aD !
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and

hon(re®) =1+ 2(m + 1)~ z(m +1—Hrfcosj®  (3.24)
Jj=1
is the only element of I} + 4 Tor which sup h=h(1l) =m+1. Tosee

how the extremal functmns h,, are related to the Poisson kernel
of D, note that writing N = 2,z = re’®,y = 1 in (1.2.1) gives

o]
Kre® 1) =(1—r)(1+7* - 2rcos®) ' =1+ Z2rj cos j8
j=1

(3.2.5)

and that h., (re®®) is the mth Cesaro (that is, (C, 1)) mean of this

series (including the term 1); in particular, b, — K-, 1) locally
uniformly on D as m — 0.

3.3 An inequality of Szegd
If f € T is given by (3.1.2) (so that ap = 1), how big can the
individual coefficients a;,b; be? For simplicity consider only a;.
A crude estimate is casy:

2m
o<t A (1 cosj8)f(e?)dd = 2 £ aj,

so that |a;| < 2. Szegd's sharp result {18, p.625] is
la;| < 2cos(n/(2 + [m/3])), (3.3.1)
where [-] is the integer part function. Much later Kuran and I

(unpublished) rediscovered the harmonic polynomial version : if
h € H} , and h is given by (3.1.1), then a; satisfies (3.3.1); note

that jla; = (& h/Bz{)(O). We were also able to say something
about extremal functions. For example, with j = 1:

(0h/02:)(0)} < 2eos(n/(2+m))  (h€ HE,)  (33.2)
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(compare (2.2.2) with N == 2), and there is exactly one function
h € H;, 5 for which equality holds in (3.3.2) with the medulus
sign suppressed; further A, — K (-, 1) locally uniformly on D as
m — 00,

3.4 A recent result and an open question
A question of Holland [1, Problem 4.26] essenma.}ly asks for the
value of

21 2
A = sup — (e o= sup i (h(c™®))? db.
ferd 2 heH} , 2w

No general formula for A,, has been found, but it is known that
the suprema are attained (Goldstein and McDonald [11])and that
lim Ay, /m exists and equals 0.68698 . .. (Garsia et al. [9]; see also
Brown et al. [6]).° It would be interesting to know whether the
extremal functions are again related to the Poisson kernel of D:
if h., € H}, 5 is such that supsp by = 1 and

Am = if%(h (e*))? db
m T 27T o T

do we have h,,, & K(-,1) on D as m — oo? The conjecture that
{Am/m) is decreasing also seems to be open.

4. Inequalities for harmenic polynomials

4.1 General remarks about harmonic polynomials

In their guise as questions about harmonic polynomials, the prob-
lems discussed in §3 can be posed in all dimensions. They are
generally more difficult in higher dimensions, since complex vari-
able techniques are not readily available and representations of
harmonic polynomials on R” are not as simple as (3.1.1) when
N > 3.

We need to quote some well-known facts; Brelot and Choquet .

(5] give an excellent account of most of these. Let u denote the
unit vector (1,0,...,0) in RY. There is exactly one element Lo N

] The Poisson kernel 27

of HH,, y such that I, v is z1-axial (that is, I, y depends only
on zj and |iz|]} and I, n{u) = 1. Writing cos@ = z;/||z}| when
z € RY\{0}, we have, for example,

Ima(z) = ||z||™ cosm8, Ims = ||z||™Pmlcos8),

where P, is the Legendre polynomial of degree . Also, we have
|[Zm,n] <1 cn 8B and

/ 2,y do = 1/dmn, (4.1.1)
o8B

where

N-2
don n = dimHHy y = 2t ¥ 2 (””’N

-2
— o | N_2 ) (4.1.2)

so that for m > 1

dn2 =2, dma=2m+1, dms=(m+1)°

The N-dimensional generalization of (3.2.5) is

K(z,u) =1+ id-,Nr-,N(m) (z € B) (4.1.3)

=1

(see Miiller [15, Lemma 17]). It is the appearance of the coef-
ficients d; n(= 27 + 1 when N = 3) in (4.1.3) that ultimately
accounts for the factor 2m +1 in (2.3.1).

4.2 An aziclization technique

We explain a device which greatly simplifies some extremal prob-
lems for harmonic polynomials. If f : RY — R is continuous, then
we define its x) -aziolization f* : RY — R by writing f*(x) = f(z)
if z lies on the z,-axis and otherwise defining f*(z) to be the aver-
age value of f on the set {y : y; = z1, ||y}l = ||z]{}. It turns out
that if h is harmonic, then so also is A*; moreover if h € HH,, n,
then A* = h(u)lm, ~ (see {2, Lemma] for details). This observation
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allows us to reduce the preofs of several inequalities for harmonic
polynomials to consideration of z;-axial harmonic polynomials.

4.3 A generalization of (3.2.3)
Kuran and 1 [4] obtained explicit, best possible constants T n
such that

suph < Cp n (th'I:'l N
a8 ’

We have Cyp o = m + 1 (see (3.2.3)) and
Con,v ~ 2N = D)) ™

as m — +o0 with N fixed. Cur proof depends on the technique of
§4.2 and known quadrature formulae for nltraspherical (Legendre
when N = 3) polynomials. Ag in the plane case (§3.2), thereis a
unique extremal element &, of H:L » which satisfies the equation
suph = hp(u) = Cp v, We have no simple formula, correspond-
5

B
ing to (3.2.4), for A,, when N > 3, but it remains true in all

dimensions that h,, —+ £ (-, u) locally uniformly on £ as m — oo,

4.4 A generalization of (5.2.2)
Szegd [18, p.626] obtained the following analogue of (3.3.2) for the
case N = 3

(OR/Oz1)(O) € 3rn (R E HLY), (4.4.1)

where 7., is the greatest zero of Fin2)/2 0 Fmy1y/2 + Pimis)/2
according as m is even or odd. Note that 7, € [0,1) and 7, = 1
as m — oo, and compare (4.4.1) with the case NV = 3 of (2.2.2).
Techniques like those menticned in §4.3 (axialization and quadrat-
ure formulae) can be used to generalize (4.4.1) to ail dimensions.
Again the extremal polynomials for the N-dimensional generaliz-
ation of (4.4.1) are related to the Poisson kernel.
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4.5 Two norms on Hp N
For polynomials P,Q on RY, let

<PQ>=| PQdo,
EY:
liPlls =< P,P >,
|IPlloe = sup | P].
8B
Note that < -,- > is not an inner product and || - ||2,]| - ||lec are

not norms on the space of all such polynomials, for a polynomial
may vanish on dB but be not identically zero. However < -,- >
is an inner product and || - [|z2,!] - ||cc are norms on H,, . Clearly
iP|l2 < ||P||s for all polynomials P. An inequality in the oppos-
ite direction for polynomials of degree at most m is

HPlloo € A/ Em, w41l P2, (4.5.1)

and this is sharp. We briefly explain how the constant /dm N1
comes to appear in {4.5.1). First note that [|P||z and ||P||w
involve only the values of P on @B, and theré is an element of
H,, n which agrees with P on 88 (see [5]). Hence we may suppose
that P € H,, n. By a rotation of axes, we may further suppose
that ||P||lee = |P{u)|, and an argument based on the observations
in §4.2 allows us to suppose that P is z;-axial. Then P has the
representation

P= t].oIo”N + GlI],'N + ... +avm.Im,N:

so that
1P|eo = |P(u)] = lao + ... + am|. (4.5.2)

Further, by (4.1.1) and the orthogonality relation
<Lin,en>=0 (0<j<k),
we obtain

1P}z = (4.5.3)




[6]

(7l
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In view of (4.5.2) and (4.5.3), the Cauchy-Schwarz inequality gives

HPloo < /oy + - - + dun, Wil P2

A calculation using (4.2.2) shows that do y +. . .+ dm,N = dm, N41,
and (4.5.1) now follows.

Checking for cases of equality at each stage of the argument,
we find without much difficulty that if P € H,, y and equality
holds in (4.5.1), then P = oK, for some real o, where i, is the
mith partial sum of the series expansion (4.1.3) of A (-, u), that is

K = 1+idj,Nf',N-

j=1

It is hoped that details of (4.5.1) and some related inequalities
will appear elsewhere. ' '
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RECENT RESULTS ON
THE ORDER STRUCTURE OF
COMPACT OPERATORS

Y. A. Abramovich and A. W. Wickstead

Abstract: There have been only a few really positive resulis con-
cerping the order structure of spaces of compaci operators on Banach
lattices, although many related open guestions hawve been posed over
the years. Recent resulis by the authors show why this is so—those
few positive results describe virtually all that is trus!

1 Imtroduction.

We will consider linear operators between reai Banach lattices.
A Banach lattice is s Banach space, E, which is also a vec-
tor lattice with the two structures related by the implication
iz] < |yl = llzll < |lgll for all z,4 € E. If E and F are Banach
lattices then we will be considering various subspaces of the spaces
L£(E, F) of bounded linear operators, and X(E, F') of compact lin-
ear operators.

If ¥ and F are Banach lattices then an operator T : £ =3 F
ig termed pesitive if ¢ > 0 = Tz > 0. The linear span of the
positive operators is the space of regular operators; denoted by
L£'(E,F). Usually £7(E,F) is a proper subspace of L(E,F).
When we order £L7(E, F} by defining § > T « § — T is posit-
ive, the space L™(E, F) is certainly made into a partially ordered
vector space, but is not, in general, a lattice. The most import-
ant case in which it is a lattice is when F is Dedekind complete,
i.e. when every non-empty set with an upper bound must have a
least upper bound (the corresponding assertion for lower bounds
follows automatically). In this case £7(E, F') is itself a Dedekind
complete vector lattice. The basic results of the theories of Banach
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lattices and of positive operators may be found in [8], [29] or [37]
as well as in several other texts.

One reason for studying compact operators is that there
seemed, at least for some years, a good chance that the order
structure of, say, the compact regular operators might be rather
better than that of regular operators. There are of course other
reasons for their study. The work of Krengel that we describe
in the next section had its origins in ergodic theory, whilst the
Dodds-Fremlin theorem has applications in theoretical physics
(see [11]). A reasonable hope might have been that the compact
operators between two Banach lattices formed a lattice under
the operator order. This turns out not to be true but slightly
lower expectations would still seem to be reasonable. These hopes
turned out to be forlorn in general. There are some partial pos-
itive results, for the statements of which we need to give a few
definitions.

In this survey, we have concentrated sclely on the order struc-
ture of spaces of compact operators. There are many other top-
ics in the theory of compact positive operators which lie off the
main direction chosen for this survey and ot which substantial
progress has been made in recent years. Topics that we could
have mentioned include results in [10], {13], [14], [17], [18], [21],
(35], [36} and [39] on factorizing compact positive operators; the
vast literature on the spectral theory of compact positive oper-
ators; a special and important part of the latter stemming from
the Andé6-Krieger theorem and culminating in de Pagter’s proof,
in [33], that an irreducible compact positive operator has strictly
positive spectral Tadius and in further refinements obtained in [3];
and many other areas.

2. Some Banach lattice terminology.

There are two special classes of Banach lattices that have heen
studied almost as long as Banach lattices themselves. An AM-
spece is a Banach lattice in which ||z V y|| = ||z|| V ||y|| whenever
z,y > 0. It was shown in [23] and in [25] that each AM-space is
isometrically order isomorphic to a closed sublattice of some space
C(K) where K is a compact Hausdorff space. An AL-spaceis a
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Banach lattice in which ||z + y|| = ||lz|l + ||l¥|| whenever z,y > O
Again it was shown in [22] that each Al-space is iscmetrically
crder isomorphic to an L'(u)-space for some measure .

The normed dual, B, of a Banach lattice ¥ may be naturally
ordered by defining f > ¢ & f(z) > g(z) for all 0 < z € E.
Under this order £’ is also a Banach lattice {and is even Dedekind
complete). The concepts of AM- and AL-spaces are mutually dual,
i.e. the dual of an AM-space is an AL—space whilst the dual of an
Al-space is an AM-space.

A subspace J of a2 Banach lattice £ is an ideal whenever
z € E,ye Jand |z| < ly| imply that x € J. A bend is an ideal
with the extra property that if & subset of J has a supremum in
F then that supremum must actually lie in J.

A Banach lattice has an order continuous norm if every down-
ward directed family with infimum equal to zero must converge in
nporm to zero. An equivalent condition is that the Banach lattice
be an ideal in its bidual. Banach lattices with an order continu-
ous norm are Dedekind complete. I 1 < p < oo then sach space
LP{zs} has an order continuous norm, Spaces O(X) have an order
continuous norm only if ¥ is a finite set.

A Banach lattice is o KB-spoce (=Kantorovich-Banach space)
if it has an order continuous norm, and every norm-bounded
upward directed set has a supremum. Various equivalences of
this are known. One is that the Banach lattice is weakly sequen-
sially complete, another iz that it be a band in iis bidual Al
the spaces LP{u), for 1 < p < oo are KB-spaces. The space of
all npull-sequences, cp, with the supremum norm and the pointwise
ordering, is an example of a Banach lattice which has an order
continuous norm but which is not a KB-space.

An atom in a Banach lattice is a non-zero positive element ¢
such that if 0 < z < e then z is a multiple of e. A Banach lattice
is atomic if for every 0 < z € E there is an atom ¢ with ¢ < z.
L?{) is atomic if and only if g is a discrete measure, whilst C(H)
is atomic precisely when K has a dense subset of isolated points.
Below, at some point we will meet the notion of atomic Banach
lattices with an order continuous norm. Archetypal examples are
4, for 1 < p < 0o and cg.
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3. Krengel’s results.

There are several possible questions that one might ask about
the order structure of a subspace Z of the space of bounded oper-
ators. We certainly want to know whether or not I is posit-
ively generated and whether or not it is a lattice. Furthermore
if 7 is a lattice, then we want to know whether or not the lat-
tice operations in T are also the corresponding lattice operations
in the space of all regular operators. In general we cannot talk
about T being a sublattice of the space of all regular operators
as the latter space need not be a lattice {unless, for example, the
range is Dedekind complete). There is no suitable terminology in
the literature describing this situation; so it seems reasonable to
extend the definition of sublattices as follows. If 7 is a partially

“ordered vector space and T a subspace of J then we say that

T is a (generalized) sublattice of J if T is a lattice and for each
z,y € I the supremum of z and ¥y calculated in 7 is also their
supremum in 7. In the case when .7 is a vector lattice this is the
usual definition of a sublatiice. We will often omit the adjective
“generalized” unless it is necessary to emphasize that the ambient
space is not a lattice.

Using the properties of the compact subsets of C{H')-spaces,
Krengel, in [26], established the first positive result in this area
by proving the following.

Theorem 3.1. [Krengel] If E is an arbitrary Banach lattice and
F an arbitrary AM-space then KX(E, F) is a generalized sublattice
of L7{E,F).

In particular this means that every compact operator taking
values in an AM-space does have a modulus (in £7(E, 7)) and this
modulus is again compact. A simple duality argument establishes
a similar result if E is an AL-space and F is a KB-space. Later
we shall see that this result can be improved somewhat.

In [27], Krengel gave two important examples, showing that
these results are certainly not true in general. Much work in this
area since then has been devoted to trying to rescue some remnant
of his earlier positive results for spaces different from AM-spaces.
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Example 3.2. [Krengel] There is a Dedekind complete Banach
lattice E and a compact operator T on E such that |T'| exists in
L7(E), but is not compact.

The crucial feature of the corresponding construction is as
follows. Consider a 2" x 2™ matrix with orthogonal rows and
with all entries being +1. If this matrix is regarded as an oper-
ator S, on 2"-dimensional Hilbert space, E,, then ||S,| = 27/2
whilst [|]8a]]| = 2™ The required example is produced by taking
a suitable weighted sum of the operators S, acting on (3 En)_,

the cp-sum of the spaces E,, whose elements are sequences (z,)
with z,, € E, and ||z,|| = 0. All the examples subsequently pro-
duced in this field are based on modifications of various degrees
of complexity of this construction.

This example shows already that even on Dedekind complete
Banach lattices, the compact operators do not form a sublattice
of the lattice of all regular operators. Although the operator T
in Example 3.2 is a regular operator, it is easy to verify that T
is not the difference of two compact positive operators, so that
the space of compact operators on F is not positively generated.
In fact a modification of the previous example shows that the
compact operators are not even a subspace of L7{E).

Example 3.3. [Krengel] There is a Dedekind complete Banach
lattice B and a compact operator T on E such that |T| does not
exist in LT{E).

Compact regular operators taking values in a Dedekind com-
plete Banach lattice must have a modulus as all regular operat-
ors then do, so that the operator in Example 3.3 is not regular.
Krengel’s examples left open the possibility that for compact reg-
ular operators the condition of Dedekind completeness could be
dropped. However, using Krengel’s basic finite-dimensional build-
ing blocks, we constructed in [6] an example to show that this also
was false.

Example 3.4. [Abramovich & Wickstead] There is a Banach lat-
tice E and a compact regular operator T on E such that |T| does
not exist in L7(E).
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In the example that we constructed in [6] the operator T
is not the difference of two positive compact operators. This
led us to the believe that the correct space to study. was the
linear span of the positive compact operators rather than the
space of all compact operators. We denote the space of differ-
ences of positive compact operators from E into F by K"(E, F).
Thus, KX"(E, F) is a subspace of K(E,F) N L"(E, F). By either
looking at Krengel’s proof of Example 3.2 or using its statement
together with the Dodds-Fremlin theorem {Theorem 4.1 below),
one can see that even when F is assumed to be Dedekind com-

“plete K™(E,F) # K(E,FYn L7(E,F). Although this space X7

must surely be better behaved than, say, the space of compact
regular operators IC(E, F} N LT{E, F), it does not behave all that
well. In [7] we, again using Krengel's basic building blocks, pro-
duced two more examples.

Example 3.5. [Abramovich & Wickstead] There is 2 Banach lat-
tice E and T € K™(E) which does not have a modulus either in
K™(E) orin L7(E).

H E were Dedekind complete then operators in X7 (E) must
certainly have a modulus in £7(E), however. ..

Example 3.6. [Abramovich & Wickstead] There is a Dedekind
complete Banach lattice E and T € K" (E) which does not have a
modulus in K™(E).

In particular the modulus of T, computed in £7(E)} is not
compact.

There seems to be little left to conjecture as being true in
great generality. How much further can we extend Krengel's pos-
itive results? His proof of Theorem 3.1 actually establishes that
in that case K{E, F) is a Banach lattice under the operator order
and the usual operator norm (there is another norm used in the
study of regular operators, but we have no need of it in this sur-
vey). There are few cases where this holds that Krengel did not
already deal with. The following theorem is due to Krengel [26],
Cartwright and Lotz [12], and Schwarz {38, Theorem 8.1]. A
simple proof of Schwarz’s contribution will appear in [42].
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Theorem 3.7. If E and F are Banach lattices then K(E, F) is
a Banach lattice under the operator order and norm if, and only
if, either E is an AL-space or F is an AM-space.

Certainly if either E is isomorphic to an AL-space or F is iso-
morphic to an AM-space then K(E, F) is isomorphic to a Banach
lattice. However, there is no isomorphic version of Theorem 3.7.
As pointed out in [2], it follows from an example in [1] and The-
orem in [19] that the next result is true.

Example 3.8. There are Dedekind complete Banach lattices E
and F' such that E is not isomorphic to an AL-space and F is not
isomorphic to an AM-space but K(E, F) coincides with K" (E, F)
and is isomorphic to a Banach lattice.

4. The Dodds-Fremlin theorem and its consequences.

Apart from Krengel’s examples, little positive had been known
about the order structure of spaces of compact operators until
Dodds and Fremlin published their now celebrated theorem in
{15]. In retrospect it is clear that there are many antecedents of
this result in the literature, including (28], {31], {24, Theorem 5.10],
[34] and [37, Theorem 10.2], but at the time the result came to
most people as a complete surprise.

Theorem 4.1. {Dodds & Fremlin) If E and F are Banach lattices
such that both E' and F have order continuous norms, T : E — F
is a positive compact linear operator and S : £ — F is a linear
operator such that 0 < S < T then § is compact.

We refer to the conclusion of this theorem as the compact
domination property. The Dodds-Fremlin condition (i.e. the con-
tinuity of norms in E’ and F} is not the only one that guarantees
the compact domination property. The other two, found in [40},
are very strong conditions and the proofs of the compact domina-
tion property in these latter cases is rather simple. The conditions
are that E' (resp. F) be atomic and have an order continuous
norm. Some important, but easily deduced, consequences of the
compact domination property are the following:
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(a) I F is Dedekind complete (which is automatic if the
Dodds-Fremlin condition holds) then X7(E, F) is an {order) ideal
in £7(E, F) and therefore K™ (E, F') is a Dedekind complete vector
lattice. In particular if S,T : £ — £ are two positive compact
operators then SV T, which automatically exists in L7(E, FF), is
compact and thus belongs to KX™(E, F).

(@) If F is only assumed to be Dedekind o-complete then
K7 (E, F) is a Dedekind o-complete vector lattice. The only reason
we cannot say that K"(E, F) iz an ideal in L7(E, F) is that the
latter space need not be a lattice.

Even in as apparently nice a context as that of operators into
an AM-space, no analogue of the first conclusion in (o) is true,
i.e. K(E, F) may easily fail to be Dedekind complete. To demon-
strate this let E be an Al-space and X be a compact Hausdorff
space. It has been known since [32] that C'(X) is Dedekind com-
plete if and only if X is Stonean, i.e. the closure of every open
subset of X is again open. There is an isometric order isomorph-
ism between K(E,C(X)) and C(X, E'). Since E' is a Dedekind
complete AM-space, it can be identified with a space C(Y) ior
some compact Hausdorff Stonean space V. We may now identify
C(X,E") with C{X,C(Y)) and hence with C(X x ¥} for both
the norm and order séructure. It follows from a well-known, but
unpublished, result of W. Rudin (see [1€] for a short proof using
order theoretic notions) that X » Y is Stonean oniy when one
factor is finite and the other Stonean. Thus as long as both E
and C(X) are infinite dimensional the space K(E,C{X)) cannot
be Dedekind complete {or even Dedekind g-complete).

There is an obvious interest in sxtending these known condi-
tions which gnarantee the compact domination property. At first
sight it looks plausible that there is a whole spectrum of conditions
that will do, with the two extremes being when either E' or F is
atomic with an order continuous norm, and the Dodds-Fremlin
theorem simply identifying an easily described case somewhere in
the middle of the range. However, as recently shown in [41}, that
is not the case, and this makes the Dodds-Fremlin result all the
more remarkable.
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Theorem 4.2. [Wickstead] The pair of Banach lattices E and
F has the compact domination property if and only if one of the
following three non-exclusive conditions holds:

{a) Both E' and F have an order continuous norm.
(b) E' is atomic and has an order continuous norm.
(c) F' is atomic and has an order continuous norm.

It is similarly surprising that the compact domination prop-
erty is not just a simple sufficient condition for proving the two

consequences (a) and () mentioned above. The following two
results are proved in [42].

Theorem 4.3. [Wickstead] If E and F' are Banach lattices then
K™(E,F) is a Dedekind complete vector lattice if and only if the
pair (E, F) has the compact domination property and F is Dede-
kind complete.

Theorem 4.4. [Wickstead] If E and F are Banach lattices then
K™(E,F) is a Dedekind c-complete vector lattice if and only if
the pair (E,F) has the compact domination property and F is
Dedekind o-complete.

Notice now that the second conclusion in (@), that the
supremum of two positive compact operators exists and is com-
pact, is not an equivalence of the compact domination property.
For example, by Theorem 3.1, this is also the case whenever F
is an AM-space. Moreover, in all previously known cases the
supremum of two positive compact operators was always com-
pact whenever it existed, in particular whenever F was Dedekind
complete. This led C. D. Aliprantis and Q. Burkinshaw to ask for
a counterexample to or a proof of this phenomenon. The ques-
tion was posed by them at a Riesz Spaces and Operator Theory
meeting at Oberwolfach in 1982, and reiterated in [20, Problem
6]. Unfortunately, the answer is negative; namely the examples
in [6] show the following:

Example 4.5. [Abramovich & Wickstead] There is a Dede-
kind complete Banach lattice E and compact positive operators
S,T : E = E such that S v T is not compact.
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Example 4.6. {Abramovich & Wickstead] There are Banach lat-
tices £ and F and compact positive operators 5,7 : & — F such
that SV T does net exist in X7 (E, F).

Before leaving this section we should meuntion, although the
results are not directly related to the study of the order struc-
ture of spaces of compact operators, the extensions of the Dodds-
Fremlin thecrem proved by C. D. Aliprantis and . Burkinshaw,
in their remarkable work [9]. They managed to find some “hid-
den” compactness in positive cperators dominated by a compact
positive operator by proving the following theorem.

Theorem 4.7. [Aliprantis & Burkinshaw| Let 6 £ £ £ T be two
positive operators on a Banach lattice & and assmme that T is
compact. Then operator S* is compact., If either E or &' has
‘order continuous norm, then 5% is compaci.

This theorem has many applications, of which the most inter-
esting are in connection with the spectral properties of positive
operators [3], [33] and with the invariant subspace problem for
positive operators [4], [5]. For scme applications in connection
with positive semigroups we refer 1o [30] and references therein.

5. What is left to prove?

Although many conjectures have now hesn disposed of, there do
remain some open questions in $his arca. We have characier-
ized the cases in which X™(E, ¥) is either a Dedekind complste
or Dedekind g-complete vector lattice. There is still no answer

known to:

Question 5.1. For what pairs of Banach lattices E and F is
XT(E, F) a vector lattice?

The answer will certainly not be that the pair satisfy the
compact domination property, since the conclusion aiso holds
whenever F is an AM-space or E is an Al-space. On the other
hand Example 4.6 shows that X7 (E, F) may fail to be a vector
lattice. In all the cases that we do have a lattice, KX™(E, F;
is a generalized sublattice of £7(E, F). Possibly the following
question might be rather more tractable.
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Question 5.2. For what pairs of Banach lattices £ and F is
KT(E, F) a generalized sublattice of L7(E, F)?

However both of these questions seem rather difficult at pre-
sent. Perhaps the best that we might hope for will be an answer
to:

Question 5.3. If C"(E, F) is a vector lattice, must it be a gen-
eralized sublattice of L™ (E, F)?

If it is so difficult for spaces of compact operators to have
a lattice structure, is there some useful weaker order theoretic
structure that we can look for? The Riesz separation property
states that if x¢,z9 < 2,20 then there is y with 24,20 €< 3 <
z1,2. This condition is (slightly) weaker than that of being 2
lattice but has some important consequences. For example it,
together with a fairly natural condition relating the norm and
order, are equivalent to the dual of an ordered normed space being
a Banach lattice under the dual ordering. In [43] the second author
showed that it is possible to find Banach lattices E and F such
that L7(E, F) has-the Riesz separation property, but is not a
lattice. It is also possible to choose E and F such that £7(E, F)
does not have the Riesz separation property. The proofs used in
[43] do not answer the corresponding questions for X7(E, F), so

these questions remain open. It is probably too much to expect

an answer to:

{Juestion §.4. For what pairs of Banach lattices E and F does
KT(E, F) have the Riesz separation property?

But we would certainly hope for answers to the next two
questions. In particular we feel that the answer to Question 5.6
is almost certainly positive.

QJuestion 5.5. Are there Banach lattices E and F such that
K"(E, F) has the Riesz separation property, but is not a lattice?

Question 5.6. Are there Banach lattices E and F such that
K7(E, F) does not have the Riesz separation property?

(2]

{10]

(11}
[12]
[13]
(4]

{15]

[16]
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HIGHER ORDER SYMMETRY OF GRAPHS®

Ronald Brown

Symmetry in analogues of set theory.

This article gives background to and results of work of my stu-
dent John Shrimpton [18, 19, 20]. It advertises the joining of
two themes: groups and symmetry; and categorical methods and
analogues of set theory.

Groups are expected to be associated with symmetry. Klein'’s
famous Erlanger Programm asserted that the study of a geometry
was the study of the group of automorphisms of that geometry.

The structure of group alone may not give all the expression
one needs of the intuitive idea of symmetry. One often needs struc-
tured groups (for example topological, Lie, algebraic, order,...).
Here we consider groups with the additional structure of a direc-
ted graph, which we abbreviate to graph. This type of structure
appears in {13] and [17].

We shall associate with a graph A4 a group AUT(A) which 1s
also a graph. The vertices of AUT(A) are the automorphisms of
the graph A and the edges between automorphisms give an expres-
sion of “adjacency” of automorphisms. The vertices of this graph
form a group, and so also do the edges. The automorphisms of A
adjacent to the identity will be called the inner automorphisms of
the graph A. One aspect of the problem is to describe these inner
automorphisms in terms of the internal structure of the graph A.

* This paper is an account of a lecture “Groups which are
graphs (and vice versal)” given to the Fifth September Meeting
of the Irish Mathematical Soctety at Waterford Regional Technical
College, 1992,
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The second theme is that of regarding the usual category of
sets and mappings as but one environment for doing mathemat-
ics, and one which may be replaced by others. We use the word
“environment” here rather than “foundation”, because the former
word implies a more relativistic approach.

The other environment we choose here is the category of dir-
ected graphs and their morphisms. We define this category, and
then use methods analogous to those of set theory within this
category. This allows set-theoretic intuition to be used to gen-
eratc new results and methods, and is possible because of the
“sood” properties of this category of graphs. The background
here is that of topos theory, which has given methods for consider-
ing many other environments for mathematics, and for comparing
these environments.

Topos theory takes a relative rather than absolute viewpoint
towards sets. The topos of sets is obviously an important, stand-
ard and basic kind of topos, but suffers from the defect of being
somewhat boring, reflecting the fact that the objects of the topos,
namely the abstract sets, are devoid of structure. The topos
theory approach allows not only other versions of the category,
or topos, of sets, but also allows comparison of different versions,
through the notion of functor and natural transforination.

Thus different notions of set, or graph, can be evaluated by
comparing the properties of the associated categery. This global
viewpoint has proved fruitful. One point of appearance was in
topology, where the standard category of topelogical spaces was
found not to have a function space with convenient properties.
So different categories of topological spaces were proposed with
“better” or mare convenient function spaces.

The idea of emphasizing the categorical aspects of sets is not
so familiar outside of category theory. Tor example, the article
[1] does not mention any categorical approach. The traditional
viewpoint is that sets are defined by the membership relation.
There is, however, a sirong argument that this approach is counter
intuitive, since for many sets we wish to use, such as that of real
numbers, it is very difficult to get one’s hands on any but a small
fraction of their members.
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The categorical approach is that sets are defined by the rela-
tions between them, namely the functions, and this view has been
strengthened by the success of topos theory. The book [14] is
a good introduction to topos theory for those with a foundation
in category theory. For an article relating the history of topos
theory to notions of the foundations of sets, see [15]. The author
emphasizes that the notion of topos was defined by Grothendieck
as a replacement for the notion of topological space. Thus it was
intrinsic to the definition that many different topol were to be
considered.

In the work of Lawvere, categories of structures other than
sets are regarded as having intuitive value equal to that of the
category of sets. That is, the category of sets is not regarded
as a foundation for mathematics. Some words have to be said
on the advantages of categorical methods, whose objectives and
methedology have failed to be realized by some. The book by Reid
[16] even writes: “The study of category theory for its own sake
{surely one of the most sterile of intellectual pursuits) also dates
from this time; Grothendieck himself can't necessarily be blamed
for this, since his own use of categories was very successful in
solving problems”.

This quotation has aspects which should be noted. One is
that it derides some vaguely specified group of colleagues as essen-
tially unprofessional. A second is its lack of adventure. Let me
propose a game: “I can think of a more sterile intellectueal pursuit
than you”. A third is that it is hardly sensible to think of “blam-
ing” Grothendieck for developments in mathematics. A fourth
is its avoidance of historical analysis and of supporting evidence.
This should be contrasted with McLarty’s article [15].

A fifth is the view that the aim of mathematics is the solution
of problems, which, by implication, are already formulated. By
contrast, a historical view shows that the value of mathematics
for other subjects, and for its own ends, is that it has developed
language for: :

o the study of patterns and structures;
¢ the formulation of problems;
o the development of methods of calculation and deduction.
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The solution of problems is cften a byproduct of this wider process
and these wider aims. In this process, the study of an area for its
own sake is often a necessary developmental stage. Judgements
on the sterility or otherwise of such a study can be a matter of
timing, or of gossip and snobbery, and are not always based on
comparison and scholarship.

Does our education of mathematicians train them in the
development of faculties of value, judgement, and scholarship?
I believe we need more in this respect, so as to give people a
sound base and mode of criticism for discussion and debate on
the development of ideas.

The origins of category theory help to explain its ut1l1ty It
arose from attempting to explain the meaning of the word “nat-
ural” in mathematics, and with a strong impetus from the axio-
matic approach to homology theories, developed by Eilenberg and
Steenrod, [6]. The original paper on the subject by Eilenberg and
Mac Lane, [5]; has an interesting discussion of the word “natural”
in terms of the map V — V** of a vector space into its double
dual. To define natural reguired a definition of functors, and to
define functors required a definition of category. This itself reflec-
ted also the growing realization that whenever a structure has
been defined, it is usually necessary to consider also the morph-
isms of that structure.

By now, the general notions of limit and colimit, whose for-
mulation was possible with the use of categories, and the later
notion of adjoint functor, must be regarded as basic tools in math-
ematics. For example, the fact that a functor which is a left adjoint
preserves colimits, while a right adjoint preserves limits, is a useful
computational tool in many aspects of algebra and even combin-
atorics. Graduate books will probably have to give initial sections
on basic concepts of category theory, in the same way as they have
given basic sections on set theory, algebra and topology.

Category theory has been found useful for

e a global approach: i.e. constructions are defined by universal
properties, which give the relation of the constructed object

. to all other objects;

e formulating definitions and theorems;




50 IMS Bulletin 32, 1994 ' B

s carrying out proofs;
e discovering and exploiting analogies between various fields of
mathematics.

Grothendieck’s work on the foundations of algebraic geometry led
him to develop a vast range of new categorical concepts. It is signi-
ficant that his first important work was in analysis, and he brought
to algebraic geometry a local-to-global approach. In algebraic
geometry, it seems that “local” means “at a given prime p”, and
“global” means “over the integers”. His approach was also to take
concepts seriously, recognizing the effort required to “bring new
concepts out of the dark” ([7]), and to spend a lot of effort in
turning difficult results into a series of tautologies.

As one other recent example, and an indication of a wide
literature, the paper by Joyal and Street, [8], illustrates how an
algebraic development initially formulated for metamathematical
reasons, and almost for its own sake, namely the notion of mon-
oidal, or tensored, category, has found striking applications in
concrete problems in knot theory, and string theory in physics.

One of the attractions of category theory is that the same
algebraic tools are found applicable at several levels, and in a
variety of areas. This feature is also found in groupoid theory, of
which a survey was given by me in [3]. This notion has allowed
the formulation of important extensions of group theory and of
notions of symmetry.

Thus category theory is par ercellence the method which
enables the recognition and exploitation of many forms of ana-
logy and comparison of structures. The point is that the algebraic
study of the structure of a theory involves studying the categories
and functors associated to the theory, and such a study leads to
new algebraic notions of interest in their own right.

Applications to graph theory.

There are several unfamiliar aspects of this approach as applied
to graph theory.

1) In this approach, it is essential to use a category of graphs and
their morphisms. By contrast, it is not so easy to find a book en
graph theory which defines a morphism of graphs.
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2).An important categorical method used is that of universal prop-
erty. In our setting, this defines a construction on graphs by the
relation of the construction to all graphs. This may seem curious
and far from logical. In fact, a construction by universal prop-
erties is analogous to a program, which when given an input of
particular graphs, or graphs and morphisms between them, gives
an output, namely new graphs and new morphisms. This analogy
t6 programming is one reason why computer scientists have found
the methods of category theory useful.
3) We lift to the category of graphs standard methods available
in the category of seis and funciicns.

There are many possible definitions of graph and morphism
of graph. We take one which gives for our purposes the “best”

properties of the correspending category. This again is an example

of a “global” approach, and is simply a step or so up from a
common approach in mathematics of considering for example all
numbers, or all the symmetries of a square.
We deal here only with directed graphs. So for us a graph will
mean a set Ap of edges, a set Ay of vertices and three functions
t: Ag — Ay, e: Ay — Ag such that se = 1, te = 1. Here s
and ¢ are the source and target maps. If z,y € Ay, then A(z,y)
denotes the set of edges with source = and target y. Such an edge
a is also written @ : z — y. A [oop is an edge with the same source
and target.
This defines in essence a directed graph in which each vertex
v has an associeted loop ev at that vertex. This extra structure
makes no difference to the combinatorics of an individual graph,
but makes a considerable difference to the allowable graph morph-
isms. The associated loop at a vertex v is often written » and given
the vertex label v. Thus cne of the simplest graphs, denoted I, is
pictured as

Os —3 el,

A morphism of graphs f : A = B is a pair of functions
fe: Ag — Bg, and fy : Ay — By preserving the source and
target maps, and e. The implication is that f maps edges to
edges, vertices to vertices, and f can map a general edge to the
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loop associated to a vertex. In effect, this means edges may be
mapped to vertices.

The category DG of directed graphs has objects the graphs
and arrows the morphisms, and DG (A4, B) denotes the set of graph
morphisms A — B. Lawvere in [12] calls this the category of
reflerive graphs.

This category has a terminal object, written e, with the prop-
erty that, for any graph A, the vertices of 4 are naturally bijective
with DG (s, A). The edges of any graph A are naturally bijective
with DG{I, A). '

Continuing with the categorical approach, we define the
product of graphs. :

A product of graphs A and B consists of a graph 4 x B with
morphisms p: Ax B —+ 4, g: Ax B — B such that for any graph
C the function .

DG(C, A x B) = DG(C, 4) x DG(C, B)
[ (pf,af)

is a bijection. This says that a morphism te 4 x B is completely
described by its component morphisms to 4 and B. The definition
s also analogous to the law for numbers (ab)® = a®b°.

It may be proved from the definition that the vertices of Ax B
are pairs of vertices from 4 and B, and the edges of A x B are pairs
of edges from A and B. One way of proving this is to show that
if SETS denotes the category of sets and functions, then the two
functors DG — SET'S given by the edges and the vertices have left
adjoints, and so preserve limits, and in particular products. This
deduction is one example of the “comparison” of environments
referred to earlier. An important aspect of this procedure is that
the product is defined by the universal property, which is the
property that is most often used, and then a specific construction
is deduced from the universal property. This verifies existence of
the product. '

As a typical example of the product of graphs, associated
with the simplest graph 7 we have the preduct 7 x F, illustrated
by the following diagram:

] Higher order symmetry of graphs

Given sets B and C there is a set C? of functions B — C.
In our category of graphs, the analogous construction is of course
a graph of morphisms DIGRPH(B, ).

In the category of sets we have the standard exponential low

CAXB =~ (CB)A.

This corresponds to the law for numbers ¢** = (¢*)°.
theory, we have the analogous law:

For graphs A, B and C, there is ¢ natural bijection

In graph

DG(A x B, C) = DG(A, DIGRPH(B, C)).

Here the morphism graph DIGRPH(B, C) is in effect defined
by this formula. From this formula, we can deduce the specific
construction as follows.

Let B and C be graphs. The graph DIGRPH(B, C) is to have
vertices the morphisms of graphs B — C and to have edges the
triples (p, f,g) such that f and g are morphisms of graphs B — C
and p: B — C is a function from edges to edges such that if b is
an edge of B then

spb = fsb, tpb= gth.
Define

sio, L) =f e fg)=g €f)Y=(F1)
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Then each edge b of B yields the diagram

pesh

fsb gsb

fib gtb

peth

Comments.

1. If you define a directed graph by omitting €, then product and
morphism graph are defined, but the vertices of the morphism
graph are not the morphisms of graphs. Instead, the morphisms
correspond to the loops at vertices. From the categorical view-
point, this is not surprising. The morphisms B — € should cor-
respond to the morphisms » —+ DIGRPH(B, C), where e is the
terminal object in the category, i.e. the graph such that there is
exactly one morphism 4 — e for any graph A. If the associated
loop is omitted from the definition of graph, then the terininal
object again has one vertex and one lcop, and the morphisms of
graphs are then not the vertices of the morphism graph, but are
instead the loops of this morphism graph. The relations between
these two categories of directed graphs are considered by Lawvere
in [12].

2. There is another analogy between the category PG and the
category of sets and functions. We can define in DG a graph O

and a morphism of graphs

true.

® —p 0,
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called the sub-object classifier because it classifies subgraphs in a
manner analogous to the way the inclusion '

{1} = {0, 1}

in sets classifies subsets via the characteristic function of a subset,.

With this sub-object classifier, with the constructions defined
earlier, and with the construction of limits (a more general notion
than product), PG becomes what is called a fopos. The name is
due to Grothendieck, and was envisaged by him as a replacement
of the notion of topological space by the category of sheaves on
that space.

For our purposes, the idea is to carry out arguments in the
topos DG as if it were the category of sets and functions, but never
to use the law of the excluded middle. The reason for this is that
the lattice of subgraphs of a given graph is not Boolean, since for
example the complement A\ (A \ B) of the complement A\ B of
a subgraph B is usually not the original subgraph B. Thus this
theory is intuitionistic, an approach which is seen in this context
as a practical mathematical tool for dealing with situations where
the notion of membership is not the primary aspect. In the case of
graphs, the “elements” have to be the vertices, but these capture
only a small part of the structure. For more information on this
approach in graph theory, see [12], while for the general body of
theory, see the book by Mac Lane and Moerdijk, [14].

The exponential law in DG has a number of consequences.
One is that there is a composition morphism

DIGRPH(B, C) x DIGRPH(A, B} - DIGRPH(4,C)
which is associative and with identity. Hence *
END(A) = DIGRPH(A, A)

has the structure of both a monoid and a graph. In the category

of sets, monoids have maximal subgroups. This is also true in a

topos. In the case of graphs, the maximal subgroup of the monoid

END(A) is called ‘ '
AUT(A).
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It is a group which is also a graph, or a graph which is also a
group. Its set of vertices is the group Aut(A) of automorphisms
of A.

Example: Let A, be the complete graph on n vertices, and let
Dy be the discrete graph on n vertices. These graphs have the
same automorphism group, S,, the symmetric group on n letters.
But AUT(A,) is the complete graph, while AUT(D,,) is discrete.

In the graph AUT(A), the automorphisms adjacent to the
identity form a normal subgroup of Aut{A): these automorphisms
are called the inner automorphisms of 4.

This raises the problem of describing the inner automorph-
isins of a graph in terms of internal properties of the graph. The
solution is given by Shrimpton, [19, 20], in terms of the notion of
inner subgraph.

A subgraph B of a graph A is inner if it is maximal with
respect to the following properties:

1. complete (i.e. the sets B(z,y) have the same cardinality for
all z,y4 € By);

2. full (ie. B(z,y) = A(z,y) for all z,y € By);

3. any auwtomorphism of B extends to an automorphism of A

which is the identity on the complement A\ B of B in A.

Claim [19, 20}. Any vertex belongs to s unique inner subgraph.

Theorem [19, 20]. An automorphism of a graph is inner if and
oniy if it restricts to an automorphism of each inner subgraph.

This suggests that the inner subgraphs are a kind of atom of
symmetry of the graph.

The comsideration of group-graphs leads to another new
notion; the centre of a graph.

A group-graph is defined by Ribenboim in [17] to consist of
groups &G and Gy and morphisms 3,1 : Gg — Gy, e: Gy =+ Gg
such that se = ¢ = 1. This concept has occurred elsewhere,
for example as a 1-truncated simplicial group [13], and as part
of the structure of a group-groupoid, as in Brown and Spencer,
[4], where this is called a §-groupoid. Loday in [13] found it
natural to consider the subgroup. [ker s, ker ] and to say that the
group-graph is a cat! -group if this subgroup is trivial. If it is not
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trivial, we can form the quotient vG g = Gg/[ker s, ker i] with the
induced morphisms to Gy giving G the structure of cat!-group.
We call

(ker s) N (ker t) C vGEg

the second homotopy group of G and write it (¥,

In particular, if G = AUT(A4), then 72{G) is called the centre
Z(A) of the graph 4. The centre is always an abelian group, and
in fact is a module over Qut(A4) = Aut(A4)/Inn(A). The aim is to
describe this centre, in the case that A is finite, in terms of the
structure of A.

To this end, we iniroduce in the following proposition an
equivalence relation on the edges of a graph.

Proposition [19, 20]. If A is a graph, then there is an equivalence

relation on the edges of A given by z is equivalent to y if and only
if there are inner subgraphs I and J of A such that sz, sy hein I
and tx, ty lie in J.

Theorem [19, 20]. If A is finite, then the centre Z{A) of A is a
direct sum of copies of the cyclic group of order 2, the number of
copies being the number of equivalence classes of edges of A which
contain multiple edge sets.

Conclusion.

We have now shown that the study of categorical aspects of graph
theory can lead to new problems, questions, and insights, and that
it gives an interesting example of the relative viewpoint on set
theory as exemplified by topos theory. Further work that might
be done is in the area of “actions” of group-graphs, as well as the
investigation of higher dimensional versions of AUT(A), such as
the notion of automorphisms of ordered simplicial complexes.
The category DG is an example of what is called a presheaf
category, namely a functor category ¢ = (SETSYC™ for a small
category C. The specific constructions outlined above for directed
graphs are special cases of the fact that any such presheaf category
€ is a topos (see Mac Lane and Moerdijk, [14]) These and other
topoi yield a range of cther “environments” for mathematics, or
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for a particular study, while types of categories other than topoi
may be more suitable for other aims,
The notion of an internal group object in a category or in a

-topos is quite old. Thus the surprise is that the detailed study of

this particular example, and the elucidation of the properties of
the automorphism group-graph, had not been considered earlier.
This suggests that there may be considerable mileage to be had
from applying in new ways and in new places these and other
concepts and methods of category theory.
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Abstract of Doctoral Thesis

TOTAL NEGATION
IN GENERAL TOPOLOGY AND
iN ORDERED TOPOLOGICAL SPACES

Julie Lamont née Matier

This thesis was prepared in the Pure Mathematics Department
of the Queen’s University of Belfast under the supervision of Dr
T. B. M. McMaster and was submitted to the Faculty of Science in
April 1991. The external examiner was Professor Gary Faulkner of
North Carolina State University. The degree of Ph.D. was awarded in
July 1991.

Total negation is a procedure, formulated by Paul Bankston
fIllinois J. Math. 23 (1979), 241-252], whereby each topological
invariant P gives rise to ancther denoted anti-P, a space being
called anti-P when none of its subspaces is P except for those
whose point-sets, by virtue of their cardinalities, cannot sustain
a non-P topology. This thesis begins by surveying the previous
literature on the topic, and consolidates it by investigating the
total negations of several invariants (including separability, first
and second countability and separation axioms weaker than 77)
and by establishing previously unnoticed implications amongst a
number of conditions related to anti-compactness.

Then the theory is extended in three principal directions.
One of these arises from Brian Scott’s characterization of those
invariants P for which an invariant @ can be found whose total
negation is P, here the circumstances in which ¢ may be taken
to be hereditary are identified, and several results are obtained
about the class of all such hereditary properties @ for a given
P, for example, concerning whether or not this class possesses a
weakest or a strongest member.

Another is an exhaustive investigation of the possibilities
occurring when the anti-operation is iterated, especially with

60

¥ Total negation 61

regard to the repetitive patterns of invariants thus generated; a
sample conclusion is that for any P either every topological space
is anti®-P or else anti?-P =anti®-P [J. Inst. Math. & Comp. Sci.
{1990), 31-35].

The third extension is a broadening of these ideas into other
categorical settings, beginning with an account of total negation in
the context of ordered topological spaces in which the rdle played
by cardinality of subspaces in the definition of anti-P is replaced by
order-type. Many of the classical notions carry over to this setting,
including versions of the iteration theorem and of the Scott char-
acterization. The final chapter provides a categorical perspective
for this material, indicating the possibility of paralle! theories in
groups, dimension theory, pure partial order etc. [Boll. Unione

‘Mat. Ital., to appear].

Julie Lamont

Department of Pure Mathematics
The Queen’s University of Belfast
Belfast BT7 1NN
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Research Announcement

A NON-CONFORMING FINITE ELEMENT METHOD
FOR A SINGULARLY PERTURBED
BOUNDARY VALUE PROBLEM

D. Adam, A. Felgenhauer, H-G. Roos & M'. Stynes

‘We analyse a new non-conforming Petrov-Galerkin finite element
method for solving linear singularly perturbed two-point bound-
ary value problems without turning points. The method is shown'
to be convergent, unifermly in the perturbation parameter, of
order h1/? in a norm slightly stronger than the energy norm.
Our proof uses a new abstract convergence theorem for Petrov-
Galerkin finite element methods. Full details appear in [1].
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BENEFITS AND ADVANTAGES OF AN
INTEGRATED MATHEMATICS AND
COMPUTER SCIENCE DEGREE

T. C. Hurley

Introduction.

Computer science grew out of mathematics - it is surely enough
to mention the names and contributions of Babbage, Boole, Hil-
bert, Von Neumann, Turing. On the other hand, it is clear that
mathematics grew out of computation. The two areas are intim-
ately related. Strenuous efforts have been made ever since com-
puters were invented to separate mathematics and computer sci-
ence. Modern techniques in both areas serve only as a reminder
of how much each can be dependent on the other.

Difficulties.

In schools, mathematics is thought of as a ‘closed’ subject, whereas
computer science is thought of as a ‘technical’ subject. Thus many
creative individuals are turned off mathematics and computer sci-
ence at an early stage. :

A pure computer science degree is now considered in some
quarters to be a purely technical training and not a proper educa-
tion for a scientist or an engineer. One major employer is quoted
as saying: “T only hire mathematicians and engineers-computer sci-
ence graduates do not know how to solve problems”.

Engineering and physical science degree programnres/ ingist
on a reasonable mathematical background. This is not true for
computer science programmes and the graduate here needs this
type of background even more than an engineer—consider, as an
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example, the situation where many computer science graduates
are thrown into work which involves Field Theory.

‘Programming’ has been replaced by ‘software engineering’,
with some emphasis on the ‘engineering’ aspect. Software engin-
eers need a broad mathematical education. Computer science
graduates have no mathematical equipment in which to analyse
what they are trying to do. )

" Hoare, a well-known computer scientist, in his inaugural
address made the following assertions:

# computer programs are mathematical expressions;

s a programming language is a mathematical theory;

e programming is a mathematical activity.

Computer science is dominated by the ‘life-cycle’ which
obscures the mathematical dependency. It should be generating
new formalism, modelling with formalism, constructing proofs
and algorithms. It is stated that software engineers do not con-
struct theories but apply methods, thus arguing that it is a closed
problem and that computer systems now carry out mechanical
methods. However the methods come out of a theoretical under-
standing. Everything in software engineering is seen in terms of
the final product and the theoretical context is overiooked.

There are great difficulties in atiracting students to mathem-
atics degrees, especially from those who come into Arts or Science
degree programmes with no specific subject in mind (‘undenom-
inated' programmes). We have to compete with other subjects
which are perceived to be more vocational, are also perceived as
easier options and do not have the high fallout rate that honours
mathematics has. ‘

Students of mathematics lack motsvation and have inadequate
preperation; this contributes to their subsequent subject choices.

On the other hand it is recognized that mathematicians, when
they do solve problems, are unable to communicate their solution
to others. '

An integrated mathematics and computer science degree will
go some way to rectifying many of these problems.
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Common interests?

What areas ought mathematicians be interested in? In the soft-
ware development process, velidation and verification are now
extremely important. “Get the right system and get the sysiem
right”. The ideas of modelling and proof are emphasized again and
again. .

To quote a person working in the industry: “In the softwar
engineering process, the use of mathematical ideas requires more
resources &t the initial stages but the total resources are less and
an enhanced product ensues”.

Te be more specific, the following mathematical ideas should
play an important part in the education of a software engineer:

e formal methods;

modern logics;
parallel processing;
modelling, forecasting;
complexity;
computability;
encryption and coding;
statistics and probability (nefworking is a probabilistic
entity);
e neural networks.

e & & & & & B

Benefits and advantages.

It is nice to make a list, so here goes! (Thanks to many articles
and talks from which these have been taken.)
Benefits of an integrated degree {not necegsarily in order):
& volatile and exciting area;
o focused programme;
e it still embodies essence of mathematics when carefully
thought out;
e it facilitates development of PSQs (personal skills and qual-
ities) through group and individual projects;
e vocational;
e accessibility to potentially good students;
e it prepares potential school teachers in both computer science
and in mathematics;
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# it is a laboratory based programme and can lead to better

funding;

modern applicable area;

employment prospects for students are greatly increased;

accessibility to funding agencies and politicians;

it leads to active applications and involvement by the student

who is encouraged to build his/her own system with great

satisfaction;

# the emphasis is on abstraction and proof.

e it is not the ‘death of proof’ but a deeper understanding of
what ‘proof’ is will ensue from experiment;

@ students can see harder continuous mathematics in a new
light;

o there is less emphasis on graduates as technicians and more
emphasis on science;

e the image of mathematics and of computer science is enorm-
ously improved.

Employers’ perspective.

Where is mathematics needed in industry? Do employers recog-
nize that mathematics is needed? Again we might ask: “Do
employers and colleagues within industry support mathematical
activity?". These are difficult questions and the answers are of
course dependent on the industry in question. The level of math-
ematical activity in different industries varies enormously. If we
look at the worldwide context then we see that the industries using
computer science may be roughly bracketed as follows:
1. Engineering houses, computer manufacturers, research labor-
atories, scientific users (such as the Meteorological Office).
2. Software houses.
3. Commercial users. These could be subclassified as:
{a) utilities;
{b) manufacturers;
{c) finance institutions;
(d) retail outlets.
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" These are listed in order of acceptability of the mathemat-
ical tradition. The ones within group 3 in fact have traditicnally
employed many non-graduates in their computing areas.

Those concerned with rigorous development alsc include the
military and data-security teams within commerce and finance.

These classifications are on an international basis and Ireland
has its own particular problems as a small open economy, with
manufacturing but little research and development. Our employ-
ers also have the narrow view that graduates should be {rained
for a specific job but overlocok how things are changing rapidly
and that a well-trained mind with the ability to think and solve
problems as and when they arise is what is needed.

Where do the graduates go?

There are now figures available from different countries as to where
mathematics graduates get employment. The figures for Ireland
cannot compare as we have so few honours mathematics graduates
in comparison to other countries - e.g. the UK has the order of
4000 mathematics graduates each year, which, pro rata, would
amount to about 350 graduates for Ireland. We are nowhere near
this number. ‘

The British Sunday Times on 8/8/91 reports: “Britain faces
an acute shortage of mathematicians”. If this is so, where does
this leave us? Many of our good mathematics students go into
engineering and the school culture is such that those good at
mathematics are encouraged to apply there. Would those good
at English be encouraged to do a degree in, say, accountancy?

Mathematics is not looked on as a career in itself and
nowadays additionally some of the best mathematicians are
attracted into business and commerce. If they are good at math-
ematics and must pursue a career in business, why is it not
pointed out that a degree in mathematics and economics is a
much better preparation? !

1 See the article by Joel Franklin on Mathematical methods of
economics in the American Math. Monthly, 80 (1983), 229-244.
Among other things in this article it is pointed cut that seven of
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In the UK, 26% of mathematics graduates? go into the com-
puter industry and 52% into finance. Of the mathematics gradu-
ates in Ireland that did net go on to further study, 82% (1991
figures) went into financial work and computing.? Graduates with
an integrated degree would be much better prepared for careers in
these areas.

Information Technology.

One of the buzz-words at the moment is information technology
(IT). I, and many others, doubtless, are confused at what exactly
IT is. It can mean different things to different persons, depending
on whether you are a scientist, engineer, business person, soci-
ologist, industrialist, philosopher or psychologist. The EU has
classified IT under five headings. T am grateful to Pat Fitzpatrick
for this information.

1. Software engineering or knowledge-based information sys-

tems.
. Al (artificial intelligence}.
. VLSI {very large scale integration).
Communications. '
Human interface.
Of these, only one, the human interface does not require
a substantial mathematical background perhaps. Where does
mathematics come into these areas? Pat Fitzpatrick again has
some of the answers. Algorithm design is fundamental for VLSI,
logic design, LISP for Al and coding theory, cryptography, digital
signalling are all areas of importance in communications. The
importance of mathematical ideas to software engineering has
already been dealt with. Even within the human interface, the

SRR

the previous twelve Nobel prizes in Economics ‘involved work that
is heavily mathematical’.

2 Interestingly, the career booklet for mathematical graduates
containg computer science as a subsection.

3 Statistics on graduate careers only give destination for the
year after first graduation.
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ideas behind security and authentication sre now increasingly
important.

Computer Algebra* systems.

It is my opinion that it is inconceivable that a graduate in math-
ematics, and I would argue now a graduate in computer science,
would nowadays not have had experience of computer algebra sys-
tems. It is like saying that a chemistry graduate never did any
laboratory work! A graduate in many years time will continue
to use mathematics if he/she realizes that some of the hard cal-
culations and theoretical background, which he/she has prcbably
forgotten, can be done by machine.

Computer algebra systems are likely to become as useful to
‘scientists and engineers as word-processors and data-bases have
become to all.

Cohen remarks: “A mediccre mathematician with a com-
puter might be able to simulate the creative powers of a top notch
mathematician with pen and paper”. How much more could a
top-notch mathematician produce?

Packages like MAPLE, MATHEMATICA, REDUCE, CAY-
LEY (to be replaced by MAGMA soon), GAP, AXIOM should
be, in fact must be, integrated within cur courses. From our
experience it is much easier to integrate these within an integ-
rated mathematics and computing degree, where an element of
laboratory and experimental work already exists.

Generally speaking a package like MAPLE, REDUCE or
MATHEMATICA would go well with analysis-type courses or
applied/mathematical physics courses, and one of CAYLEY (scon
to be MAGMA), GAP or maybe AXIOM® should be integrated
within abstract algebra courses such as group theory, field theory,
coding theory or even homological algebra. Also MATRIX, for

1 Computer Algebra is also often referred to as symbolic
manipulation.

5 AXIOM is a package which has great potential, especially
when you need to build your own abstract system, but is not
available for many machines yet, is expensive and difficult to use.
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linear algebra and linear programming, is an excellent CAL
(computer assisted learning) package which goes down well with
students. In addition, MACTUTOR, for MACs, is an excellent
all-purpose CAL package.

Use of computer algebra does however tend to increase the
workload on the instructor and many mathematics departments
and colleges are as yet unwilling to recognize this fact and indeed
do not recognize the importance of considering mathematics as a
laboratory-based subject.

Leibnitz stated: “.... it is unworthy of excellent men to lose
many hours like slaves in the labour of calculation, which could
safely be relegated to someone else if the machine were used”.

Syllabus.

There are various suggestions as to what should be included in a
syllabus for a joint degree. Not all areas can be covered and choices
must be made. What is important is that a good scientific training

in both mathematics and computer science should be an essential .

part of any programme. Some might argue that a language and/or
business skills and/or placement should be part of the programme
but incorporating two major subjects does not leave much time
for anything else, even within a four-year course. Projects in all
years will develop PSQs.

There can be core courses and options to suit individual
tastes. It is important to note however that this an integroted
programme and that although some of the mathematics and com-
puter science courses are independent, the programme should be
drawn up by reference to common areas of interest and depend-
ency. It is not a matter of simply combining the subjects as in a
traditional two-subject degrees.

To spell out a full syllabus would be pointless here but some
suggestions on related areas that could be included are given
below—fundamental courses are in addition to these.

Within mathematics, the importance of discrete mathematics
to computer science is fundamental and has now been recognized
as such but this is only part of the picture. Discrete mathemat-
ics should include algorithms, recursive function theory, Boolean
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algebra, logic and circuit design. Analysis courses are alsc an
important element and must be compulsory in the early years. A
good idea which works well at UCG is to have courses on metric
spaces end fractal geometry. Other ideas to think about: have a
course in number theory and cryptography; include coding theory
with field theory, and semigroups and machines with a group
theory course. Category theory: “Categories themselves are the
models of an essentially algebraic theory and nearly all derived
concepts are finitary and algorithmic in nature” {John Gray in
Computational Caiegory Theory). This is all good mathematics.

Numerical analysis cuts across both areas and could be
included either within the mathematics core or within the com-
puter science core areas.

In computer science, courses on programming, operating sys-
tems, networking and communications, data bases, architecture,
modelling, algorithms, computability, complexity, graphics, par-
allel processing, artificial intelligence and logical aspects of com-
puting, would appear to be fundamental. Consideration should
also be given to courses on autcmated reasoning and neural net-
works which would fit in well with the mathematics. In general,
the computer science element in a joint programme should be dir-
ected more to software considerations.

Everyone has their own favourite language but at the risk of
upsetting some persons I would suggest that C and C+-+ are the
most useful {and mathematically oriented) languages now used in
science and industry. This also fits in well with operating systems
as many of these were originally written in C.
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Ceonclusion.

The programme suggested is what is needed and will train both
mathematicians and computer scientists for worthwhile careers. It
will also satisfy the needs of industry and the commercial world.

Both subjects have much to learn from one ancther. The
debate will continue!

T. C. Hurley
Department of Mathematics

University College
Galway

.

THE IRISH INTERVARSITY COMPETITION
IN MATHEMATICS

' Timothy Murphy

What, in your opinion, is the next term in the sequence
3,5,1,15, 11,107

This will be a cinch. Easy one to stert with. Thanks, Des.
Knew he wes a good sort.

Let’s see. Probably squeres minus 1 ... thet will explain the
15, anyway. No, doesn’t seem to be thet. Maybe it’s not quite as
simple as I thought . ..

The Irish Intervarsity in Mathematics came out of the fertile
brain of Des MacHale. It was a natural extension of the Super-
brain Competition that Des has been running in UCC since 1984.
(The question above was the opening problem in the 1987 Super-

“brain paper.)

Ive got it! Should have thought of that earlier. It’s obuious.
Just ¢ common-or-garden code, 1 for A, 2 for B, and so on. Let’s
see... CEAOKJ. ... - What language is this? Maybe the Viking
name for Cork? Well, it was worth a iry, anywey.

The Intervarsity was first held in Cork, in 1990. It moved to
TCD for the next 2 years; and UCG hosted the event this year.

The competition was won by TCD in 1990 and 1991, and by
UCC in 1992 and 1993. (UCC and UCD tied in 1993; but the
prize went to UCC for the best individual result.)

Although the competition is mainly a team event, there is
also an individual winner each year. Paul Harrington of TCD
won in 1990; Aiden O'Reilly of Maynooth in 1991; Cian Dorr of
UCC in 1992; and Peter Hegarty of UCC in 1993.
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Maybe it’s the number of steps on the stairs in the UCC Maths
Dept ... Cork bus numbers ... The ages of Des MacHale's chil-
dren, in alphabetical order ... The number of moons of the planets
... The winners of the Eurovision Song Contest ...

f've always suspected that maen MacHale had a sadistic streak.
Now calm down. Ive only token 20 minutes on this gquestion so
far. If he's a sadist, we must all be mathematical masochists to
sit here and teke this sort of thing from him. Everyone else seems
to be scribbling away. Even that awful ass from UCD. What was
it Tartakower said, “Why am I clways being beaten by fools?”

Come on, pull yourself together. Only 25 minutes gone. Let’s
abandon this question. But now I've invested so much time in it
T know it must really be simple.

The universities in Northern Ireland are invited each year,
and were expected in 1991, but didn’t materialize. It would be
nice to make a special effort to persuade them to take part next
year. Perhaps with a promise of a meeting in Queens’ the following
year?

‘Women are also conspicuous by their absence. I think there
were 2 in Maynooth's team last year, and that was about it. | won-
der why? In TCD the students organize a selection test (which
Richard Timoney and I usually set) but very few women will take
part, even though they constitute some 30% of our student num-
bers (in maths). In 1991 Helen Joyce—who was our best student
for some years as far as exam results are concerned (she went on
to get a distinction in Cambridge Part III)—absolutely refused,
even under extreme pressure.

I've got ! Not the letters themselves, but the numbers of
letiers in the words. A well-known soying, with 5 letters in the
first word, 3 in the second, and so on. Well, what has 15 letters?
Intervarsity? Not guite. Differentiation? Maybe.

I wonder if Kraft-Ebbing had o cotegory for people like
MacHele. Does he belong to a recognizable criminal type? Don’t
you see the similarity between his features and those of Hannibal
Lector?

The questions in the Intervarsity were set by Des MacHale in

] Intervarsity Competition 75

the inaugural year 1990, and again this year. Richard Timoney
and I set the paper in the 2 intervening years.

What sort of questions do we set? Well, without saying this
on oath, they shouldn’t require much if anything beyond Leav-
ing Certificate standard. And though they shouldn’t be too pre-
dictable, there are certain recognizable families of problems, or
perhaps one should say, families of sclutions.

First, there are the problems involving moduli. There was a
nice one of these in the 1987 Superbrain:

s 3141543141535314156314157314158314159 a prime?

So that must be it! At last. Fancy taking all that time to hit
on it. It’s just o calculation modulo n, for some n. Probably just
multiplication by a, for some a. So that’s it ... just have to work

‘out n and a. T suppose n must be 16, since the largest number is

15. And a i3 ... Damn, I was sure I had .

Then there are the infinite series to be summed. Here there
seem to be 2 common themes: firstly, differentiating power-series
and substituting (usually z = 1); secondly, expressing the nth
term a(n} in the form

a(n) = b{n + 1) — b(n),

where b(n) ~+ 0, so that Za(n) = b(1). I rather liked a variant

’ 1
of this I hadn’t met before, using the relation

—b
tan~la — tan~1 b = tan~! — ,
- : 1+ab
which is just another way of saying
tanf —tan ¢
tan(f — ¢p) = —— .
an %) 14 tanftang

A pretty example of this is the sum

i tan~! L
- n?’
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Another is
- .
Zl n‘+n+1

A series surprisingly susceptible to the same difference tech-
nique is: '
)
—2 41
What do you mean, ten minutes more? Oh my God, my watch
has stopped. Wait o moment. Inspiration, where are you? I never
liked that man MacHele. Did you notice his eyebrows? The crime
rate has rocketed since he storted his Superbrain. Surely parents
don’t expect their children to be subjected to this kind of thing when
they send them to college.

Then there are the ‘sporadic’ questions—once-off, never seen
before and never to be seen again. There was one like that in the
1990 Intervarsity: Find any solution in positive integers of

zoy? = 2.

The School of Maths in TCD ground to a halt for a week, as we
all looked for solutions; and I noticed the mathematicians from
UCD looking very tired and emotional at that time.

What do you mean, is that all I've written? I've got better
things to do than sit around all day answering silly questions. I'm
going for a drink. You see what that man has done to me, T never
drink at this time of day.

OK, it must have been easy. Shall I ask that nasty type sitting
in front of me, who spent the entire time scribbling. No. It would
be too shaming. There are some things it is beiter not to know.

Timothy Murphy
School of Mathematics
Trinity College

Dublin




