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NOTES ON APPLYING
FOR IM.S. MEMBERSHIP

1. The Irish Mathematical Society has reciprocity agreements

with the American Mathematical Society and the Irish Math-
ematics Teachers Association.

. The current subscription fees are given below.

Institutional member RL50.00
Ordinary member w£10.00
Student member RE4.00
LM.T.A. reciprocity member IRL5.00

The subscription fees listed above should be paid in Irish
pounds (puint) by means of a cheque drawn on a bank in
the Irish Republic, a Burocheque, or an international money-
order.

. The subscfiption fee for ordinary membership can also be

paid in a currency other than Irish pounds using a cheque
drawn on a foreign bank according to the following schedule:

If paid in United States currency then the subscription fee is
US$18.00.

if paid in sterling then the subscription fee is £10.00 stg.

If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$18.00.

The amounts given in the table above have been set for the
current year to allow for bank charges and possible changes
in exchange rates.

. Any member with a bank account in the Irish Republic may

pay his or her subscription by a bank standing order using
the form supplied by the Society.

. The subscription fee for reciprocity membership by members

of the American Mathematical Society is US$10.00.
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. Subscriptions normally fall due on 1 February each year.

. Cheques should be made payable to the Irish Mathematical
Society. If a Eurocheque is used then the card number should
be written on the back of the cheque. .

. Any application for membership must be presented to the
Commitiee of the I.M.3. before it can be accepted. This
Committes meets twice each year.

. Please send the completed application form with one year's
subscription fee to

The Treasurer, I.M.S.
Department of Physics
Begional Technical College
Cork

Ireland

iv

IMS CONSTITUTION AND RULES

Accepted unanimously by the Society
20 December 1993

1. The Body Corporate hereby constituted shall be knowa in

English as The Irish Mathematical Society and in Irish as
Cumann Mazamazice na h&ireann and shall hereinafter
be called the Society.

. The Society is incorporated for the purpose of promoting and

extending the knowledge of mathematics and its applications.
Activitles proper to the Society shall include the following:
(i) holding meetings of the members of the Society and vis-
itors introduced by them,

(1i) publishing and distributing the Bulletin of the Society,

{iit) organizing and supporting conferences, lectures, and dis-
cussions on subjects of special and general interest to
mathematicians,

(iv) discovering and making known the views of the mem-
bers of the Society on mathematical matters of public
interest,

(v) co-operating with other organizations to achieve the pur-
pose of the Society.

. The officers of the Society, hereinafter called the Officers,

shall consist of a President, a Vice-President, a Treasurer,
and a Secretary. Only persons who are Ordinary members of
the Society may hold Office.
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4. The governing body of the Society, hereinaiter called the

Committee, shall consist of the Officers and at least eight
other Ordinary members of the Society. The Committee shall
meet at least twice during each year, the President to be the
convener. The guorum for each Committee meeting shall
be five members of the Committee, including at least two
Officers.

. Membership of the Society shall be classified as follows:

(i) Ordinary membership,
(ii) Institutional membership,
(iif) Honorary membership,
(iv) Student membership.

. Any person may apply to the Treasurer for Ordinary member-

ship. Auy institution may apply to the Treasurer for Ordin-
ary or Institutional membership. The election of an Ordinary
or Institutional Member shall rest with the Committee, whose
decision shall be made at the first meeting of the Commit-
tee that follows the receipt by the Treasurer of the proper
application for membership. .

. Any three Ordinary members of the Society may propose a

candidate for election to Honorary membership by presenting
such a proposal to the Committee. Deciding whether or not
to accept such a proposal shall rest with the Committee. If
the proposal is accepted by the Committee it shall then be
voted upon at the next general meeting of the Society and
carried if and only if there is no vote against it.

. A candidate for election to Student membership must be a

registered student at an institution that is an Institutional
member of the Society and may be proposed for membership
only by that institution. The election of a Student member
shall rest with the Committee. Student membership shall
be for one year only but may be renewed if a new proposal
for membership is made. (In these Articles and Rules year
always means the calendar year from the first day of January
until the thirty first day of December.)

!
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9.

io.

11.

1z.

13.

Every Ordinary and Institutional member shall pay a sub- .
scription fee to the the Society at the times and of the ™
amounts specified in the Rules.

The Committee may agree with any other mathematical soci-
ety that any member of that society who is also an Ordin-
ary member of the Irish Mathematical Society may be des-
ignated a reciprocity member of the Society. The Committee
is empowered to specify a special subscription fee for recipro-
city members. Such an agreement with another mathematical
society shall be made only if that society admits members of
the Irish Mathematical Society as reciprocity members in like
mAnner.

There shall be at least two general meetings of the Society
in each year; the last general meeting held in a year shall
be known as the Annual Generael Meeting. No motion may
be passed at a meeting of the Society unless at least seven
Ordinary members are present when it is proposed and when
it is decided upon.

At each Annual General Meeting an election shall be held to
fill each Office that would otherwise be vacant in the following
vear. A single election shall then be held to fill a sufficient
number of seats on the Committee to ensure that there are
twelve members on the Committee in the following year. Any
contested election shall be decided by secret ballot using the
single transferable vote.

The Committee shall have the power to co-opt one or more
additional members at any time provided that the total mem-
bership of the Committee does not exceed fourteen. The
period of service on the Commmittee of a co-opted member
shall end on or before the last day of the year in which that
member was co-opted.
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i4.

i5.

18.

17.

The Committee shall, from time to time, appoint an Ordinary
member of the Society to be Editor of the Bulletin of the
Society. The Editor of the Bulletin, whether or not a member
of the Comimittee, shall be invited to attend all meetings of
the Committee.

Any change to this Constitution by way of making a new
Article or removing or amending any existing Article shall be
valid if and only if the following procedure is followed:

(i) a proposal to change the Constitution is approved by at
least seven members of the Committee at a meeting of
the Commitiee;

(i1) the details of the said proposal are published in the Bul-
letin of the Society;

(iil) the said proposal is presented to a general meeting that
takes place no sooner than one full calendar month after
the publication of the said proposal in the Bulletin;

{iv) the said proposal is put to a vote and is approved by ten
Ordinary members or at least two thirds of the Ordinary

members present at the aforésaid meeting, whichever is-.

the greater.

The Society shall make Rules for the regulation of the busi-
ness of the Society. No Rule may conflict with any Article
of this Constitution. A proposal to make, amend, or revcke
a Rule or Rules may be made at any general meeting of the
Society. Such a proposal shall be passed if and only if it is
put to a vote and is approved by seven Ordinary members or
at least two thirds of the Ordinary members present at that
meeting, whichever is the greater.

Each motion submitted to a general meeting shall be passed
if and only if it is approved by a simple majority of the mem-
bers present provided that no Article of this Constitution
stipulates otherwise. '
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RULES

Applying for membership

. A person can make a proper application for election to Ordin-

ary membership only by completing the appropriate applic-
ation form (which can be obtained from any member of the
Committee) and sending it to the Treasurer together with the
subseription fee for one vear.

. An institution can make a proper application for election to

Ordinary or Institutional membership only by completing the
appropriate application form {(which can be obtained from
any member of the Committee) and sending it to the Treas-
urer together with the subscription fee for one year. The
institution mist name a person {or persons) who will act on
its behalf in dealings with the Society.

. The election of a person to Student membership may occur

only at the last Committee meeting of a year. Any Student
member elected shall be a member of the Society for the
following year.

. The Treasurer shall ensure that all proper applications for

election to Ordinary or Institutional membership of the Soci-
ety are decided upon by the Committee as laid down in the
Constitution. The subscription fee paid by any candidate
who is not elected to Ordinary or Institutional membership
shall be returned to the candidate by the Treasurer.

. The Treasurer shall have the discretion to add the name of

any candidate for Ordinary or Institutional membership to
the list of members as a provisional member until the Com-
mittee next meets. '
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10.

11.

Subscriptions

. Every Ordinary and Institutional member shall pay during

January in each year an annual subscription fee for that year.
The current subscription fees are given below.

Institutional member IR£50.00
Ordinary member IRL10.00

. The Committee shall have the discretion to end the mem-

bership of any Ordinary or Ipstitutional member whose sub-
scripiions are more than eighteen months in arrears.

Officers and Committee

. The term of office of each Officer and the term of service of

each other elected member of the Committee shall be two
consecutive years starting on the first day of January that
follows the meeting at which that Officer or member of the
Committee was elected. The terms of office of the President
and Vice-President shall start in an odd-numbered year; the
terms of office of the Treasurer and Secretary shall start in
an even-numbered year.

. No person shall serve on the Committee for more than three

terms consecutively. No President shall hold office for two
consecutive terms.

The Committee shall have the discretion to appoint one of its
members to take over the duties of any Officer of the Society
who is unable to perform these duties; such an appointment
shall end at or before the first general meeting that takes place
after the appointment was made. If, at any general meeting,
any Office should be vacant, then an election shall be held to
fill that Cffice for the remainder of its current term.

The Committee shall form a sub-committee of at least four
of its members, including two Officers, to manage the affairs
of the Society between the times of Committee meetings.

IMS Constitution 7

13.

14.

15.

. The Committee shall appoint four Ordinary members of the

Society to form an Editorial Board for the Bulletin of the
Society under the chairmanship of The Editor of the Bulletin.
This Board shall be responsible to the Committee for the
publication of the said Bulletin.

The President shall be the chief executive officer of the Soci-
ety. The normal duties of the President shall include chairing
all meetings of the Society and of the Committee. The Vice-
President shall act in lieu of the President as necessary.

The Secretary shall keep minutes of the meetings of the Soci-
ety and of the Committee and shall issue notice of meetings
t0 members resident in Ireland.

A financial statement for each year shall be written by the
Treasurer holding office in that year, shall be duly audited
by two persons appointed by the Committee, and shall be
submitted to the first general meeting of the following year.




Minutes of the Meeting
of the Irish Mathematical Society

Urdinary Meeting
8th April 1993

The Irish Mathematical Society held an ordinary meeting at
12.15pm on Thursday 8th April 1993 at the DIAS, 10 Burlington

Road. Eleven members were present. The president, B. Gold-
smith, took the chair.

1. The minutes of the meeting of 22nd December 1992 were
approved and signed.

2. There were no matters arising.

3. Bulletin

BD. Tipple reported that the Bulletin is regularly delayed at the

Folas printers. The possibility of not using Eolas in future was
discussed. This might mean cutting back on other expenditure.
B. Goldsmith remarked that the Bulletin is seen by many as the

main function of the Society. The Committee will look into the
matter.

4. IMS Constitution

A new draft constitution (prepared by M. O Searcéid and
D. Tipple} will be circulated to all members before the next
ordinary meeting. A. G. O'Farrell suggested that the main
changes to the constitution be explained to members.

5 EMS

B. Goldsmith read out his reply to a letter from the EMS asking
for the IMS’s views on the EMS. A. G. O'Farrell felt that the EMS
should pressure the EC to stop favouring research with a “payoff”
in preference to basic research. He also felt that Ireland should
get as large a representation on the EMS as possible. The lack
of funding of basic research by the Irish Government was noted.

8
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3. Dineen felt that some prominent members of the EMS had a
very narrow view of what should be funded. He alse expressed
concern at the EMS lending its name to certain conferences solely
to help them secure funding. R. Timoney felt that the EMS meet-
ing of fourteen people in Budapest was unnecessarily expensive.
1t was generally felt that the EMS is a very political organization,
with an East v. West split, and also a split between those countries
favouring individual membership and those favouring institutional
membership.

Tt was agreed that A. G. O'Farrell need not represent the IMS
at the forthcoming EMS meeting in London.

6. Treasurer’s business

The Treasurer’s report was circulated.

9. Dineen felt that the very low membership fee for overseas math-
ematicians loses the IMS respect.

The IMS pays an annual membership fee of £200 to the EMS. This
is in addition to individuals’ fees. The IMS may try to renegotiate
this at some stage. '

7. September meeting
A preliminary notice of this year’s IMS meeting in Cork will be
e-mailed shortly.

8. There was no other business

The meeting closed at 1.10pm.

(Graham FEllis
University College
Galway




CONFERENCES AT
UNIVERSITY COLLEGE DUBLIN
September 1994

Tth Annual Meeting
of the Irish Mathematical Seciety

5—6 September 1994

Speakers: J. M. Anderson {(London), P. M. Gauthier (Montzeal),
B. Goldsmeith (DIT), A. J. O'Farrell (Maynooth), J. V. Pulé
(UCD), R. Ryan (UCG).

Requests for accommodation should be submitted by 1 July, 1994.
Conference dinner on Monday 3 September, 1994.

Further information: 8. Dineen, S. Gardiner (addresses below).

Polynomials and Holomerphic Functions
on Infinite Dimensional Spaces

7-9 September, 1994
Further information: S. Dineen, P. Mellon, C. Boyd.

Tel: +353 1 706 8242
+353 1 706 8265

Fax: +353 1 706 1196

email: sdineen@irlearn.bitnet

gardiner@irlearn.bitnet

10

TRACE—ZERO MATRICES AND
POLYNOMIAL COMMUTATORS

T. J. Laffey and T. T. West

Let F denote a field and M, (¥) the algebra of n x n matrices
aver the field F. If X € M, (F), tr{X) will denote the trace of the
matrix X. A well known result of Albert and Muckenhoupt [1]
states that if tr(X) = O then there exist matrices A, B € M,(F)
such that X is the commutator of 4 and B,

X =[A,B] = AB — BA.

Let p denote a polynomial in F[z] of degree greater than or equal
to one. The Polynomial Commautator of A and B relative to p is
defined to be

plA, B] = p(AB) — p(BA).

It is easy to check, by examining the eigenvalues, that tr(p{4, B])
is always zero. The Albert-Muckenhoupt result states that if X &
M, (F) with tr{X) = 0 then, for p(zx) =z,

X =p[4, B,

for some A, B € M, (¥). We show that, if the field ¥ has charac-
teristic zero the Albert-Muckenhoupt result may be extended to
general polynomials of degree greater than, or equal to, one.

Theorem. Let F be a field of characteristic zero and let p € F|z]
have degree greater than or equal to one. If X € M,(F) is of trace
zero then there exist matrices A, B € M, (F) such that

X = p|[A, B].
First we prove the following elementary

11
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Lemma. If F is a field of characteristic zero and X € M,(F) is

of trace zero then we can choose a basis of F™ such that, relative
to this basis, X has zeros on its main diagonal.

Proof: Since tr{X) = 0 and F is of characteristic zero, X is not:

a scalar matrix. Thus there exists a vector v € F™ such that v
and Xv are linearly independent.

Set v1 = v, vo = Xv and extend to a basis vy, vs, ... ,v, of
F™. Relative to this basis

X = [:E,'j]nxﬂ with 1 = 0.
Farther the matrix
Y =[zyl(n-1)xmn—1) (2L4,5<n)

has trace zero and the proof may be completed by induction.

Proof of Theorem: Since tr{X) == 0 we may take
X = [Tijlaxn Withzy =0 (1 <i<n)

Now
X=L-U,

where L is a lower triangular matrix, U is an upper triangular
matrix and both have zeros on the main diagonal.
Let D be the diagonal matrix
D = diag(d,, ..., dn),
then p(D)} is the diagonal matrix
p(D) = dla'g@(dl): BRI p(dn))-,

and since F is an infinite field and the degree of p is greater than,

or equal to, one, we may choose the d; so that the p{d;) are distinct :

(1 <i<n).

b Trace-zero matrices 13

Then '
X =(L+p(D}) — (U +p(D))

=L,-U
where Ly = L + p(D) is lower triangular and U} = U + p(D)
is upper triangular. The diagonal entries of L; and U, are
p(d;), (1 <i<n), and since these have been chosen distinct,

the matrices Ly, [7; and p(D) are all similar. Thus there exist
invertible S, T € M, (¥} so that

X = 8§ 1p(D)S - T 1p(D)T,
= p(S~1DS) — p(T1DT).

Taking A = §'T and B =T "1 DS gives
X = p(AB) — p(BA) = p[4, B (*)
which completes the prool.

Remarks

1. The result does not remain true if the restriction that F is of
characteristic zero be dropped.

2. Tt would be interesting to investigate the latitude in equation
(%), for fixed X and p, in the possible choices of Aand B.

Reference

[1] A.A. Albert and B. Muckenhoupt, On matrices of trace zero, Michigan
J. Math. 4 (1957), 1-3.

T. J. Laffey, . T T. West,
University College, Trinity College,
Dublin. Dubilin.




A NEW GEOMETRIC INEQUALITY
Michedl O Searcéid
Abstract: We prove the conjecture that a triangle whose three vertices
Lie in the three sides of a larger triangle must have perimeter at least

as large as that of one of the other small triangles which are created by
its inscription there; we also give proofs of some related results.

Introduction

- On reading the abstract above, one might suspect that the title of
this article ought to have been followed by a question mark. Tom
Laffey, who first drew my attention to this conjecture, proved
below as Theorem 3, pointed out that it had been listed as an
unsolved problem by Kazarinoff [1, p78] and that, had it been
proved in the meantime, it would most likely have appeared in
the compendious work [2] — where it is not included:

It might be of interest to TEX enthusiasts if I add a little per-
sonal note here before embarking on the proof. Unlike most prob-
lems we encounter in modern mathematics, questions of this sort
can be settled quickly and almost with certainty by using a com-
puter. It is therefore worthwhile to try this avenue before expend-
ing time on possibly futile mathematical calculations. Believe it or
not, my choice of language for testing the hypothesis was Knuth's
character drawing programme METAFONT. It turns out that a
METRFONT pregramme for this type of task is shorter and cleaner
than one written in a standard all-purpose programming langnage,
-and that, provided one is careful to avoid arithmetic overflow, it
is alsa accurate and quick. My short programme tested 800 inner
triangles, chosen with partial randomness, in each of 1,000 outer
triangles, also chosen with partial randomness. The programme
took no more than a few minutes to write. It made the 800,000

14
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tests and failed to find a counterexample to the conjecture. Given
the nature of the conjecture, in particular the continuity involved
in it, this made it at least as likely to be true as Fermat’s Last
Theorem.

Notation If A, B and C are peints in a plane, we shall use
a(ABC) to denote the sum of the three lengths |BC], |[CA| and
|AB|. If ABC is a triangle, then AABC will denote its area;
otherwise AABC should be understood to be 0.

Perimeter theorems

It is not difficult to see that a proof of the truth of the conjecture
will follow from a few technical manceuvres, and we shall demon-
strate that such is the case, if we can establish first a related result,
which we present now as Theorem 1.

Theorem 1. Suppose ABC is a triangle and suppose X, Y and
7 are points lying on the lines BC, CA and AB respectively.
Then .

max{o(AY Z), (X BZ),0(XYC)} > %J(ABC)

with equality if and only if X, Y and Z are the mid-points of the
line segments (BC], {C A] and {AB] respectively.

C
X

A Z B

Proof: We denote by a, b and ¢ the lengths of the line segments
[BC], [CA] and {AB] respectively. When X, Y and Z are the
mid-points described, the equality is well known. We assume,
therefore, without loss of generality, that |AZ| > c.
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Now if |CY| < 1b and we denote the mid-points of [AC] and
[AB] by M and NV respectively, then we have

o(AY Z) = |AM| + |MY| +|Y Z| +|ZN| + [N A|
1
> |AM| + |MN| +|NA| = Z0(ABC)

and the required inequality follows. We may therefore assume
that [CY| > 3b. Similarly, we may assume that |[BX| > fa. We
now define r, s and ¢ to be the strictly positive real numbers given
by the equations

' 1 1 1
BX|=Za+r, [CY|=gbts,  |AZ|= e+t
Now ‘

o(4Y2) < S0(ABC)

1 1
= Sett+ob—st

oo« () =2 () (- ) s

1 1 1
< — — —
S a+25+2§

1 N 2 1 1
= (§C+t) + (ﬁb—s) -2 (EC'Ft) (Eb—s> COSA
1 2
< (§a+swt)

1
= Z(bz + ¢ — 2bccos A) + ¢t — bs'— (bt —¢cs — 2st) cos A

1
§202+sa-ta-2st

= (a+b+cj(t—s) < (bt —cs —2st)(1+ cos A)
= 2bc(t—s)<{bt—cs—2st}{b+c—a)
=>0<bt(b—c—a)+es(b—c+a)—2st(b+c—a)

b
=>0$;(b—c—a)+%(b—c+a)—-2(b+c—a).

A New Geometric Inequality 17

Similarly

o(XBZ) < $0(ABCY = 0< ¢{c—a—b)+2{c—a+b)—2{cta—b)

and

(XY C) < 1o{ABC) = 0 < 2(a—b—c)+2(a—b+c)—2(a+b—c).
That these three inequalities cannot be simultaneously sat-

isfied is clear, because their addition would lead to the absurd
0 < —2(a+ b+ ¢). The theorem follows. g

Lemma 2. Suppose ABC is a triangle and P and Q are points
on the sides AB and AC respectively, with |[PB| = |QC| > 0.
Then |PQ| < |BC|.

A P B

Proof: Set |AB! =¢, |CA| =b, |BC| = and |PQ| = d.
Then
|BC|* — |PQP?
= (c2 + b? — 2bccos A}—
{{c = d)? + (b—d)* — 2(c — d)(b — d) cos A)

= —2d* + 2ed + 2bd + 2(d® — bd — cd) cos A

= 2d(b+ ¢ —d)(1 — cos A) >0,
and the lemma. is proved. al

Theorem 3. Suppose ABC is a triangle and X, Y and Z are
points in the line segments [BC}, {CA] and [AB] respectively.
Then

o{XY Z) > min{c(AY Z),0(XBZ),c{XYC)}
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with equality if and only if X, Y and Z are the mid-points of the
line segments [BC), [CA] and [AB] respectively.

Proof: The function f defined on the compact set [BC] x [C A} x
{AB] by

f(X,Y,Z) = o(XY Z) — min{o(AY Z),6(XBZ),c(XYC)}

is continnous and therefore attains its minimum value. Suppose
this minimum vale is attained at (P, @, B). Since f has the value
0 when X, Y and Z are the mid-points of the line segments [BC],
[C A} and [AB] respectively, we have f(P,Q,R) < 0. It is easily
verified that if any of X, Y or Z coincides with any of 4, B or
C then f(X,Y.Z2) > 0. It follows that P, ¢ and R are internal
points of their respective line segments.

We want to establish firstly that the three quantities o(AQR],
e{FPEBR) and o(PQC) are equal. To this end, we accept, without
logs of generality, that e(AQR) < o(PBR) < o(PQL).

A R R B

Suppose now that ¢(AQR) < ¢(PBR) and consider an
internal point R’ of the line segment {BR] which is close enough
to R to ensure that o(AQR") < o(PBR’). Note that it is “rue in
any case that o(PBR'} < 6(PBR) < o(PQC).

So we have ‘

f(P,Q, R
=o(PQR')y - o(AQR") -
=0o(PQR) — 0(AQR) — (|PR| + |RE'| - |PR'|)
< o{(PQR) — o(AQR)
- =f{PQR)
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contradicting the minimality of f at (P, @, R). We must therefore
infer that o(AQR) = o(PBR).

Suppose now that o(AQR) < o(PQC) and consider internal
points P’ and Q' of the line segments [PC] and [QC] respect-
ively, with [PP’| = |QQ’| and this quantity being small enough
to ensure that the inequalities o(AQ'R} < o(P'Q'C) and
s(P'BR) < o(P'Q'C) hold. We note that Lemma 2 implies
that |PQ| > |P'Q'|.

Then

6(P'Q'R)—o(P'BR) = o(PQR) - o(PBR)+ |Q'R| + |P'Q'|
—|QR| - |PQ| - |PP'|
= o(PQR) — o(PBR) - (1PQ| — |P'Q"])
- (1Q'Q| +1QR| - |Q'R])
< o(PQR) - o(PBR)

= f(P,Q,R).
Similarly
o(P'Q'R) — 0(AQ'R) < o(PQR) — c(AQR)
= f(P,Q,R).

It follows that f{P',Q', R) < f(P,Q, R), so that minimality
of f at (P,Q, R) is once again contradicted. We must therefore
have ¢(PBR) = o(AQR) = o(PQC) = q, say.

Now

¢ > o(PQR) = 6(AQR) + o(PBR) + ¢(PQC) — 6(ABC)
= 39 — 0(ABC),
so that ¢ < Lo(ABC). Tt follows from Theorem 1 that equality

holds and that P, @ and R are the mid-points of the line segments
[BC], [CA] and [AB] respectively, and the theorem is proven. ©
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Area theorems

One might expect area analogues to the perimeter theorems of
the last section, and one should be right to do so. Indeed, the
analogue of Theorem 3 was known to Kazarinoff [1}, though he
simply states that it is true without giving a reference to a proof.

Theorem 4. Suppose ABC is a triangle and X, ¥ and Z are
interior points of the line segments [BC|, [C A] and [AB] respect-
ively. Then

AXYZ > min{AAY Z,AXBZ,AXYC)

with equality if and ondy if X| YV and Z are the mid-points of the
line segments [BC|, [C' A] and [AB] respectively.

A proof of Theorem 4 can be effected rather easily by setiing
up a function which attains its bound and manipulating perturb-
ations, only provided the analogne of Theorem 1 has first been
established. That analogue, given below as Theorem 5, is much
easier to demonstrate than Theorem 1. It is left to the reader to
supply a proof of Theorem 4 using Theorem 5.

Theorem 5. Suppose ABC is a triangle and suppose X, Y and
£ are points lying on the lines BC, CA4 and AB respectively.
Then

min{AAY Z, AXBZ AXYC} < %AABC

with equality if and only if X, Y and Z are the mid-points of the
line segments [BC', [CA] and [AB] respectively.

C
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Proof: EFvidently

AAYZ > %AABC = 4|AY[|AZ]| > be

AXBZ > [AABC = 4|BZ||BX| 2 ca
and
AXYC 2 —i—AABC = 4|CX||CY| > ab,

where a, b and ¢ denote the lengths of the line segments [BC],
[C A] and [AB] respectively.
Multiplying the three inequalities at the right, we get

4|AZ|1ZB| x 4AY[Y C| x 4|CX|| X B| > a®b*c*.

Since |AZ| +{ZB| =¢, |AY|+|[YC| =band [CX|+|XB|=aq,it
follows that the three inequalities at the left can be simultanecusly
satisfied only if X, Y and Z are the mid-poinis of their respective
sides. m]
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WHAT’S THE PROBABILITY OF GENERATING
A CYCLIC SUBGROUP?

D. M. Patrick, G. J. Sherman, C. A. Sugar and E. K. Wepsic

1. Introduction

A recent coffee-room conversation at Rose-Hulman about an old
number theory gem — two randomly chosen integers are relatively
prime with probability 6/72 — led to the following exchange.

A group theorist: “You know, §/#% sounds a lot like the 5/8
Bound for commutativity to me.”

2 -
or at most 5/8 for finite groups [2].

is either one

A topologist: “Oh no! What are you going to do, turn that
one into a group theory problem too?”

Here’s a try: If = and y are group elements instead of integers,
then “are relatively prime” should mean there does not exist an
element g in the group such that g “divides” both z and y. Unfor-
tunately (at least for this interpretation) the equations gz = x and
gz = y each have solutions for any ¢ in the group. Another try —
6 and 9 are not relatively prime because they generate a proper
(cyclic, of course) subgroup of the integers, — suggests the title
of this paper.

More formally, let G be a finite group and set

) G? | {z,y) is cyclic
pmcyc(G):J{(-’E y) € {IG(IZ’ y) is cyclic}

The work of each of the authors was supported by NSF grant
number DMS-910059
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ezl

If {z,y) is cyclic, we say the ordered pair (z,y) is cyclic. The
purpose of this note is to show that if G is not cyclic, then
Pr:Cyc(G) < 5/8. A generalization to cyclic n-tuples —ann-
tuple (71,22, .., %) for which {z1,%3,...,Tn) 18 cyclic — is also
established.

Tt is well known that the 5/8 bound for commutativity can be
replaced by (p% +p— 1)/p® where pis the smallest prime dividing
the order of G. Rewriting our results in terms of p is left as an
exercise for the reader.

2. Cyclic Ordered Pairs

Theorem 1. ProCye(G) = 1 if G is cyclic; in every other case,
PryCyc(G) < 5/8.

Our proof is woven from the 5/8 bound for commutativity
and a sequence of lemmas. Suppose firstly that G is non-abelian.
Then, since two elements that generate a cyclic subgroup must
commiite,

PryCye(G) < PrzComm(G) < 5/8
by the result of {2]. And fortunately,
Lemma 1. ProCye(G) =1 if, and only if, G is ¢yclic.
Proof: ¥ G is cyclic, certainly each subgroup of G is cyclic; i.eﬂ.,
Pry;Cyc(G) = 1. On the other hand, if PryCyc(G) = 1, then G is
certainly abelian and PraCyc(S,) = 1 for each p-Sylow subgroup

of G. This means each p-Sylow subgroup is cyclic and, therefore,
that G is cyclic.

Now we may restrict our attention to non-cyclic abelian
groups.
Lemma 2. FG =2 Ho K, then
PryCyc{G) < ProCyc(H) - PryCyc(K);
i.e., PraCyc(G) is submultiplicative.
Proof: If the pair ({x1,91), (®2,¥y2)) is cyclic, then there exists
(z,y) in H @ K and there exist non-negative integers s; and s

such that (z,%)% = (%:,w); le., both (x1,72) and (31,y2) are
cyclic.
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In view of Lemma 2,

PrCye(G) < H Pr2Cye(5,).
pHG|

where p denotes a prime and 5, is the p-Sylow subgroup of G.

Thus, if ProCye(5,) € 5/8 for at least one p, the theorem follows.
: Since & is non-cyclic, there exists at least one prime, say g,
for which S; is non-cyclic. This means that S, is of the form
Zyp ©Zgm D AWith1 <k <m.

Lemma 3. PryCyc(Z @ Z) < 5/8.

Proof: Let ({a,b),(c,d)} be a cyclic ordered pair in Zpx ® Zpx.
We proceed by cases.

Case: The order of {a,}) is ¢*. Since g* is the maximum
order of an element of &, ® Z, it follows that {c,d) € {{a,))).
Thus there are ¢?* — ¢2*=2 choices for {a,b) and ¢* choices for
(¢, d); Le., there are (g% — g**2)g¢* choices for ((a,d)}, {c,d)).

Case: The order of (a,b) is less than ¢*. The number of
choices for (a,b) is 4*~2 and the number of choices for (c,d) is
certainly bounded above by ¢2%; i.e., there are at most g?* 2. g%
chaoices for {(a, ), (¢, d)).

Therefore,

2k 2k—24,.k 2k—2 2k
 PraCye(Bg @) < & —¢ )T e g

q4k

1 1 1
q° ( q2)(9"“)
1 3 1
<45 =
=3t13
5
=2

It is easy to check that PraCyc(Zz @ Zg) = 5/8.

Lemma 4. Pr;Cyc(Z,x ©2Z,») < 5/8 implies that PraCyc(Z . @
qu+1) S 5/8

Proof: - Let ({a,b), (c,d)} be a cyclic ordered pair in Z & & Zm+1.
Again, we proceed by cases.
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Case: |(a,b)], (¢, d)| € m. Let’s collect all such cyclic ordered
pairs in a set, say C = {{(a,b),(c.d)) | |(a,B)],[(c,d}} < m},
and collect the components of elements of C in a set, say H =
Ue{(a, ), (e, d)}. Now denoting the projecticn of # onto Zgm+1
by B, we have H C {4) @ {B). Thus {B) is a cyclic subgroup
of Z,m+: containing no elements of order g™ 1. Therefore (B} =
Z,;, where j < m, which implies that {4} & {B) is isomorphic
to a subgroup of Zyn ® Zgm. Our inductive hypothesis yields
€] < (5/8)2.

Case: |(a,B)] = ¢™*!. There are g**™F — g**™ choices for
(a,b) and g™ choices for (c,d) since {¢,d) € ((a,b)). Therefore,
there are " 212 _ g2+ choices for {(a,5), (¢, d)).

Case: |(a,b)| < g™ and |(c,d)| = ¢™*1. There are ¢**" 1! —
¢“t™ choices for (c,d) and g™ choices for (a,d) since {(a,b) €
{(c,d)) and has order less than ¢™*'. Therefore, there are
geHImtL gkt Im choices for ((a,b), (¢, d)).

Now we have

(5/8)q2(k+m) + q,I«:+2m+2 _ qk+2m

PryCyc(Zgx @ Zgm+1) <

g2(ktm+1)
5 1 1 1
TEeTE
5 1 1 i
Sty g
<5 1+1 1
“g 222 28
_u
=

Therefore ProCyc(S,) < 5/8 and the proof of the theorem is com-
plete.

3. Cyclic n-tuples

Does the theorem generalize to cyclic n-tuples? It hinges on
the availability of a 5/8-like bound for Pr,Comm(G), the pro-
portion of mutually commutative n-tuples (x;x; = x;z; for all ¢
and j) in G. Erdés and Strauss [1] established a lower bound for
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Pr.Comm(G) but the following upper bound does not appear to
be well-known. Indeed, to the best of our knowledge, this upper
bound has appeared only in an unpublished note (Testing Laws
in Groups) of John D. Dixon’s which circulated in the late 1970%.
We include #t here with our elementary proof.

Lemma 5. If G is nonabelian, then

3 1
Pr,,Comm(G) < 2 P
Proof:  Given the 5/8 bound for n == 2, one observes that either
the first component of a mutually commutative n-tuple is in the
center, Z = Z(G), of G (with probability |Z]/|G|) or it isn’t (with
probability 1 —1Z|/|Gl). Thas, :

om0 < (5t ) o

3 1 1 1
271— 22n —3 - 2n—1 + 2nw1

because |Z|/1G] < 1/4 and each component must be in the cent-
ralizer of the first component. We remark that Pr,Comm(G)
assumes the bound if, and only if, G/Z = Zy & Zs.

With Lemma 5 in hand one can generalize the proof of the
Theorem 1 to cyclic n-tuples by replacing each occurrence of 5/8
3
with

on ~ 92a—1°

1
Theorem 2. Pr,,Cyc(G) is either one or it is at most — —

an 2211—1 "

1]
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FUNCTION ALGEBRAS

Gerard J. Murphy

i. Introduction

The theory of function algebras forms an important branch of

functional analysis. Tts central problem is to determine whether -

a given complex-valued function can be uniformly approximated
by the elements of a prescribed algebra of functions. One of the
attractive features of the subject is that it involves a beautiful
interplay of ideas and methods from a variety of sources, such
as topology and algebra, and especially from functional analysis
and the theory of apalytic functions. Moreover, it has import-
ant applications, for instance, to classical analysis and to oper-

- ator theory. Indeed, the concepts and techniques of function
algebra theory often produce new insights into the classical theory
of approximation by analytic functions, and raise new questions,
which serve to enliven and reinvigorate that subject. ‘

The theory of function algebras is so extensive that any short
account must be selective, and this is the case for the present
exposition. The intention here is to explain some of the core ideas
and problems, and to give an account of an aspect of the theory
of particular interest to the author. This aspect is the theory
of generalized Hardy H? spaces, and it is of interest in operator
theory because of its applications to the theory of Toeplitz oper-
ators. Part of its importance in the theory of function algebras
relates to one of the major problems of the subject, namely, the
determination of conditions under which it is possible to embed
analytic structure into the spectrum of a function algebra.

The paper is organized as follows: In Section 2 we discuss the
basic concepts and give an illustration of one of these concepts,
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that of a representing measure, to prove a maximality theorem of
Wermer. In Section 3, we discuss some important classes of ft}ncw
tion algebras. In Section 4 we give a b-ri.ef accoqnt of ggnerahzed
HP space theory and indicate how this theox"y is a;?plled t.o the
problem of embedding analytic structure. Finally, in Section 5,
we discuss some connections with operator theory.

2. Representing measures

A function olgebra on a compact Hausdorff space {1is a closed
subalgebra A of the algebra Q) of all contmuogs functions on
{2, that contains the constants and separates the points of 2. (The
operations on C{f2) are the usual pointwise-defined ones and the
norm is the supremum norm, given by |l¢l| = sup,eq I(p(s)].-)

Of course, C{Q2) is a function algebra, but it is not typlcz?.l of
the algebras that are of primary interest to function’ algebraists.

“Rather,-the prototypical function algebra is the disc algebra. This

is the set A of all continuous functions on the closed unit disc D
that are analytic in the interior, and it is easily seen t}_:la,t A is
indeed a function algebra. This algebra can also be realized as a
function algebra on the unit circle T, because the homo.morphis‘m
from C{D) to C(T) got by sending a function on D to its restric-
tion to T induces an isometric algebra isomorphism of A opto
the closed subalgebra of C(T) generated by the inclusion function
#:T — C (always, 2 will denote this function). It is usual to refer
to A as the disc algebra on the disc and to its image on T as the
disc algebra on the circle. It follows easily from Fejér's theorem
that the disc algebra on T is the set of all elements of C(T) wh(?se
Fourier transform is supported in the set Z* of all non-negative
integers.

We defer giving more examples of function algebras to 'Fhe
next section. Instead, we introduce the concept of a representing
measure, one of the most important ideas of the theory.

Let A be a function algebra on a compact Hausdorff space
Q. If 7 is a bounded linear functional on A, then, by the Hahn—
Banach theorem and the Riesz-Kakutani representation theorem,
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there is a regular Borel complex measure m on 3, called a repres-
enting measure for 7, such that '

T(w):fwdm {(p €A

and |7l = |lm}|, where {jm|| is the total variation norm, ||m|| =
|m|{2). (In general, the representing measure m is not unigque.)
The case of most interest for the theory of function algebras is that
in which 7 is a character of A, that is, a non-zero multiplicative
linear functional on A. Characters are automatically of norm one
and map the unit to 1, from which it follows that any representing
measure of a character is positive and of total mass one, that is,
a probability measure.

A point concerning notation is needed before we proceed fur-
ther: i g € C{NY} and g is a regular Borel complex measure on
{1, we denote by gu the regular Borel complex measure on §} cor-
responding to the bounded linear functional on C'(Q) given by
fe ffgdp

To illustrate the idea of a representing measure, let us con-
.sider again the disc algebra A on the circle. Let m be normalized
Lebesgue measure on T, s0

2
[odm=g- [Teera @ec.

Since {z"dm = O for all n > 0, it follows that [ypzdm = 0
for all ¢ € A. Now let s be a point in the unit disc D. Then
s defines a character 7, on A by setting 7,(p) = ¢(s). (Recall
that A is the isomorphic image of the disc algebra on D. We
are using this to identify elements of A with their corresponding
extensions to D.) Suppose now that |s| < 1. If ¢ € A, then
@ = @(s) + {z — s}, for some ¢ € A. Setting pp = (1 — Zs)_lm,
we have [ldp = [Y oo (sZ)"dm = Y 00 8™ [2*dm = 1, so
fwdp = ¢(s) + fv¥zdm = ¢{s). This is, of course, the Cauchy
integral formula. The norm of the measure u is not equal to 1 if s
is non-zero, so p is not a representing measure for 7, but with a
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little further manipulation we get a representing measure: Since
{1 - 5z)"! belongs to A, therefore

(s) j[ ® / ¢
= dy = dm,
ISP ST PRl TR

so p(s) = [ ¢dm,, where m, is the probability measure

_1—sf
T —sz)
Thus, m, is a representing measure for 7,. The equation ¢(s) =
[ ¢ dm, is the Poisson integral formula.
It is easily seen that for any character 7 on A, there is only
one representing measure for 7 (see Section 3). We shall now

- give an application of this to prove the following theorem due to

Wermer (the proof is due to Hoffman and Singer). First, recall
an elementary fact from Banach algebra theory: If B is a unital
abelian Banach algebra, then an element b € B is invertible if and
only if 7(b) # 0 for all characters 7 of B.

2.1. Theorem. If B is a function algebra on the circle T con-
taining the disc algebra A, then either B = A or B = C(T).

Proof. First suppose that 7{z) # 0 for all characters v of B.
Then z is invertible in B, and therefore £ = 1/z € B, so by
Fejér's theorem, B = C(T). Suppose on the other hand that for
some character 7 of B, we have 7(z) = 0. Then 7{p) = {0) for
all ¢ € A, s0 if i is a representing measure for = {as a character
of B), then for all ¢ € A we have [ @dm = ¢(0) = [ ¢dy, and
therefore g = m, by uniqueness of representing measures for A.
Hence, for all ¢ € B and for all n > 0, we have [ p2"dm =
7(pz™) = r{p)r(z)™ = 0. Thus, the Fourier transform of ¢ is
supported in Z1, and therefore ¢ € A. Hence, B=A. 0O

This maximality result for A has some interesting con-
sequences. One of them is that there are many continuous
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functions that are boundary values of analytic functions. Spe-
cifically, let B be the set of all p € C(T) for which there exists |
an analytic function ' on the open unit disc such that for almost |
all ¢ in [0,27), ¥()) converges to ¢(e™) as A converges to e™ .|
non-tangentially. Then B'is a subalgebra of C{T)} containing A. -
it can be shown that the containment 1s proper, so by Wermer's .

theorem, B is dense in C'(T). For details see [11}.

Another application of the maximality theorem asserts that
if F' is a proper closed subset of T, then every continuous function -

on F can be uniformly approximated by polynomials (loc. cit).

The concept of a representing measure may perhaps seem,
at first sight, not o be a very significant idea. The preceding -

examples and applications help to give some inlding of its power,

more particularly in the case of a unigue representing measure
for a character. In fact, in the latter setting one can generalize a .
large amount of the classical theory of H? spaces. Moreover, this:
generalization has useful applications, one of which we shall see :

in Section 4.

3. Dirichlet and logmodular algebras

Let £ be a non-empty compact subset of C™. There are a number -
of important function algebras associated with K: The algebra
A(K) is defined to be the set of all continuous functions on K &
that are holomorphic on the interior of K, and the algebra R(X)
is defined to be the set of all continuous functions on KX that are
uniformly approximable by rational functions with no poles on:
K. By P(K) we denote the algebra of all continuous functions
on K which are uniformly approximable by polynomials. Clearly, .-
P(K) € R(K) C A(K) C C(K), and a part of the theory of
function algebras is given over to the problem of determining when .

one has equality at some point in this chain of inclusions.

Another significant class of function algebras is formed by
the Arens-Singer algebras, which are generalizations of the disc:
algebra on the circle. Let G be a non-trivial subgroup of the:
additive group R, endowed with the discrete topology, so that the
Pontryagin dual group ¢ is therefore compact. Each element € .

G defines a continuous character €; on G by evaluation. Denote
by A(G) the closed linear span in C(G) of the characters e, (= €
G*), where G* = R¥NG. Then A(G) is a function algebra on G.
Tt can be shown to be isomorphic to an algebra of analytic almost-
periodic functions in the upper half-plane, see [10], for example.

As the theory of function algebras developed, analyticity, at
least in residual form, seemed to pervade the subject, and a nat-
ural question presented itself, namely, if A is a function algebra
on 0, and A # C(R2), to what extent do the functions in A behave
like analytic functions? One observes that, for example, there is a

‘shortage of real-valued functions among analytic functions, and a

shortage of real-valued functions persists whenever A # C{{1), as
a consequence of the Stone—Weierstrass theorem (A =C () if and
only if the real functions in A separate the points of 2}. Moreover,
many analytic-type phenomena, such as Jensen’s inequality and
the maximum modulus principle, were observed to appear in great
generality. Indeed, it was discovered that genuine analyticity exis-
ted in situations of a very general character.

We shall make this a little more precise: If A is a function
algebra on (I, then one can embed {2 homeomorphically into the
spectrum X of A. (As a set, X consists of the characters of A and
it is made into a compact Hausderff space by endowing it with
the relative weak*® topology induced from the dual space A*.) It
is easily seen that if 7, is defined by 7,(¢) = 9(w), then the map

D= X, wr Ty,

is a homeomorphism of {2 onto a subspace of X. At one time it
was conjectured that whenever X is larger than 2, there had to
be some analytic structure in X, in the sense that there should
be an embedding # of a disc into X such that for all ¢ € A4,
the functions ¢ o @ are analytic. (By ¢ we denote the Gelfand
transform of ¢, that is, the continuous function on § defined by
{7} = 7(¢).) Support for this conjecture came from a remarkable
theorem of Wermer, concerning embedding analytic stracture in a
certain very large class of function algebras. We shall discuss this
result in more detail presently. However, in 1963, G. Stolzenberg
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gave an example which falsified the conjecture and Garnett later
exhibited examples that showed that the spectrum could, in a

sense, be quite arbitrary. We shall shortly make this more precise. :

First, we discuss some positive results.

Again suppose that A is a function algebra on Q. Define the
relation ~ on the spectrum X of Aby 7 ~ o if |7 — o] < 2. This
relation is an equivalence relation on X. The search for analytic
structure in the spectrum has been conducted in terms of the

corresponding equivalence classes, called Gleason parts.

We now consider a large class of function algebras, first intro- _
duced by A. M. Gleason, called Dirichlet algebras. A function -
algebra A on {2 is such an algebra if every real-valued continuous -

function on {I can be uniformly approximated by real parts of
functions in A.

Of course, C(Q) is trivially a Dirichlet algebra, but these are :
not the interesting examples. The prototype is, as usual in this
subject, the disc algebra A. It follows easily from the density *
of the set of trigonometrical polynomials in G{T) that A + A
is dense in C(T), and hence that A is a Dirichlet algebra (A
denotes the set of complex conjugates of elements of A). It is- .
an immediate consequence of the definition that a representing
measure for a character on a Dirichlet algebra is unique, so in
particular, this applies to A, and proves the uniqueness claim we *

made in Section 2.

The Arvens—Singer algebras A{G) are Dirichlet algebras, for
the same reason as in the case of the disc algebra, namely density

of the {generalized) trigonometric polynomials.

If & is a compact subset of the plane whose complement is ':_-:_
connected, and if K is the boundary of K, then P(OK) is a_

Dirichlet algebra on 8K [3].

If A denotes the closure in C{T?) of the trigonometric poly- .
nomials ¢ = Ef:o Eﬁzo Anm27 25, then A is a function algebra -

on T? that is not a Dirichlet algebra.
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Now suppose that S is a subset of the spectrum X of a func-
tion algebra A. If S can be given the structure of a connected
complex manifold in such a way that the functions in A, or rather
their Gelfand transforms, are analytic on 5, then it can be shown
that S must lie entirely in a single Gleason part. The embedding
theorem of Wermer referred to earlier in this section asserts that
if A is a Dirichlet algebra, then for each Gleason part of X that
is not a singleton, there a homeomorphism 8 of the epen unit disc
onto the part, where the latter is endowed with the metric {norm)
topology, such that @ o f is analytic for all ¢ € A. The proof of
this theorem involves generalized Hardy space theory and a sketch
of the method of proof is given in Section 4.

Wermer’s result was extended by XK. Hoffman to a more gen-
eral class of function algebras, namely to logmodular algebras. A
function algebra A on {1 is logmodular if every real-valued continu-
ous function ¢ on §} can be uniformly approximated by elements
of the form log 1|, where ¢ is an invertible element of A. The
equation Re(yp) = loge?| shows that Dirichlet algebras are log-
modular, but the converse is false, as we shall see in Section 4.
Logmodular algebras share an important property with Dirichlet
algebras, namely, uniqueness of representing measures for charac-
ters,

Despite these positive results, Stolzenberg’s example shows
that unless restrictive hypotheses are imposed, analytic structure
may not be present in the Gleason parts of a function algebra.
Indeed, not much can be said about the structure of Gleason parts
in general, as can be seen from the following result of Garnett {8]
Given any completely regular g-compact space Y there exists a
function algebra in whose spectrum Y can be embedded as a single
Gleason part.

4. Generalized HP space theory

We motivate our considerations in this section by briefly con-
sidering the classical Hardy space theory. If p is a real num-
ber not less than 1, the Hardy space H? is defined to be the
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set of all analytic functions f oa the open umnit disc for which
SUPg<r et fu% 1f(re®)|” dt is finite. These spaces arise naturally in
the theory of Fourier series and it was realized at an early stage of
their development that many properties of H? functions belong to
real-variable theory. For, each #? function can be written as the
Poisson integral of an LP function on the boundary, or, forp =1,
of a measure. This allows some results to be deduced withont
using the theory of analytic functions, and it turned out that the
portion of the theory susceptible to this treatment is considerable.

In this approach to H? space theory the basic vehicle for the
analysis of the functions in the Hardy spaces is the disc algebra
& on the circle. The space AP is identified as the clesure of A in
the LP space of T.

In a series of papers, the Hardy space theory on the circle was
generalized by Helson and Lowdenslager to the context of certain
abelian compact groups. The great generality of their arguments
was 500D recognized and the theory was successively generalized,
in the context of function algebras, first to Dirichlet algebras and
then to logmodular algebras. It was vltimately realized that the
theory could be extended to the situation where one had a unique
representing measure for a characier of a function algebra.

Suppose that A is a function algebra on 2 compact Hausdorff
space {! and that m is the unique representing measure for some
character of A (if, for example, 4 is a logmodular algebra, then,
as observed above, every character admits a unigque representing
measure). To aveid trivialities, we shall also assume that m is not
a point mass. For 1 < p < oo, we denote by LP the Lebesgue space
L?(§2,m) and for p finite we denote by H? the norm closure of 4 in
L?. We signify by H° the weak* closure of 4 in L°° = L1", The
spaces HT are Banach spaces and, in particular, H? is a Hilbert
space and H°° is a Banach algebra.

Let €2 be the spectrum of the algebra L. Then the Gel-
fand representation induces an isometric isomorphism of L* onto
C'(§2). Moreover, the image A of the algebra H* under this repres-
entation is a function algebra on Q and it turns out that A is log-
moedular. In fact, the following is true: If ¢ is a real-valued func-
tion in L°°, then there exists an invertible element v of H° such
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]

that o = logly|. Since a Dirichlet algebra necessarily contains
all continuous idempotent functions, since L™ is the closed linear
span of its idempotent elements, and finally since H> # L™, it
follows that A is an example of a logmodular algebra which is not

Dirichlet.

Tn the case of the disc algebra on the circle, normalized
Lebesgue measure is the unique representing measure for a charac-
ter of 4. The corresponding algebra H* is therefore logmodular.
This enables one to embed analytic structure into the Gleason
parts of its spectrum X. Actually, X is a very complicated space.
One can naturally embed the open unit disc into X, A deep res-
ult concerning X is the well-known corona theorem of Carleson,
which asserts that the disc is dense in X. This can be reformu-
lated as follows: I fi,..., fr are bounded analytic functions on
the open unit disc such that 5 ,_, |fi| is bounded away from
zero, then there exist bounded analytic functions gi,.. ., gn such
thai figi +- -+ fagn =1

Let us return to the general situation. We give some examples
of the apalytic-type properties enjoyed by the elements of H 1,
Firstly, the only real-valued elements of I ! are the real con-
stants. In the case of the circle, this is easily seen, using the
fact that an integrable function whose Fourier transform vanishes
must itself vanish almost everywhere. In the general situation the
proof requires more work.

Analytic functions cannet vanish on “big” sets without van-
ishing identically. A similar result holds for H! space functions.
This is our second example of analyticity, and it is a consequence of
Jensen’s inequality: If f is an element of H! such that [ fdm # 0,
then log|f] is integrable with respect to m and

tog| [ fam) < [ 10g]1)dm.

Hence, f cannot vanish on a set of positive measure. In the case of
the circle, one can strengthen this to assert that if f is a non-zero
element of H 1, then f cannot vanish on a set of positive measure,
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a result known as the little F. and M. Riesz theorem, one of the

nicest results of the theory.

The little F. and M. Riesz theorem is an example of a classical:f
result that does not carry over to the general situation. There
exists an example of a “system” {3, A and m, a non-zero function
§ € HY and a set E of positive measure (with respect to m) such-
that f vanishes on £. Moreover, one may even take f to be an’

element of A and E to be an open set [19]. This counterexample

has consequences in the theory of Toeplitz operators. Incidentally, !
“systems” {1, A and m where this kind of behaviour occurs do not |

have to be pathological in any way.

In passing, one should perbaps observe that the surprising_i
thing is not that some of the classical H? space theory does not:

extend to the general situation, but that so much of it does.

Since we have referred to a little F. and M. Riesz theorem, by
implication there should be a big F. and M. Riesz theorem, and,.
of course, there is. In the case of the circle, this well known result:
asserts that if a Borel complex measure on T has Fourier—Stieltjes:
transform supported in Z, then it is absolutely continuous with
respect to Lebesgue measure on L. This theorem does extend to
the general situation, although in substantially modified form [3].

In the general context there is also a version of the celebrated
invariant subspace theorem of Beurling. A closed vector subspace
M of H? is invariant if oM C M for all ¢ € A. The general-
ized Beurling theorem agserts that if A{ is an invariant space and_':
if there exists f € M such that [ fdm # 0, then there exists:
a function ¢ € H™ such that |¢| = 1 almost everywhere with:
respect to m and M = @H? (such functions ¢ are called inner:

functions).

We now give a very brief sketch of how Wermer's embedding’
theorem is established. We shall leave out all the technical details:
of the proof, but nevertheless, the sketch should give a rea,sonablegi

cutline idea of the argument.

Let A be a Dirichlet algebra on 0. If P is a Gleason part of
the spectrum of A that is not a singleton, and m is the unique:
representing measure for a character 7 in P, then one can show'
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¢hat there is an inner function Z in H™ such that
ZH2:{fef121jffdm=0}.

If A denotes the open unit disc and s € A, one can define 7, in
. = 1
the spectrum of A by 7:(¢) = f ¢(1 —sZ) ~ dm. Observe that

To{@) = Z(]'cpzn dm)s”,.

so the function
A—C, s 1),

. is analytic. Using Schwarz’s lemma one can show that

s —7ll < 2sf <2
for all s € A; therefore, 7, € P.'One can now show that the map
8L =P, 53T

is a homeomorphism of & onto P, where P has the metric topo-
logy. For all ¢ € A, the composition ¢ o 8 is analytic, as $8(s) =
7.(¢p). Thus we have embedded analytic structure into the spec-
trum of A. For full details of this construction, see [3].

5. Applications {o operator theory

The class of Toeplitz operators is an exceptional class of operators,
for it is one of the few large classes of operators about which
we have detailed knowledge. Toeplitz operators are related to
multiplication operators, but their structure and properties are
much more difficult to analyse.

If p € L*°(T), the multiplication operator corresponding to
@ is the operator M, on L3(T) defined by M,{f) = ¢f. The com-
pression of this operator to the Hardy space H? is the correspond-
ing Toeplitz operator. Explicitly, if P is the projection of L? onto
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H?, then the Toeplitz operator T, is defined by T,,(f) = P(of).
The fact that the map, ¢ — M, is an algebra homomorphism
helps enormously in the analysis of the operators M. For Toep-
litz operators the corresponding map, ¢ — T, can be easily seen
tc be linear and to preserve involutions (that is, T = T;), but
it is not multiplicative, a fact that makes the analysis of Toeplitz
operators very different from that of multiplication operators.

Before proceeding to discuss Toeplitz operators in mere
detail, let us say a few words about the significance of this class
of operators. As indicated above, they are important in operator
theory, because they provide a highly nen-trivial class of operators
accessible to detailed analysis. There are beautiful connections
with function theory, specifically H? space theory. Amongst other
applications, there are applications to the analysis of boundary-
value problems, to information theory and to time-series analysis
in statistics. For more information on applications, see {2].

Suppose now that £ is a compact Hausdorff space, A is a
function algebra on {3, and m is the unique representing measure
for a character of A. As before, we denote the corresponding
Lebesgue and Hardy spaces by L? and HP, respectively. Given
¢ € L, one can define the Toeplitz operator T, in the same
way as in the case of the circle. Tt is obvious that ||T,|| < |l¢l...
and, in fact, equality holds, but this is very non-obvious. One
can derive this from a stronger result, a spectral inclusion result
which says that the spectrum of T, contains the spectrum of .
(The spectrum is an important invariant. For an element ¢ of a
unital Banach algebra, its spectrum is the set of all scalars A such
that @ — A is not invertible.) This spectral inclusion result is due
to Hartman and Wintner [8] in the case of the circle and to the
author [17] in the general case, where the proof is quite different
to that of the classical case. The proof uses the fact that every
real-valued function in L™ is the logarithm of the modulus of an
element of H*°.

Cne of the deepest results concerning Toeplitz operators on
the circle is the theorem of Widom [6] which asserts that they have
connected spectra. In the general situation the author has shown
connectedness of the spectrum still persists for two important sub-
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classes of Toeplitz operators namely, for Hermitian Toeplitz oper-
ators T, (where ¢ = ) and for analytic Toeplitz operators (where
© € H™), see [17].

Let us illusirate the interplay of operator theory and func-
tion theory by considering a special simple result: A non-scalar
Hermitian Toeplitz operator on the circle has no eigenvalues. The
proof is easily reduced to showing that zero is not an eigenvalue.
Suppose then  is a real-valued element of L™ and that f is ap ele-
ment of F2 such that T,(f) = 0. Then P(pf) =0, s0 ¢ f belongs
to H?. Hence, @ff is » real-valued element of H*, and there-
fore it is almost everywhere equal to a constant, ¢ say. However,
¢c= fedm= foffdn = (T, (), fy = 0. Thus, off =0 ae.
Now the assumption that T, is non-scalar assures us that on some
set of positive measure, @ does not vanish. Hence, f does vanish

_ on a set of positive measure. Therefore, by the F. and M. Riesz

theorem, f = O a.e.

We mentioned earlier that the little F. and M. Riesz theorem
does not hold in the general situation. One way that this is reflec-
ted in the theory of Toeplitz operators is that non-scalar Her-
mitian Toeplitz operators on generalized Hardy spaces may have
eigenvalues. Even here, however, a striking result is true. Non- -
zero eigenspaces must be infinite dimensional. For more details,
see {17].

Limitations of space have allowed us to give no more than
an inkling of the scope of the theory of Toeplitz operators and its
profound connections with function theory. Some of the classical
theory is covered in [6]. Both the classical and generalized the-
ories are now so extensive that the bibliography that follows can
indicate only a few of the many possibilities for further reading
for the interested reader. : e :

Toeplitz theory also has connections with the theory of
C*_algebras and with K-theory. This aspect of the subject
involves index theory, one of the most active areas of modern
operator theory. Some references for this are: [4], [6], [12], [13],
[16], [18] and [21].

As an introduction to function algebras, Browder’s book [3]
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probably cannot be surpassed. For a more detailed treatme

of the subject see the books of Gamelin [7] and Leibowitz [11]

each of which contains extensive bibliographies. Two other books{
which may be consulted are [19] and [20].
that are particularly readable are [1] and [10].
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THE JOYS OF COLLECTING
T MATHEMATICAL BOOKS

Rod Gow

I would like to describe an engrossing hobby that I took up about
two years ago, namely, the collecting of mathematical books of
some antiquity or historical value. This activity has proved to be
an impetus for discovering more about the historical development
of mathematics, both at the research and teaching level. I hope
that readers will find some aspects of the economics and mechanics
of collecting specialized books to be of iaterest.

My introduction to the world of antiquarian books dates from
the death in 1990 of my father—in-law Con Gillman, who was a =
graduate in physics of UCC and possessor of an M.Sc. in statist-
ics. He left a large number of books in the study and attic of his

house. These books posed a problem of dispersal, as they occupied

much space and would eventually have to be moved. Examina- -
tion of these books revealed titles in philosophy, poetry, math-
ematics, statistics, physics, meteorology and engineering. While I
was not particularly enthusiastic about many of the books, I was
impressed by a group of physical and mathematical books that .
had probably been collected in the 1930's or 40’s. These included -
works by such authors as Rutherford, J. J. Thomson, Dirac, Fermi,
W. Thomson {Lord Kelvin) with whom I was more or less famil-
iar. Other authors included W. Stanley Jevons, John H. Pratt, -
Isaac Todhunter and Joseph Wolstenholme, names which then
‘meant nothing to me. My attempts to find out more about these -
authors and their work have led me into the fascinating world of *
the history of science and scientific literature and ultimately to :

that of book collecting,.

An obvious source for enquiring about British and Irish sci-
entists or academics of earlier times is the Dictionary of Netional .

44
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Biography or DNB. The DNB has sometimes provided the only
information I have been able to find on authors whose work I
have encountered. For instance, I read that Wolstenholme (1828
91) was a clergyman, a fellow of Christ’s College, Cambridge and
professor of mathematics at the Royal Indian Engineering Col-
lege in London. He is best known for his Mathematical Problems,
published in three editions (1867, 1878 and 1891} by Macmillan
and Co. He apparenily did much work as an examiner for the
mathematical tripos in Cambridge and as a consequence built up
a large store of problems, which formed the basis of his book. The
1878 version has 2815 problems, occupying 480 pages. Unfortu-
nately, most of these problems seem to be unsuitable for present
day students {there are 836 problems on conic sections but only
26 on probability). Another useful source of information is the
Encyclopedio Britannica. The earlier editions of Brifannica often
had detailed biographical and expository articles, which were sub-
sequently edited and shortened in later editicns, thereby losing
much of their charm. Copies of various editions (but not the most
recent or earliest ones) of Britannica can often be bought at auc-
tion or from dealers for around £100-150 and are a great asset to
the bibliophile or amateur of scientific history.

A more detailed source is the Dictionary of Scientific Bio-
graphy or DSB, edited by C. Gillispie and published {1970-78)
by Charles Scribner’s Sons. This consists of 14 volumes, togsther
with two supplements, and contains biographical articles on
people connected with science and mathematics from Greek times
up to the present century. Many of these articles are full and
authoritative, being written by named experts in the relevant field,
although occasionally, some seemn rather short and disappointing.
Mauny of the minor scientists, about whose work or books I may
wish to have more detail, probably have not merited attention
in the DSB, although they often feature in the DNB. While a
personal copy of the DSB would be invaluable to any enthusiast of
the history of science, second-hand sets are not so easily obtained
and would probably cost at least £700. More recently (1991},
the articles from the DSB relating to mathematicians have been
published in four separate volumes.
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Having found information about the authors of the books I
had acquired, I then wondered if any of the bocks was at all rare
or valuable. The novice, when confronted by antiquarian books,

will usually have little idea of what might be a reasonable price
to pay for any particular item. In some respects, this will always .

remain a problem, as prices can fluctuate wildly, depending on -
who is selling. One may come across bargains, where the seller
has little idea of the value attached to an item by an enthusiast.
Equally, absurdly high prices may be demanded by dealers who
have bought relatively cheaply and intend to sell on expensively. -
The problems of buying and selling in a very small market are del- -
icate and probably do not conform to the more normal economics -
of production and retail of essential commodities.

There are various ways to obtain some picture of how much
antiquarian or rare books cost. One is to visit as many second—
hand book shops as possible and see what prices are demanded
for particular items. However, if your interest is in scientific lit-
erature, there will not be many such shops that have more than
a few isolated examples to examine. In Dublin, there are several -
second-hand and antiguarian book shops and dealers, but most .

. itemn sold must have fetched at least £70.

specialize, not surprisingly, in Irish literature, history, topography :
and travel. Nonetheless, occasionally something of scientific merit
may creep in and a certain amount of sustained but generally fruit-
less searching will locate a worthwhile item. Another possibility
is to find the names of specialized dealers who conduct their busi-
ness by mail and write to them for catalogues. I have made use
of two such dealers, who advertise their facilities in mathemat-
ical magazines. Their catalogues are very instructive and provide
quick access to information about prices and rarity. I noted a copy
of Hamilton’s Lectures on Quaternions of 1853 on sale in one cata- -
logue at £180, which struck me as reasonable value {doubtless it
was sold almost instantly). Often, dealers whose speciality is not
in science may have cne or two scientific items and I will usually
try to browse through any catalogue that comes my way. It is
clear that any pre-19th century mathematical or scientific book
is likely to cost at least £30 if it is not badly damaged and often
more than £100 if the author is famous or the condition is good. -
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Pre—18th century scientific books are now very uncommon and
unlikely to be obtained, except from top—class dealers, who often
charge top—class prices. On the whole, for the purchaser of limited
means, pre-18th century scientific material is largely out of the
question,

Instead of buying through a dealer, one may decide to try
buying at auction. In London, Christies and Bloomsbury Book
Auctions, among others, have annual auctions of scientific books.
1 have never attended any such auction, but many dealers obtain
their stock by buying at these specialized auctions. A valuable
guide in this respect is Book Auction Records or BAR, published
by Dawson, which has appeared annually for many decades. The
BAR provides information on sales in auction houses throughout
the world, the condition for inclusion of any salé being that the
I enjoy browsing
through the copies of BAR and have noticed various sales. of
mathematical note. For example, a copy of Boole’s An Jnvest-
igation of the Laws of Thought sold in 1991 for £3,900 at an
anction conducted by Dominic Winter’s of Swindon. This copy
once belonged to W. S. Jevons and had a letter of 1868 from
Augustus de Morgan to Jevons tipped into it. Boole’s book was
published by Macmillan and Co. in 1854 and was still described
in Macmillan’s 1879 catalogue as available for 14s. While the
price paid above was cbviously enhanced by the association with
Jevons, any copy is likely to cost hundreds of pounds nowadays.
Tt is sometimes possible to identify an item bought at auction
with a similar item in a dealer’s catalogue and thus deduce the
dealer’s mark up. One must expect a mark up of at least 50%
but one of 200% or 300% is not unknown.

In Ireland, the main book auctions are those conducted by
Mealy’s of Castlecomer. These occur twice or more a year, in
the Montrose Hotel in Dublin or in Castlecomer. Mealy’s auc-
tions usually have one or two lots of mathematical interest but
they cater more for the Irish literary and historical tastes that
I described above. In December 1991, before the start of my
interest, Mealy’s Dublin sale had three mathematical lots: a first
edition of Thomas Simpson’s Treatise of Algebra of 1745 (the




48 IMS Bulletin 31, 1993

Simpsen of Simpson’s rule), a second edition of Robert Simson’s:

Sectionum Conicarum Libri V of 1750 (Simson was professor of
mathematics in Glasgow and the editor of a version of Euclid that
was much followed and imitated for many years) and a third edi- .
tion of Newton's Principia of 1726. Copies of the 1726 Principio. |
are not nearly as rare as those of the first edition of 1687. Perusal &

of the BAR suggests that £400-1000 might be the price to pay

for the 1726 Principia, depending on condition, historical associ- =
ations and so on. I wonder who bought the three books above and :

what they paid.

I have related how my interest in antiquarian scientific and
mathematical books was awakened and how I tried to learn more
about their history and prices. Enthused by this initial impetus, I
decided in 1992 that, using my father—in—law’s books as a nucleus,
I would try to extend his collection, specializing in mathematical
work, with a subsidiary interest in other scientific subjects. So,
collecting mathematical books has become a néw hobby. There!
are probably not many people in Ireland with similar interests in
mathematical books, so that competition in the market is small:
but, on the reverse side, there are not many outlets for the magterial
Iseek. I might add that, as far as | can see from my investigations,
the most valuable of my father-in-law’s books is probably Histoire
des mathématigues by Jean Montucla (1725-99). This consists of -
two quarto volumes published in Paris in 1758. It is considered to
be one of the best early histories of mathematics.

Let me describe some of the books that I have acquired.
There is a copy of the second issue of Legendre's Elements of
Geometry of 1824, edited by David Brewster. (Virtually no copies
of the first issue of 1822 are known.) This is an English translation
of the eleventh edition of Legendre’s French original, which first
appeared in 1794. The translation was made by Thomas Carlyle,

~who is better known as an essayist and historian.- Carlyle included::
an intreduction ‘On Proportion’, written by himself. He was paid:
£50 for the translation. According to an article by J. H. Webb in-

the Mathematical Gazette for June 1974, Carlyle eventunally tired

of the translating work and persuaded his brother to take over. In
Legendre's French text there is a definition of a straight line by ‘La_
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ligne droite est le plus court chemin d’un point & un autre’. This
was mistranslated by Carlyle as ‘A straight line is the shortest
distance from one point to another’ (the mistranslation occurring
in the word ‘chemin’, which means ‘path’ rather than 'distance’).
1 was particularly pleased to buy A Histery of the Mathem-
atical Theory of Probability from the Time of Pascal to that of
Laplace by Isaac Todhunter, published in 1865 by Macmillan and
sold at a price of 18s. Even today, historians of probability and .
statistics refer to Todhunter’s text for its detailed description of
the development of the first 150 years of the theory. The work
is described as very scarce in the catalogue Bibliothece Chemico-
Mathematica of 1921 and copies of it were offered for sale at £2
2s, £2 7s 6d and £2 13s. Another classical text that I obtained
on probability theory is Choice and Chance by W. A Whitworth.
This appeared in five editions between 1867 and 1901. The edition
1 bought was the fourth, published in 1886. It contains 640 exer-

- cises on elementary probability theory and combinatorics and is

still useful to anyone who has to devise problems for a finite math-
ematics course. Incidentally, Whitwerth was vicar of All Saints’,
Margaret Street, London, a well-known centre of High Church
Anglicanism.

1 mentioned the Bibliotheca Chemico-Mathemaiica above
and I will take the opportunity to describe the virtues of this
publication. It is an historical catalogue of scientific books that
ware available for sale at Henry Sotheran and Co. of London.

_ (Sotheran’s is still one of the major dealers in antiquarian books
it London.) The work is quite extensive and a valuable source

for those wishing to research scientific literature. It is now a col-
lector’s item and well worth owning by the enthusiast. A look at
prices is instructive: A first edition of Principia-was available for
18 guineas and was described as ezcessively scarce.” The going rate
at auction for such a first edition seems to be £20,000-30,000 for
a good copy nowadays. It is not known exactly how many copies
of the first edition of Principia were printed, although estimates
of between 230 and 400 copies have been made. Leather bound
copies of the book retailed for 9s initially but apparently the book
had become scarce very quickly and people were paying much
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more for second-hand copies. In 1691, it is recorded that a copy
was bought for about 2 guineas. It should be borne in mind that
a good husbandman could be hired for between £3 and £4 a vear
(information from the Mathematical Gazette for December 1948).

Many of the books in Biblictheca Chemico—Mathematica now
cost between 500 and 1000 times what they cost 70 years ago. This
is particularly true of books whose authors have become famous
(like Babbage or Boole) or books produced in small print runs. (A
sum invested at 10% interest compounded annually would increase
1000 fold in about 72 years.) On the other hand, some text books
have really declined in value over the years when inflation is taken
into account. For example, the first edition of Todhunter’s Ana-
lytical Statics was published by Macmillan in 1853 and sold at 10s
6d, which seems expensive for the time. The fifth edition of the
book was still on sale in 1890 at the same price. Today, this book
would probably cost no more than £15, so that it has not held
its value over 140 years. Boole's Laws of Thought was available
from Sotheran’s for £1 15s and it was described as very scarce.
Group theorists who know the impact made in the last century by
Camille Jordan’s Traité des substitutions, published in 1870, may
like to know that this work was available from Sotheran’s for £3
7s 6d and described as very searce. I have not heard of an original
copy for sale in recent times.

In conclusion, I would like to make a small advertisement. I
am interested in buying books, papers or magazines of a scientific
or mathematical nature, preferably pre-20th century. If you have
any such items that you wish to dispose of, you may think of
contacting me at the address below.

Department of Mathematics
University College

Belfield

Dublin 4

email: redgow@irlearn.ucd.ie

POLYNOMIALS AND SERIES
IN BANACH SPACES®

Manuel GODZélezT and Joaguin M. Gutiérrest

Abstract: We show that homogeneous polynomials acting on Banach
spaces preserve weakly unconditionally Cauchy (w.u.C.) series and
unconditionally converging (u.c.) series. This fact allows to define the
class of unconditionally converging polynomials as those taking w.u.C.
series into u.c. series. 1t includes most of the classes of polynomials
previously considered in the literature. Then we study several “poly-
nomial properties” of Banach spaces, defined by relations of inclusion
between classes of polynomials. In our main result we show that a
Banach space E has the polynomial property (V) if and only if for all
% € ™ the space of homogeneous scalar polynomials P(*E) is reflexive;
hence, its dual space E*, like the dual of Tsirelson’s space, is reflexive
and contains no copies of £5.

Throughout the paper, E and F will be real or complex Banach
gpaces, By the unit ball of £ and E* its dual space. We will write
K for the scalar field, which will be always R or C, the real or the
complex field, and N for the natural numbers. Moreover, P{E, F)
will stand for the space of all {continuous) polynomials from £
into F. Any polynomial P € P(E, F} can be written as a sum of
homogeneous polynomials: P = 30 Py, with Py € P(*E, F),

the space of all k-homogeneous polynomials from ¥ into F.

_ *This note is a summary of the talk given by the second author
at the 5th September Meeting of the Irish Mathematical Society
held in Waterford {1992) _

tSupported in part by DGICY'T Grant PB 91-0307 (Spain)
iSupported in part by DGICYT Grant PB 90-0044 (Spain)
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We will only give here the main results and sketches of somé
of the proofs. A complete exposition, including detailed proofs
can be found in [5].

1. Preservation of series by polynomials

Recall that a series 3 .0, 7; in a Banach space E is weakly uncon-
ditionally Ceuchy (in short, w.u.C\) if for every f € E* we havec
Yoo | f(za) i< o0; equivalently, if

E €%

=1

sup
lei| <1

< 00.

The series Z: 1 %5 I8 uncondatzonatly convergent (in short, u.c
if any subseries is norm-convergent; equivalently, if

o0
lim sup E ez;ll = 0.
T—Fo0 iﬁilﬁl i—r

The series Y oo, z; is absolutely convergent if 3°72, {lzil| < co.

Clearly, absolutely convergent series are u.c.; however, by the
Dvoretsky-Rogers theorem [4], any infinite-dimensional Banach
space contains an u.c. series which is not absolutely convergent;
For example, if e,, denctes the unit vector basis of #;, then the
series Y .., €/7 18 u.c., but not absolutely convergent.

Also, any u.c. series is w.u.C., and the prototype exampl
of w.u.C. series which is not u.c. is given by ¥ .-, e;, where {e;
denotes the unit vector basis of the space ¢p. In fact, for any
w.u.C. series 3, x; which is not u.c. there exist natural numbers
my < ny < --- < my < ng < --- such that the sequence of blocks

St

Yk = Ty, +

is equivalent to the unit vector basis of ¢p. (See [4]).
In this section we give first an estimation of the uncondmonal
-norm of the image of a finite sequence by a homogeneous poly:
nomial, from which we derive the preservation of w.u.C. series
and u.c. series under the action of polynomials. Then we define
the class of unconditionally converging polynomials, and compare
it with other classes of polynomlals that have appeared in the
literature.

..+$nk

el

- PE P(kE,F) and - RO
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Lemma 1. Given k € N there exists Oy > 0 such that for any
z, € E we have

<C’_:c sup {iF Z.u,a:]
ler =<1 —1

We can take Cy = 1 in the complex case, and Cy = (2k)*/k! in
the real case.

The proof of the case in which E and F are complex spaces
relies on the properties of the generalized Rademacher functions
sn(t), n € M, introduced in [3], which are step functions on the
interval [0, 1] verlfymg [3] for any choice of integers 4;,...,4; &k 2>

2?
1 i ) —_ s s
jf 84y (£)..84, (B)dE = {1 ifi; =
o}

0 otherwise.

= ik;

In the case of real spaces, the proof is obtained using the complexi-
fcations of the spaces, and the polarization identities relating a
homogeneous polynomial and its associated symmetric multilinear
map.

Using Lemma 1, it is not difficult to prove the following

:..Theorem 2. Any polynomial P € P(E,F) takes w.u.C. (u.c.)

series into w.u.C. (u.c.) series.

This result suggests introducing the following class of poly-
nomials,

~ Definition 3. A polynomial P € P(E, F } is said to be uncondi-
' tionally converging if it takes w.u.C. series into u.c. series.

We shall denote by P..(*E, F) the class of all k-homogeneous

~unconditionally converging polynomials from £ to F.

Observe that in the case of E or F containing no copies of

¢, any w.u.C. series in that space is w.c. [4]; hence P(*E,F) =

P.c(*E, F}. Moreover, we can characterize unconditionally conver-

‘ging polynomials in terms of the action on sequences equivalent
to the unit vector basis {e,} of ¢.
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Lemma 4. For any P € P(*E, F) which is not unconditionall

converging there exists an isomorphism 1 :
{{Poi)e,} is equivalent to {e,}.

cg — & such th

The proof uses the Bessaga-Pelczyniski principle in order t
select a basic sequence from certain blocks of a suitable w.u.C

series ¥ ..o %; such that 3 .o, Pz, is not u.c.,, and then appli
Lemma 1. )

Next we describe the relation between the class P, and oth
classes of polynomials considered in the literature.

Recall that P € P(*E,F) is weakly compact, denoted b

P € Pueo(XE, F), if it takes bounded subsets into relatively weak

compact subsets, and P is completely continuous, denoted b

P € P..(*E,F), if it takes weakly Cauchy sequences into nor

convergent sequences. These classes were considered in [10] an

[11].

Moreover, we shall consider the class P.o(*E, F) of com

pletely continuous at O polynomials, formed by those P
P(*E, F) taking weakly null sequences into norm null sequence
Clearly P..(*E,F) C P.o(*E, F), but in general (see Propos
tion 14) the containment is strict for & > 1 and F failing t
Schur property.

Recall that A C F is said to be a Rosenthal setif any sequen
{x,) C A has a weakly Cauchy subsequence. In contrast with t
case of linear operators, a polynomial taking Rosenthal sets in
relatively compact subsets need not take weakly null sequenc
into norm null sequences, ag it is shown by the scalar polynomi

Pi(z,)ely— Y s2€R.
n=1
The coaverse implication also fails, since for the polynomial
oo -'Ek.
{xy) € &y — — l(z,) el
Q:(zn) €l (; ;A ) (zn) € &

we have that Q(e; + €,) = (1 + 1/n)(ey + e,,) has no converge
subsequences, although @ takes weakly null sequences into nor
null sequences, because of the factor (3 .o, zx/k).
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Finally, recall that A C E is said to be a Dunford-Peitis

..Sgt [2] i for any weakly null sequence (f,) C E* we have
lim, sUPzca [fn(#)} = 0. Using this class of subsets, we will

say as in [5] that a polynomial P € P(*E, F) belongs t0 Pug
if and only if its restriction to any Dunford-Pettis subset of E,
endowed with the inherited weak topology, is continuous.

Proposition 5. A polynomial P € P(*E, F) belongs to Py, in

the following cases:

(a) P € Peeo. ‘ .

(b) P takes Rosenthal subsets of E into relatively compact sub-
sets of F.

(C) P e Py

(d) Pe p'wcu-

The result in the cases (a) and (b) is an immediate con-
sequence of Lemma 4, since the unit vector basis of g is a weakly
null sequence which forms a non relatively compact set.

Case (c) follows from Lemma 4 also, since given P €
P(*E, F)\Pyc, and an isomorphism ¢ : ¢ — E such that
Poi & Pyclto,F), we have that {ie.} is a Dunford-Pettis
set of E on which P is not weakly continuous; hence P € Pyq.

Finally, we have Puco(*E, F) € Pua(*E, F) (see [5]); hence
(d) follows from {c}).

-'2..Polynnmial properties of Banach spaces

Pelezyniski [10] introduced Banach spaces with the polynomial

* Dunford-Pettis property as the spaces E such that (with our

notation) Puco(*E, F) C Pec(*E, F) for any k¥ € N and F, and

 raised the question whether or not the polynomial Dunford-Pettis

property coincides with the usual Dunford-Pettis property, which
admits the same definition in terms of linear operators (k = 1).
Ryan gave an affirmative answer in [11]. Moreover, Pelczyriski {9]
introduced Banach spaces with property (V) as the spaces E

-such that unconditionally converging operators from F into any

Banach space are weakly compact.
In this section, by means of the class P,. of uncondition-
ally converging polynomials, we introduce and study the polyno-
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mial property (V) and other polynomial versions of properties
Banach spaces viz: the Dieudonné property, the Schur proper
and property {V*). We show that in contrast with the case of t
Dunford-Pettis property, property (V) is very different from ¢t
polynomial property (V), since the prototype of space with t
property is Tsirelson’s space T*. For the other polynomial pro
erties, we show that sometimes the polynomial and the line
properties coincide, and sometimes not, with a general tenden
of the polynomial property to imply the absence of copies of
in the space. Moreover, we obtain additional results relating P
and other classes of polynomials.

Definition 6. A Banach space E has the polynomial property (V}
if for every k and F we have Pu.(*E, F) € Puco(*E, F).

It was shown in [9] that C(K') spaces enjoy property (V). T
next Lemma shows that this is not the case for the polynomial
property.

Lemma 7. IfP,.(*E, E) C Pyco(*E, E) for some k > 1, then B
contains no copies of ¢g.

It has been shown - that a Banach space E such th
P(*E,K) = P(*E) is reflexive for every & € N has many of
the properties of Tsirelson’s space T* [14]. In fact, E must
reflexive, and the dual space E* cannot contain copies of £,
(1 < p < o). Note also that P(*T*) is reflexive for every k € N
[1}. Next we present a characterization of the spaces F such that
P(*E) is reflexive for some k& > 1 in terms of the class Py of
polynomials.

Given P € P(*E, F), we consider the associated conjugate
operator defined by

P feF*— foPe P(E).

Moreover, we need the fact that for every Banach space E, the
space AFE, defined as the closed span of {2 ® - - ®z : x € E}

in the projective tensor product ®:E, is a predual of the space of
scalar polynomials P(*E) {12]. ‘
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Theorem 8. Givenk > 1, we have that the space P(*E) is reflex-
ive if and only if Puc(*E, F) € Puco(*E, F) for any F . In partic-
ular, E has the polynomial property (V) if and only if P(*E) is
reflexive for every k € IN.

For the direct result it is enough t6 note that P € Py, if

and only if the operator P* is weakly compact {13].

For the converse, we derive from Lemma 7 that E contains

no copies of co; hence P(*E, F) = Py (*E, F) = Pyuco(*E, F) for
any k and F, and then we cbserve that there exisis a natural

T

isomorphism between the space of polynomials P(*E, F') and the
space of operators L{(A}E, F') which takes the weakly compact
polynomials onto the weakly compact operators [12].

Extending the definition for operators, we shall say that
P € P(*E,F) is weakly completely continuous, denoted by

P € Puc*E, F), if it takes weakly Cauchy sequences into weakly

convergent sequences.

A Banach space E has the Dieudonné property if weakly com-
pletely continuous operators from E into any Banach space are
weakly compact. Grothendieck [7] introduced this property and
proved that C(K) spaces enjoy it. The next result shows that,
in general, C(K) spaces fail to satisfy the polynomial Dieudonné
property. '

Propositien 8. The following properties are equivalent:

(a) E contains no copies of {;.

(b) Pucc(*E, F) C Pueo(*E, F) for any k and F.

(c) Poc(PE, F) C Puco(*E, F'} for any k and F.

{d) P.c(*E,F) C Pyco(*E, F) for some nonreflexive F and some
k> 1

Corollary 10. P, (*E,F) C Py (*E, F) for any k € N.

Remark 11. It follows from Proposition 9 that, for any & >
1, there is a polynomial P € P,.(*s,co) which is not weakly
compact.

However, any operator from £, into cg is weakly compact and

‘thereby completely continuous, since £, has the Dunford-Pettis

property.
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Then the question arises whether every polynomial from £
into ¢g is completely continuous. '
As a complement of Theorem 8 we have the following

Theorem 12. Given k > 1, we have P.oo(*E, F) C Puco("E, F
for any F if and only if P{F1E) is reflexive.

Remark 13. In order to compare Theorems 8 and 12, we observ
that for the sequence spaces £, the space of polynomials P(*,) i
reflexive if and only if & < p < co.

In fact, it was proved in [8] that for £ < p, all polynomial
in P(*,) are completely continuous; hence, using a result of [12
(see {1]), we conclude that P(*,) is reflexive. For 1 <p < kit i
not difficult to show that P(*,) contains a copy of e

Recall that a Banach space E has the Schur property i
weakly convergent sequences in EF are norm convergent; equival
ently, weakly Cauchy sequences are norm convergent. It is an
immediate consequence of the definition that ¥ has the Schu
property if and only if P(*E,F') = P..(*E,F) for any k and F.
Next we give some other polynomial characterizations of Schur
property.

Proposition 14. The following properties are equivalent:
{a}) E has the Schur property.

(b} Puc(*E,F) C Pe(*E, F) for any k and F.

(b’ ) Peo(*E, F) C Pe(*E, F) for any k and F.

{c) Puc("E, E) C Peo(*E, E) for some k > 1.

(¢’ ) Peco(*E, E) C Po(*E, E) for some k > 1.

—

Another property defined in terms of series is property {V*
introduced in [10]. Recall that a subset A C F is said to be
(V*) set if for every w.n.C. series 3 .., fn in E* we have

lim sup | fo(z)} = 0.
T oreA
A Banach space E has property (V*) if every (V) set in E is re

atively weakly compact; equivalently, if any operator T € L{F, E
with unconditionally converging conjugate T is weakly compac

"
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Finally, we shall show that the polynomial version of the
last formulation coincides with property (V*). We shall dencte
by Pucs(*F, E) the class of all polynomials P € P(*F, E) such
that P* is unconditionally converging.

Pmposition 158. The following properties are equivalent:
(a) E has property (V*).

~ (b) For any k and any F, we have Pyc, ("F, E) C Puco(*F, E).

(c) For some k, we have Puce (%01, E) C Puco(¥1, E).

In the proof we need the fact that given P € P(*F,E), the
conjugate P* is unconditionally converging if and only if P(Br)
is a (V*) set. .

Remark 16. Part of the above results can be extended to holo-

.- morphic maps on Banach spaces. For example, holomorphic maps
. preserve u.c. series and w.u.C. series fulfilling natural restrictions,

and if we define the holomorphic property (V) in the natural way,
we can prove that it coincides with the polynomial property (V).
For the details we refer to [5].

Acknowledgement. The authors are indebted to Professor J.
Diestel for suggesting the study of the polynomial property (V).
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Research Announcement

TAYLOR-MONOMIAL EXPANSIONS
OF HOLOMORPHIC FUNCTIONS
OM FRECHET SPACES

Seén Dineen

Let X := A(A) denote a Fréchet nuclear spaces with Kothe matrix
A and let {E,}. denote a sequence of Banach spaces. Let £ :=
M{En}n) = {(@n)n : Tn € E, and (Jlz.]]), € A(A)} and endow
E with the topology generated by the semi-norms

@a)nlle =3 anslizall, k=1,2,...
n=1

E is a Fréchet space and {E,}, is an unconditional Schander
decomposition of E. Examples of spaces which can be represented
in this fashion, include all Banach spaces and all Fréchet nuclear
(and some Fréchet-Schwartz) spaces with basis. Let H(E) denote
the space of all C-valued holomorphic functions on F and for
meNY m=(my,...,mn,0..) let

Plz) = 1 jf M—dAl-“dAn

(2mi)” APFL gl
[Asl=1
We have
f= Z P, (*)
meENIN)

in the 79, 7w, 75 topologies on H(E).

The expansion () reduces to the Taylor series expansion in
the case of a Banach space (l.e. if B3y = E, E, =0, n > 1) and to
the monomial expansion for Fréchet nuclear spaces with a basis
(when dim (E,,) = 1 all n).
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]

If (E,)n is an unconditional Schauder decomposition for the
Fréchet space ¥ then the topology of E is generated by semi-norms

satisfying
a0 o0
Z Tn Z AnTn

n=1 n=1

= sup
[An<l

(xx)

I (8.)52, is a sequence of real numbers, 3, > 1 all p, let

o 7 5]
E Tan = z Ty + 5 Brnn
n=1 8,7 n=1 n=j+1

Ifm e NV} wetet P.(™E) denote the set of all |mi-homogeneous

polynomials on £ which are homogeneous in the even variables

te f m=(my, ma,...,My,...) then P € P,(™E) if and only if
(i) P(Az) =A™ P(z) forall z € E, A e C.

(ii} P (Aiﬁgi + Zmn) = \"up (Z mn) forall: allz € F
n=1 n=]
and all A e C.
Our main technical tool is the following preposition.

Proposition. Let {E,}, denote an unconditional Schauder
decomposition for the Fréchet space E, let F denote a Banach
space and let T denote an F-valued linear function on H(E)
which is bounded on the locally bounded subsets of H(E). Let

Bn > 1 alln, op_1 = 2 all n and suppose Zxﬂ € E implies
n=1

S BPx, € E for all p > 0. Let || - || denote a continuous

semi-norm satisfying (=*) and suppose there exists C > 0 such

that

\T(P)|| < CliPl| for all P € P.(™E) and all m € N1V

where [|P|| = sup{|P(z){; ||z}l < 1}. Then, for any § > 1, there
exists Cy > 0 and a positive integer j such that

TP} < C16™ 1Py,
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for all P € P.(™E) and all m € NV) where

1Plls,; = sup{|P(z)} lllg; < 1}-

Theorem. Let AMA) denote a Fréchet-nuclear space with DN
and let {E,}. denote a sequence of Banach spaces each of which
admits an unconditional finite dimensional Schander decomposi-

tion. Then 7, = 75 on 'H(A ({E,,}n))

A Fréchet nuclear space has DN if and only if it is isomorphic
to a subspace of s. The above theorem includes the known cases
where E is a Banach space with an unconditional basis and the
case where E is a Fréchet-nuclear space with basis and DN. It
also includes Fréchet-Schwartz spaces which are not nuclear. By
considering complemented subspaces, we find that 7, = 75 on
H(E), where E is any reflexive subspace, with the approximation
property, of a Banach space with an unconditional finite dimen-
sional Schauder decomposition. This includes spaces which do not
have a finite dimensional Schaunder decompesition. -

Sean Dineen,

Department of Mathematics,
University College Dublin,
Belfield,

Dublin 4.
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FINITE ELEMENT METHODS FOR
SINGULARLY PERTURBED HIGHER
ORDER ELLIPTIC TWO-POINT
BOUNDARY VALUE PROBLEMS WITH
TWO BOUNDARY LAYERS

Guangfu Sun & Martin Stynes

Piecewise polynomial Galerkin finite element methods are con-
structed on a Shishkin mesh for a class of singularly perturbed
two-point boundary value problems of order greater than two.
The methods are proved to be convergent, uniformly in the per-
turbation parameter, in various norms. Some numerical results
are presented for a fourth order problem. Full details are in [1].

FINITE ELEMENT METHODS FOR
SINGULARLY PERTURBED HIGHER ORDER
ELLIPTIC TWO-POINT BOUNDARY VALUE
PROBLEMS I1: CONVECTION-DIFFUSION TYPE

Guangfu Sun & Martin Stynes

We consider singularly perturbed high order elliptic two-point
boundary value problems of convection—diffusion type. Under
suitable hypotheses, the coercivity of the associated bilinear form
is proved and a representation result for the solutions of such
problems is given. A family of Galerkin finite element methods
based on piecewise polynomial test/trial functions on a Shishkin
mesh is constructed and proved to be convergent, uniformly in
the perturbation parameter, in energy and W norms. Numer-
ical results are presented for a second order problem and fourth
order problems. Full details appear in [2].
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FINITE ELEMENT METHODS
ON PIECEWISE EQUIDISTANT MESHES
FOR INTERIOR TURNING POINT PROBLEMS

Guangfu Sun & Martin Stynes

We consider linear second order singularly perturbed two-point
boundary value problems with interior turning points. Piecewise
linear Galerkin finite element methods are constructed on various
piecewise equidistant meshes designed for such problems. These
methods are proved to be convergent, uniformly in the singular
perturbation parameter, in a weighted energy norm and the usual
L? norm. Numerical results are presented. Full details appear in
[3l.
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FINITE ELEMENT ANALYSIS OF
EXPONENTIALLY FITTED LUMPED
SCHEMES FOR TIME-DEPENDENT
CONVECTION-DIFFUSION PROBLEMS

Wen Guo & Martin Stynes

We consider a singularly perturbed linear parabolic initial-
boundary value problem in one space variable. Two exponentially
fitted schemes are derived for the problem using Petrov-Galerkin
finite element methods with various choices of trial and test
spaces. On rectangular meshes which are either arbitrary or
slightly restricted, we derive global energy norm and L? norm
and local L*™ error bounds which are uniform in the diffusion
parameter. Numerical results are also presented. Full details
appear in [1].

FINITE ELEMENT ANALYSIS OF
AN EXPONENTIALLY FITTED
NON-LUMPED SCHEME FOR
ADVECTION-DIFFUSION EQUATIONS

Wen Guo & Martin Stynes

We analyse a Petrov-Galerkin finite element method for numeric-
ally solving an advection-diffusion equation in one space variable.
Under reasonable assumptions on the behaviour of the exact solu-
tion and a certain stability condition, the scheme is shown to be
convergent, uniformly in the diffusion parameter, in global energy
and L% norms and a local discrete L norm. Full details appear
in [2].
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POINTWISE ERRCR ESTIMATES FOR
A STREAMLINE DIFFUSION SCHEME
ON A SHISHKIN MESH FOR
A CONVECTION-DIFFUSION PROBLEM

Wen Guo & Martin Stynes

We analyse a streamiine diffusion scheme on a special piecewise
uniform mesh for a model time-dependent convection-diffusion
problem. The method with piecewise linear elements is shown

10 be convergent, independently of the diffusion parameter, with

a pointwise accuracy of almost order 5/4 outside the boundary
layer and almost order 3/4 inside the boundazy layer. Numerical
results are also given. Full details appear in [3].

AN ANALYSIS OF A
CELL VERTEX FINITE VOLUME METHCD
FOR A PARABOLIC
CONVECTION-DIFFUSION PROBLEM

‘Wen Guo & Martin Stynes

We examine a cell vertex finite volume method which is s;,pplied
to a model parabolic convection-diffusion problem. By using tech-
niques from finite element analysis, local errors away from all lay-
ers are obtained in a seminorm which is related to, but wesker
than, the L? norm. Full details appear in [4].
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Book Review

Around Burnside
Translated from the Russian by James Wiegold

A. L. Kostrikin
Springer-Verlag {(Ergeb. Math. Series (3) Vol 20), 220pp.
ISBN 3-540-50602-0
Price $82.00.

Reviewed by Sedn Tobin

This is in many ways an extraordinary book, and it is Iikely to
become a collector’s item even for those who are not primarily
concerned with work on the Burnside problems. Commencing
with a curious title, and ending with an eccentric index, it is
full of stylistic quirks while also packed with information on the

"work by Kostrikin and his school which has led recently to the

total solution by Efim Zelmanov, [5],[6], of the Restricted Burnside
Problem. In his translator’s preface Professor Wiegold remarks
‘,..this book has been an interesting challenge to the translator.
It is most unusual, in a text of this type, in that the style is racy
with many literary allusions and witticisms: not the easiest to
translate, but a source of inspiration to continue through material
that could daunt by its computational complexity’.

In his preface to this English edition of his book, Professor
Kostrikin says, ‘Problems of Burnside type have become singularly
popular in Moscow and Novosibirsk . . . and it is of course advisable
for [Russian algebraists] to share their knowledge with Western
colleagues’. Our thanks are certainly due to both author and
translator for their efforts to make this knowledge available to
us, in particular through the medium of this book. Two other
recent books worth mentioning in this context are Vaughan-Lee's
[4] on the Restricted Problem and Zelmanov’s [7] on problems of
Burnside type.
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Kostrikin’s book commences with a brief but careful account
of the histery of developments in the study of the group problems
posed by Burnside in his famous paper of 1902, [1]. These are {in
our terminology):

(a) Is a finitely generated periodic group necessarily finite?

(b) Must such a group be finite if the periods are bounded?

() If finite, what is the order {in terms of obvious paramet-

ers)?

Question {b)—with its corcllary (¢)-has come to be known as
THE Burnside Problem. Having stated (a), Burnside ignored it
in his paper, possibly wisely since in 1964 E.S.Golod showed that
the answer is “No”. Burnside and, later, others obtained positive
answers to (b) in a few special cases. If we let B{n, k) represent
the quotient of a free group of rank n over the subgroup generated
by the k—th powers of all its elements, then by 1958 it was known
that for all n, the group B(n, %) is finite when & = 2, 3, 4, or §;
and the precise order was known for k = 2, 3, or 6 (for k = 4,
it is still not known). These are the only positive results; but in
1968 Novikov and Adian showed that B(2,k) is infinite for large
{> 4380) odd values of k. Since then this bound has been lowered,
and other negative results have been obtained, but they do not
concern us here.

Already in the nineteen-forties and fifties, a related problem
was gaining attention. Even if B{n,k) is infinite for a certain
pair n, k, it could well happen that it has a largest finite quo-
tient group R(n, %) such that every finite homomorphic image of
B(n, k) is a homomorphic image of R{n, k)—equivalently, B(n, k)
might have just a finite number of non-isomorphic finite factor-
groups. The question of the existence of R(n, k) was called by
Magnus, [3], the RESTRICTED Burnside Problem, and it is a
preblem to which Kostrikin has addressed himself for many vears,
showing what has been described as ‘a heroic capacity for com-
putation’. Incidentally the reviewer attended a course of lectures
on Kostrikin's work given by James Wiegold in Canberra during
the {Australian) winter of 1965, in which he displayed a similar
heroic capacity-which must have stood him in good stead when
coping with Kostrikin’s book.
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Kostrikin published his first result on this problem, a proof
that R(2,5) exists, in 1955 and then in 1958 he succeeded in prov-
ing that R(n,p) exists for all n and al} primes p. The final step,
replacing p by any power of p, eluded him despite intense efforts.
His book was written to chart the course of this passionate pilgrim:=
age, to point out pitfalls and possible improvements, and to act as
a kind of vade mecum for others engaged in the same task. And
indeed it has done so splendidly, for his co-worker E. Zelmanov,
building on the ideas developed by and with Kestrikin, has proved
the existence of R(n,k) whenever &k is a prime power. Taken in
conjunction with the Reduction Theorem proved by P.Hall and
G.Higman, [2], in 1956 (modulo certain conjectures about finite
simple groups, which have since been confirmed by the Classifica-
tion Theorem) this has the consequence that R(n, k) exists for all
n and all £. Ironically, this result was obtained just as the book
under review was being published, and could only be referred to
in the translator’s preface.

The book is concerned largely with Lie algebras which satisfy
certain Engel identities. We will write [z, y] for the product of z
and y in'a Lie algebra I, and [z, n.y] for the left-normed product
[,¥,....,y], where y appears n times. An Engel algebra, or more
specifically an E{n)-algebra, is a Lie algebra in which the law
[z, n.y] = 0 is satisfied for some fixed integer n. This is linear in x
and y when n = 1, but more generally an effort is made to extract
multilinear laws (involving terms [z, u,v, ..., w]) as a consequence,
in order to exploit linearity properties of the algebra. The plan
of attack on the Restricted problem for prime exponent p is as
follows: consider a finitely generated group G with exponent p,
and construct an associated Lie ring L(G) using for example the
descending central series of 7. Then L(G) has characteristic p
and may be regarded as an algebra over the integers modulo p.
By a theorem of Magnus, this algebra satisfies the Engel identity
[z,(p—~ 1).y] = 0. Since G is nilpotent, and therefore a finite p-
group, if and only if L({) is nilpotent, the problem now becomes
this: show that a finitely generated E{p— 1)-algebra over the field
of p elements is nilpotent, (and calculate its class and order). An
explanation of this technique is given in Chapter 7, which surveys
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‘...the shape of the linear methods in finite group theory that
have a bearing on our principal theme. .. .

That this is the last chapter rather than the first illustrates
the curiously non-linear layout of the book, which skips forward
and backwards, looking at the same result reached by different
methods, occasionally pointing out cul-de-sacs which had been
explored to no avail. Before commenting on the style, however,
let us look at the contents.

The first four chapters are devoted to the work on R(n,p)
and are intended °...to make available... a text that is easily
checked and does not pretend to the deceptive brevity of the ori-
ginal paper’. This is just one of the disarming comments scattered
through the text. The author certainly takes pains to get his ideas
across, but the checking is not a task for the faint-hearted.

Some shorter alternative proofs are discussed in Chapter 5,
while Chapter 8 gives a number of results on nilpotency of other
Engel algebras, in particular Razmyslov’s theorem on the exist-
ence of non-solvable E(p— 2)-algebras of characteristic p and Zel-
manov’s theorem on the nilpotency of Engel algebras of charac-
teristic zero. Appendix I gives an argument due to Zelmanov
furnishing a recursive bound f{s,t) for the nilpotency class of an
s-generator E(t)-algebra of characteristic p, where p > ¢. Finally,
Appendix I gives a brief biography of Burnside.

The work of Kostrikin and Zelmanov on the Restricted prob-
lem depends on studies of ‘sandwiches’. An element s in 2 Lie
algebra L is called a ‘thin sandwich’ if [z, 5, 5] = [z, s,y,s] = 0 for
all z and y in L; it is ‘thick’ if also [z, s, v, s,2] = 0 for all , y and
z in L. The lengthy argument for exponent p runs as follows: (i)
if L is an E(n)-algebra over a field F of characteristic p, where
n < p, then L contains a (non-zero) thin sandwich; (ii) if L has a
thin sandwich, it must also contain a thick sandwich; (iii) if L has
a thick sandwich it must also contain a non-trivial abelian ideal;
{(iv) now let R be the locally nilpotent radical of £, so that L/R
is also an F(n)-algebra over F. This must be zero, ctherwise (iii)
is contradicted; thus L = R and we have done.

Now for a few words on the style of this remarkable book.
Frankly, this reviewer found the heavy-handed humour and the
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forced jocular remarks quite tiresome (although, to be fair, the
translation of humour is rarely a happy event). On the other hand,
the book abounds with interesting and illuminating comments
on each chapter; and one must admire an author who can laugh
at himself, as for example on page 158: “Thecrem 1.1 refutes a
strange conjecture to be found in the survey article [142]-the
reference here is to an article by Kostrikin himself published in
1974. He also pokes a little gentle fun at himself in the Epilogue,
where he says: ‘“The method of sandwiches lies at the heart of
this beok. Unfortunately, the book itself is written in the form
of a sandwich, with layers of similar material in different sections
and even in different chapters. . . Perbaps it would be worthwhile
to produce a slight rearrangement. ..’

Incidentally, the reference here to ‘Theorem 1.17 is in fact a
misprint, and the text has a small number of obvious misprints.
As for the index, it was presumably compiled by a computer and
unseen by human eye-how else to account for entries such as ‘Bug-
aboo threat to Lemma 3.1°7 There is a fine list of 288 references,
and a separate Erratum pamyphlet which reproduces this list but
with the very useful addition of references to reviews in the Zen-
tralblatt and to English versions (where available) of the many
papers in Russian.

To sumn up: this book sets out to explain clearly the great
contributions of Kostrikin and his Russian collaborators, and to
make them available to other workers in the field. It is unusual
among books at this level in that the author has stamped his
personality upon it, and indeed he comes across as a warm and
likeable man. The book succeeds in its purpose, and anyone who
wishes to understand the work which has led ultimately to the
solution of the Restricted Burnside Problem should acquire a copy
of ‘Around Burnside’.
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