A first chapter is provided which contains sufficient concepts from abstract fuzzy topology to make the book self-contained. "ABELIAN VARIETIES" (Second Edition) By D: MumLord Published by *Oxford University Press*, India, 1986. vii + 279 pp. Stg £7.50. ISBN 0-19-560528-4. This book is a systematic account of the basic results about abelian varieties. It includes an exposition, on the one hand, of the analytic methods and results applicable when the ground field k is the complex field C and, on the other hand, of the scheme-theoretic methods and results used to deal with inseparable isogenies when the ground field k has characteristic p. The revised second edition contains, in addition, appendices on "The Theorem of Tate" and the "Mordell-Weil Theorem". ## PROBLEM PAGE First item this time is one of those intriguing problems which is often solved more easily by non-mathematicians! I heard it from Richard Bumby who traces it back to John Conway. 1. Find the next entry in the following sequence: Here is another problem with a simple solution which is not so simple to discover. 2. Find an infinite family of pairs of distinct integers m,n such that: m,n have the same prime factors, and m-1, n-1 have the same prime factors. Now for the solutions to some earlier problems, from March 1986. 1. How long is the recurring block of digits in (0.001)2? I first heard this problem from David Fowler, who uses it as an example to show that simple arithmetic can be surprisingly tricky. Many people's first guess at the answer is 6 digits or 9 digits, but in fact the recurring block has 2997 digits! To be precise: $(0.001)^2 = 0.000001002 \dots 996997999$ In case you think that there is a misprint here, the string 998 is indeed absent. Once the pattern in this recurring block has been notice it is not hard to show that $$(0.00...01)^2 = \frac{1}{(10^n-1)^2}$$ has a recurring block of $n(10^{n}-1)$ digits. To verify that the decimal expansion has the form $$(0.00...01)^2 = 0.00...000...1...99...9$$ with the string 99 ... 8 missing, one can apply the identity $$\frac{10^{n}(m(10^{n}-1)+1)}{(10^{n}-1)^{2}} = m + \frac{(m+1)(10^{n}-1)+1}{(10^{n}-1)^{2}}$$ with $m = 0,1, ..., 10^{n}-2$, in the long division $1/(10^{n}-1)^{2}$. 2. Prove that at least one of the numbers is transcendental. Thanks to Des MacHale for supplying this problem and its solution. We use the facts that if x and y are both algebraic numbers then so are $x\pm y$ and xy (see Herstein's Topics in Algebra, page 172), and also $\sqrt{|x|}$. Thus if both π + e and π e are algebraic we deduce that $$\pi = \frac{1}{2}(((\pi+e)^2 - 4\pi e)^{\frac{1}{2}} + (\pi+e))$$ is algebraic, which is clearly false. The argument clearly holds for any pair of transcendental numbers α,β and Des points out that there are generalisations to more than two numbers, involving the symmetric functions. 3. Suppose that $a_n \ge 0$, for $n = 1, 2, \ldots$ How large can $$\sum_{n=1}^{\infty} \frac{a_n}{e^{a_1 + a_2 + \cdots a_n}} \tag{*}$$ be? Tom Carroll (a postgraduate at the OU) recently encountered a series of this form while constructing a certain subharmonic function. In fact the series is convergent with sum less than 1. One can see this by noting that $$\frac{a_{n}}{e^{a_{1}+a_{2}+\cdots+a_{n}}} \le \frac{e^{a_{n}}-1}{e^{a_{1}+a_{2}+\cdots+a_{n}}}$$ $$= \frac{1}{e^{a_1 + a_2 + \cdots + a_{n-1}}} - \frac{1}{e^{a_1 + a_2 + \cdots + a_n}},$$ since $e^{X} \ge 1+x$. Thus, by telescoping cancellation, the nth partial sum of (*) is at most $$1 - \frac{1}{e^{a_1 + a_2 + \cdots + a_n}} < 1.$$ To see that the number 1 is best possible here, consider $$\sum_{n=1}^{\infty} \frac{a}{na} = \frac{a}{e^a - 1}, \quad a > 0,$$ and notice that $$\lim_{a \to 0} \frac{a}{e^a - 1} = 1.$$ Phil Rippon, Open University, Milton Keynes