

Course 424
 Group Representations III

Dr Timothy Murphy

EELT 3 Tuesday, 11 May 1999 14:00-16:00

Answer as many questions as you can; all carry the same number of marks.
In this exam, 'Lie algebra' means Lie algebra over \mathbb{R}, and 'representation' means finite-dimensional representation over \mathbb{C}.

1. Define the exponential e^{X} of a square matrix X.

Determine e^{X} in each of the following cases:

$$
\begin{array}{lll}
X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), & X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), & X=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \\
X=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), & X=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right), & X=\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right) .
\end{array}
$$

Which of these 6 matrices X are themselves expressible in the form $X=e^{Y}$, where Y is a real matrix? (Justify your answers in all cases.)
Answer: The exponential of a square matrix X is defined by

$$
e^{X}=I+X+\frac{1}{2!} X^{2}+\frac{1}{3!} X^{3}+\cdots
$$

This series converges for all $X \in \operatorname{Mat}(n, k)$ by comparison with the series for $e^{\|X\|}$, since $\left\|X^{n}\right\| \leq\|X\|^{n}$.
(a) If

$$
X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

then

$$
X^{2}=0
$$

and so

$$
e^{X}=I+X=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(b) If

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

then

$$
X^{2}=I,
$$

and so

$$
e^{X}=\left(\begin{array}{cc}
\cosh 1 & \sinh 1 \\
\sinh 1 & \cosh 1
\end{array}\right)
$$

(c) If

$$
X=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

then

$$
X^{2}=-I
$$

and so

$$
e^{X}=\left(\begin{array}{cc}
\cos 1 & -\sin 1 \\
\sin 1 & \cos 1
\end{array}\right)
$$

(d) If

$$
X=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

then

$$
X=\left(\begin{array}{cc}
e & 0 \\
0 & e^{-1}
\end{array}\right) .
$$

(e) If

$$
X=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)=I+Y
$$

where

$$
Y=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

then, since I, Y commute,

$$
e^{X}=e^{I} e^{Y}=\left(\begin{array}{cc}
e \cos 1 & -e \sin 1 \\
e \sin 1 & e \cos 1
\end{array}\right)
$$

(f) If

$$
X=\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)=-I+Z
$$

where

$$
Z=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

then, since $-I, Z$ commute,

$$
e^{X}=e^{-I} e^{Z}=\left(\begin{array}{cc}
e^{-1} & -e^{-1} \\
0 & e^{-1}
\end{array}\right) .
$$

(a) e^{Y} is non-singular for all Y, since $e^{Y} e^{-Y}=I$. Since X is singular in this case, $X \neq e^{Y}$.
(b) X has eigenvalues ± 1. Suppose $X=e^{Y}$; and suppose Y has eigenvalues λ, μ. Then X has eigenvalues e^{λ}, e^{μ}. There are two possibilities. Either λ, μ are complex conjugates, in which case the same is true of e^{λ}, e^{μ}; or else λ, μ are both real, in which case $e^{\lambda}, e^{\mu}>0$. In neither case can we get ± 1. Hence $X \neq e^{Y}$.
(c) By the isomorphism between the complex numbers $z=x+i y$ and the matrices

$$
\mathbb{C}(z)=\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)
$$

we see that

$$
X=\mathbb{C}(i)
$$

Since

$$
i=e^{\pi i / 2}
$$

while

$$
\mathbb{C}\left(e^{z}\right)=e^{\mathbb{C}(z)}
$$

it follows that $X=e^{Y}$ with

$$
Y=\left(\begin{array}{cc}
0 & -\pi / 2 \\
\pi / 2 & 0
\end{array}\right)
$$

(d) X has eigenvalues ± 1. Thus by the argument in case (b) above, $X \neq e^{Y}$.
(e) We have

$$
X=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)=\mathbb{C}(1+i)
$$

But

$$
1+i=\sqrt{2} e^{\pi i / 4}=e^{\log 2 / 2+\pi i / 4}
$$

Thus $X=e^{Y}$ with

$$
Y=X=\left(\begin{array}{cc}
\log 2 / 2 & -\pi / 4 \\
\pi / 4 & \log 2 / 2
\end{array}\right)
$$

(f) X has eigenvalues $-1,-1$. Thus if $X=e^{Y}$ (with Y real) then Y must have eigenvalues $\pm(2 n+1) \pi i$ for some integer n. In particular, Y has distinct eigenvalues, and so is semisimple (diagonalisable over \mathbb{C}).
But in that case $X=e^{Y}$ would also be semisimple. That is impossible, since a diagonalisable matrix with eigenvalues $-1,-1$ is necessarily $-I$. Hence $X \neq e^{Y}$.
2. Define a linear group, and a Lie algebra; and define the Lie algebra $\mathscr{L} G$ of a linear group G, showing that it is indeed a Lie algebra.
Define the dimension of a linear group; and determine the dimensions of each of the following groups:

$$
\mathbf{O}(n), \mathbf{S O}(n), \mathbf{U}(n), \mathbf{S U}(n), \mathbf{G L}(n, \mathbb{R}), \mathbf{S L}(n, \mathbb{R}), \mathbf{G L}(n, \mathbb{C}), \mathbf{S L}(n, \mathbb{C}) ?
$$

Answer: A linear group is a closed subgroup $G \subset \mathbf{G L}(n, \mathbb{R})$ for some n.
A Lie algebra is defined by giving
(a) a vector space L;
(b) a binary operation on L, ie a map

$$
L \times L \rightarrow L:(X, Y) \mapsto[X, Y]
$$

satisfying the conditions
(a) The product $[X, Y]$ is bilinear in X, Y;
(b) The product is skew-symmetric:

$$
[Y, X]=-[X, Y] ;
$$

(c) Jacobi's identity is satisfied:

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

for all $X, Y, Z \in L$.
Suppose $G \subset \mathbf{G L}(n, \mathbb{R})$ is a linear group. Then its Lie algebra $L=\mathcal{L} G$ is defined to be

$$
L=\left\{X \in \operatorname{Mat}(n, \mathbb{R}): e^{t X} \in G \forall t \in \mathbb{R}\right\}
$$

It follows at once from this definition that

$$
X \in L, \lambda \in R \Longrightarrow \lambda X \in L
$$

Thus to see that L is a vector subspace of $\operatorname{Mat}(n, \mathbb{R})$ we must show that

$$
X, Y \in L \Longrightarrow X+Y \in L
$$

Now

$$
\left(e^{X / n} e^{Y / n}\right)^{n} \mapsto e^{X+Y}
$$

as $n \mapsto \infty$. (This can be seen by taking the logarithms of each side.) It follows that

$$
X, Y \in L \Longrightarrow e^{X+Y} \in G
$$

On replacing X, Y by $t X, t Y$ we see that

$$
\begin{aligned}
X, Y \in L & \Longrightarrow e^{t(X+Y)} \in G \\
& \Longrightarrow X+Y \in L
\end{aligned}
$$

Similarly

$$
\left(e^{X / n} e^{Y / n} e^{-X / n} e^{-Y / n}\right)^{n^{2}} \mapsto e^{[X, Y]}
$$

as may be seen again on taking logarithms. It follows that

$$
X, Y \in L \Longrightarrow e^{[X, Y]} \in G
$$

Taking $t X$ in place of X, this implies that

$$
\begin{aligned}
X, Y \in L & \Longrightarrow e^{t[X, Y]} \in G \\
& \Longrightarrow[X, Y] \in L .
\end{aligned}
$$

Thus L is a Lie algebra.
The dimension of a linear group G is the dimension of the real vector space $\mathscr{L} G$:

$$
\operatorname{dim} G=\operatorname{dim}_{\mathbb{R}} \mathscr{L} G .
$$

(a) We have

$$
\mathbf{o}(n)=\left\{X \in \operatorname{Mat}(n, \mathbb{R}): X^{\prime}+X=0\right\}
$$

A skew symmetric matrix X is determined by giving the entries above the diagonal. This determines the entries below the diagonal; while those on the diagonal are 0 . Thus

$$
\operatorname{dim} O(n)=\operatorname{dim} o(n)=\frac{n(n-1)}{2}
$$

(b) We have

$$
\operatorname{so}(n)=\left\{X \in \operatorname{Mat}(n, \mathbb{R}): X^{\prime}+X=0, \operatorname{tr} X=0\right\}=\mathbf{o}(n)
$$

since $X^{\prime}+X=0 \Longrightarrow \operatorname{tr} X=0$. Thus

$$
\operatorname{dim} S O(n)=\operatorname{dim} O(n)=\frac{n(n-1)}{2}
$$

(c) We have

$$
\mathbf{u}(n)=\left\{X \in \operatorname{Mat}(n, \mathbb{C}): X^{*}+X=0\right\}
$$

Again, the elements above the diagonal determine those below the diagonal; while those on the diagonal are purely imaginary. Thus

$$
\begin{aligned}
\operatorname{dim} \mathbf{U}(n) & =2 \frac{n(n-1)}{2}+n \\
& =n^{2} .
\end{aligned}
$$

(d) We have

$$
\mathbf{s u}(n)=\left\{X \in \operatorname{Mat}(n, \mathbb{C}): X^{*}+X=0, \operatorname{tr} X=0\right\}
$$

This gives one linear condition on the (purely imaginary) diagonal elements. Thus

$$
\operatorname{dim} \mathbf{S U}(n)=\operatorname{dim} \mathbf{U}(n)-1=n^{2}-1
$$

(e) We have

$$
\operatorname{gl}(n, \mathbb{R})=\operatorname{Mat}(n, \mathbb{R})
$$

Thus

$$
\operatorname{dim} \mathbf{G} \mathbf{L}(n, \mathbb{R})=n^{2}
$$

(f) We have

$$
\operatorname{sl}(n, \mathbb{R})=\{X \in \operatorname{Mat}(n, \mathbb{R}): \operatorname{tr} X=0\}
$$

This imposes one linear condition on X. Thus

$$
\operatorname{dim} \mathbf{S L}(n, \mathbb{R})=\operatorname{dim} \mathbf{G} \mathbf{L}(n, \mathbb{R})-1=n^{2}-1
$$

(g) We have

$$
\operatorname{gl}(n, \mathbb{C})=\operatorname{Mat}(n, \mathbb{C})
$$

Each of the n^{2} complex entries takes 2 real values. Thus

$$
\operatorname{dim} \mathbf{G L}(n, \mathbb{C})=2 n^{2}
$$

(h) We have

$$
\operatorname{sl}(n, \mathbb{C})=\{X \in \operatorname{Mat}(n, \mathbb{C}): \operatorname{tr} X=0\} .
$$

This imposes one complex linear condition on X, or 2 real linear conditions. Thus

$$
\operatorname{dim} \mathbf{S L}(n, \mathbb{C})=\operatorname{dim} \mathbf{G L}(n, \mathbb{C})-1=2 n^{2}-2
$$

3. Determine the Lie algebras of $\mathbf{S U}(2)$ and $\mathbf{S O}(3)$, and show that they are isomomorphic.

Show that the 2 groups themselves are not isomorphic.
Answer: We have

$$
\begin{aligned}
\mathbf{u}(2) & =\left\{X \in \operatorname{Mat}(2, \mathbb{C}): e^{t X} \in \mathbf{U}(2) \forall t \in \mathbb{R}\right\} \\
& =\left\{X:\left(e^{t X}\right)^{*} e^{t X}=I \forall t\right\} \\
& =\left\{X: e^{t X^{*}}=e^{-t X}=I \forall t\right\} \\
& =\left\{X: X^{*}=-X\right\} \\
& =\left\{X: X^{*}+X=0\right\} .
\end{aligned}
$$

Also

$$
\begin{aligned}
\mathbf{s l}(2, \mathbb{C}) & =\left\{X \in \operatorname{Mat}(2, \mathbb{C}): e^{t X} \in \mathbf{S L}(2, \mathbb{C}) \forall t \in \mathbb{R}\right\} \\
& =\left\{X: \operatorname{det} e^{t X}=1 \forall t\right\} \\
& =\left\{X: e^{t \operatorname{tr} X}=1 \forall t\right\} \\
& =\{X: \operatorname{tr} X=0\}
\end{aligned}
$$

Since

$$
\mathbf{S U}(2)=\mathbf{U}(2) \cap \mathbf{S L}(2, \mathbb{C})
$$

it follows that

$$
\begin{aligned}
\mathbf{s u}(2) & =\mathbf{u}(2) \cap \mathbf{s l}(2, \mathbb{C}) \\
& =\left\{X: X^{*}+X=0, \operatorname{tr} X=0\right\} .
\end{aligned}
$$

The 3 matrices

$$
e=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), f=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), g=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

form a basis for the vector space $\mathbf{s u}(2)$.
We have

$$
\begin{gathered}
{[e, f]=e f-f e=-2 g,} \\
{[e, g]=e g-g e=2 f} \\
{[f, g]=f g-g f=-2 e}
\end{gathered}
$$

Thus

$$
\mathbf{s u}(2)=\langle e, f, g:[e, f]=-2 g,[e, g]=2 f,[f, g]=-2 e\rangle .
$$

We have

$$
\begin{aligned}
\mathbf{o}(3) & =\left\{X \in \operatorname{Mat}(3, \mathbb{R}): e^{t X} \in \mathbf{O}(3) \forall t \in \mathbb{R}\right\} \\
& =\left\{X:\left(e^{t X}\right)^{\prime} e^{t X}=I \forall t\right\} \\
& =\left\{X: e^{t X^{\prime}}=e^{-t X}=I \forall t\right\} \\
& =\left\{X: X^{\prime}=-X\right\} \\
& =\left\{X: X^{\prime}+X=0\right\} .
\end{aligned}
$$

Also

$$
\begin{aligned}
\mathbf{s l}(3, \mathbb{R}) & =\left\{X \in \operatorname{Mat}(3, \mathbb{R}): e^{t X} \in \mathbf{S L}(3, \mathbb{R}) \forall t \in \mathbb{R}\right\} \\
& =\left\{X: \operatorname{det} e^{t X}=1 \forall t\right\} \\
& =\left\{X: e^{\operatorname{tr} X}=1 \forall t\right\} \\
& =\{X: \operatorname{tr} X=0\}
\end{aligned}
$$

Since

$$
\mathbf{S O}(3)=\mathbf{O}(3) \cap \mathbf{S L}(3, \mathbb{R})
$$

it follows that

$$
\begin{aligned}
\mathbf{s o}(3) & =\mathbf{o}(3) \cap \mathbf{s l}(3, \mathbb{R}) \\
& =\left\{X: X^{\prime}+X=0, \operatorname{tr} X=0\right\} \\
& =\left\{X: X^{\prime}+X=0\right\}
\end{aligned}
$$

since a skew-symmetric matrix necessarily has trace 0 .
The 3 matrices

$$
U=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), V=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), W=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

form a basis for the vector space so(3).
We have

$$
[V, W]=U
$$

and so by cyclic permutation of indices (or coordinates)

$$
[W, U]=V,[U, V]=W .
$$

Thus

$$
\mathbf{s o}(3)=\langle U, V, W:[U, V]=W,[U, W]=-V,[V, W]=U\rangle
$$

Finally, su(2) and so(3) are isomorphic under the correspondence

$$
e \leftrightarrow-2 U, f \leftrightarrow-2 V, g \leftrightarrow-2 W .
$$

However, the groups $\mathbf{S U}(2), \mathbf{S O}(3)$ are not isomorphic, since

$$
Z \mathbf{S U}(2)=\{ \pm I\} \text { while } Z \mathbf{S O}(3)=\{I\} .
$$

4. Define a representation of a Lie algebra; and show how each representation α of a linear group G gives rise to a representation $\mathscr{L} \alpha$ of $\mathscr{L} G$.
Determine the Lie algebra of $\mathbf{S L}(2, \mathbb{R})$; and show that this Lie algebra $\mathbf{s l}(2, \mathbb{R})$ has just 1 simple representation of each dimension $1,2,3, \ldots$.
Answer: Suppose L is a real Lie algebra. A representation of L in the complex vector space V is defined by giving a map

$$
L \times V \rightarrow V:(X, v) \mapsto X v
$$

which is bilinear over \mathbb{R} and which satisfies the condition

$$
[X, Y] v=X(Y v)-Y(X v)
$$

for all $X, Y \in L, v \in V$.
A representation of L in V is thus the same as a representation of the complexification $L_{\mathbb{C}}$ of L in V.
Suppose α is a representation of the linear group G, ie a homomorphism

$$
\alpha: G \rightarrow \mathbf{G L}(n, \mathbb{C}) .
$$

Under the Lie correspondence this gives rise to a Lie algebra homomorphism

$$
A=\mathscr{L} \alpha: L=\mathscr{L} G \rightarrow \operatorname{gl}(n, \mathbb{C})
$$

But now L acts on $V=C^{n}$ by

$$
X v=A(X) v
$$

This defines a representation of L in V since

$$
\begin{aligned}
{[X, Y] v } & =A([X, Y]) v \\
& =[A X, A Y] v \\
& =((A X)(A Y)-(A Y)(A X)) v \\
& =X(Y v)-Y(X v)
\end{aligned}
$$

We have

$$
\begin{aligned}
\mathbf{s l}(2, \mathbb{R}) & =\left\{X \in \operatorname{Mat}(2, \mathbb{R}): e^{t X} \in \mathbf{S L}(2, \mathbb{R}) \forall t \in \mathbb{R}\right\} \\
& =\left\{X: \operatorname{det} e^{t X}=1 \forall t\right\} \\
& =\left\{X: e^{\operatorname{tr} X}=1 \forall t\right\} \\
& =\{X: \operatorname{tr} X=0\}
\end{aligned}
$$

The 3 matrices

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

form a basis for the vector space $\mathbf{s l}(2, \mathbb{R})$.
We have

$$
[H, E]=2 E,[H, F]=-2 F,[E, F]=H
$$

Thus

$$
\mathbf{s l}(2, \mathbb{R})=\langle H, E, F:[H, E]=2 E,[H, F]=-2 F,[V, W]=H\rangle
$$

Now suppose we have a simple representation of $\mathbf{s l}(2, \mathbb{R})$ on V. Suppose v is an eigenvector of H with eigenvalue λ :

$$
H v=\lambda v .
$$

Now

$$
[H, E] v=2 E v,
$$

that is,

$$
H E v-E H v=2 E v .
$$

In other words, since $H v=\lambda v$,

$$
H(E v)=(\lambda+2) E v,
$$

ie $E v$ is an eigenvector of H with eigenvalue $\lambda+2$.
By the same argument $E^{2} v, E^{3} v, \ldots$ are all eigenvectors of H with eigenvalues $\lambda+4, \lambda+6, \ldots$, at least until they vanish.

This must happen at some point, since V is finite-dimensional; say

$$
E^{r+1} v=0, E^{r} v \neq 0
$$

Similarly we find that

$$
F v, F^{2} v, \ldots
$$

are also eigenvectors of H (until they vanish) with eigenvalues $\lambda-2, \lambda-$ $4, \ldots$. Again we must have

$$
F^{s+1} v=0, F^{s} v \neq 0
$$

for some s.
Now let us write e_{0} for $F^{s} v$, so that

$$
F e_{0}=0 ;
$$

and let us set

$$
e^{i}=E^{i} e_{0} .
$$

Then the e_{i} are all eigenvectors of H. Let us set $e_{i}=0$ for i outside the range $[0, n-1]$. Suppose e_{0} is a μ-eigenvector. Then e_{i} is a $(\mu+2 i)$ egenvector. Let us suppose that there are n eigenvectors in the sequence, ie

$$
e_{n-1} \neq 0, E e_{n-1}=0 .
$$

Now we show by induction that

$$
F e_{i}=\rho_{i} e_{i-1}
$$

for each i. The result holds for $i=0$ with $\rho_{0}=0$. Suppose it holds for $i=1,2, \ldots, m$. Then

$$
\begin{aligned}
F e_{m+1} & =F E e_{m} \\
& =(E F-[E, F]) e_{m} \\
& =\rho_{m} E e_{m-1}-H e_{m} \\
& =\left(\rho_{m}-\mu-2 m\right) e_{m} .
\end{aligned}
$$

This proves the result, and also shows that

$$
\rho_{i+1}=\rho_{i}-\mu-2 i
$$

for each i. It follows that

$$
\rho_{i}=-i \mu-i(i-1) .
$$

We must have $\rho_{n}=0$. Hence

$$
\mu=n-1 .
$$

We conclude that the subspace

$$
\left\langle e_{0}, \ldots, e_{n-1}\right\rangle
$$

is stable under $\mathbf{s l}(2, \mathbb{R})$, and so must be the whole of V.
Thus we have shown that there is at most 1 simple representation of each dimension n, and we have determined this explicitly, if it exists. In fact it is a straightforward matter to verify that the above actions of H, E, F on $\left\langle e_{0}, \ldots, e_{n-1}\right\rangle$ do indeed define a representation of $\mathbf{s l}(2, \mathbb{R})$; so that this Lie algebra has exactly 1 simple representation of each dimension.
5. Show that a compact connected abelian linear group of dimension n is necessarily isomorphic to the torus \mathbb{T}^{n}.

Answer: If G is a abelian linear group then $\mathscr{L} G$ is trivial, ie $[X, Y]=$ 0 for all $X, Y \in \mathscr{L} G$. For $e^{t X}, e^{t Y} \in G$ commute for all t. If t is sufficiently small we can take logs, and deduce that $t X=\log \left(e^{t X}\right), t Y=$ $\log \left(e^{t Y}\right)$ commute. Hence X, Y commute.
The map

$$
\Theta: \mathscr{L} G \rightarrow G
$$

under which

$$
X \mapsto e^{X}
$$

is a homomorphism, since

$$
X+Y \mapsto e^{X+Y}=e^{X} e^{Y} .
$$

For any linear group G, there exist open subsets $U \ni 0$ in $\mathscr{L} G, V \ni I$ in G such that $X \mapsto e^{X}$ defines a homeomorphism $U \rightarrow V$.
It follows that $\operatorname{im} \Theta \subset \mathscr{L} G$ is an open subgroup of G. Since G is connected, $\operatorname{im} \Theta=G$. Thus

$$
G \cong \mathscr{L} G / \operatorname{ker} \Theta .
$$

Moreover, $\operatorname{ker} \Theta$ is discrete, since $U \cap \operatorname{ker} \Theta=\{0\}$. Thus

$$
G \cong \mathbb{R}^{n} / K,
$$

where K is a discrete subgroup, and $n=\operatorname{dim} G$.
Lemma: A discrete subgroup $K \subset \mathbb{R}^{n}$ is necessarily $\cong \mathbb{Z}^{d}$ for some $d \leq n$, ie we can find a \mathbb{Z}-basis k_{1}, \ldots, k_{d} for K such that

$$
K=\left\{n_{1} k_{1}+\cdots+n_{d} k_{d}: n_{1}, \ldots, n_{d} \in \mathbb{Z}\right\} .
$$

Proof: Let k_{1} be one of the closest points to 0 in $K \backslash\{0\}$. Then let k_{2} be one of the closest points to the subspace $\left\langle k_{1}\right\rangle$ in $K \backslash\left\langle k_{1}\right\rangle$, let k_{3} be one of the closest points to the subspace $\left\langle k_{1}, k_{2}\right\rangle$ in $K \backslash\left\langle k_{1}, k_{2}\right\rangle$, and so on.

Then k_{1}, k_{2}, \ldots are linearly independent. So the process must end after $d \leq n$ steps:

$$
K=\left\langle k_{1}, \ldots, k_{d}\right\rangle .
$$

Now suppose $k \in K$, say

$$
k=\lambda_{1} k_{1}+\cdots+\lambda_{d} k_{d} .
$$

We show that $\lambda_{1}, \ldots, \lambda_{d} \in \mathbb{Z}$. Let

$$
\lambda_{d}=r+\epsilon,
$$

where $r \in \mathbb{Z}$ and $|\epsilon| \leq 1 / 2$. Then

$$
k-r k_{d}=\lambda_{1} k_{1}+\cdots+\lambda_{d-1} k_{d-1}+\epsilon k_{d}
$$

is closer to $\left\langle k_{1}, \ldots, k_{d-1}\right\rangle$ than is k_{d}. Hence $\epsilon=0$, ie $\lambda_{d} \in \mathbb{Z}$.
Applying the same argument to

$$
k-\lambda_{d} k_{d}=\lambda_{1} k_{1}+\cdots+\lambda_{d-1} k_{d-1},
$$

we deduce that $\lambda_{d-1} \in \mathbb{Z}$; and so successively $\lambda_{d-2}, \ldots, \lambda_{1} \in \mathbb{Z}$
Thus k_{1}, \ldots, k_{d} is a Z-basis for K. Extend k_{1}, \ldots, k_{d} to a basis $k_{1}, \ldots, k_{d}, e_{1}, \ldots, e_{n-d}$ of \mathbb{R}^{n}. Then

$$
\begin{aligned}
G \cong \mathbb{R}^{n} / K & \cong \mathbb{R} / \mathbb{Z} \oplus \cdots \oplus \mathbb{R} / \mathbb{Z} \\
& \cong \mathbb{T}^{d} \oplus \mathbb{R}^{n-d}
\end{aligned}
$$

Since G is compact, $n-d=0$, ie

$$
G \cong \mathbb{T}^{n}
$$

