
Course 424

Group Representations III

Dr Timothy Murphy

EELT 3 Tuesday, 11 May 1999 14:00–16:00

Answer as many questions as you can; all carry the same number
of marks.
In this exam, ‘Lie algebra’ means Lie algebra over R, and ‘rep-
resentation’ means finite-dimensional representation over C.

1. Define the exponential eX of a square matrix X.

Determine eX in each of the following cases:

X =

(
0 1
0 0

)
, X =

(
0 1
1 0

)
, X =

(
0 −1
1 0

)
,

X =

(
1 0
0 −1

)
, X =

(
1 −1
1 1

)
, X =

(
−1 1
0 −1

)
.

Which of these 6 matrices X are themselves expressible in the form
X = eY , where Y is a real matrix? (Justify your answers in all cases.)

Answer: The exponential of a square matrix X is defined by

eX = I +X +
1

2!
X2 +

1

3!
X3 + · · · .

This series converges for all X ∈ Mat(n, k) by comparison with the
series for e‖X‖, since ‖Xn‖ ≤ ‖X‖n.
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(a) If

X =

(
0 1
0 0

)
then

X2 = 0

and so

eX = I +X =

(
1 1
0 1

)
.

(b) If

X =

(
0 1
1 0

)
then

X2 = I,

and so

eX =

(
cosh 1 sinh 1
sinh 1 cosh 1

)
(c) If

X =

(
0 −1
1 0

)
then

X2 = −I,

and so

eX =

(
cos 1 − sin 1
sin 1 cos 1

)
.

(d) If

X =

(
1 0
0 −1

)
then

X =

(
e 0
0 e−1

)
.

(e) If

X =

(
1 −1
1 1

)
= I + Y,

where

Y =

(
0 −1
1 0

)
,



then, since I, Y commute,

eX = eIeY =

(
e cos 1 −e sin 1
e sin 1 e cos 1

)
.

(f) If

X =

(
−1 1
0 −1

)
= −I + Z,

where

Z =

(
0 1
0 0

)
then, since −I, Z commute,

eX = e−IeZ =

(
e−1 −e−1

0 e−1

)
.

(a) eY is non-singular for all Y , since eY e−Y = I. Since X is singular
in this case, X 6= eY .

(b) X has eigenvalues ±1. Suppose X = eY ; and suppose Y has
eigenvalues λ, µ. Then X has eigenvalues eλ, eµ. There are two
possibilities. Either λ, µ are complex conjugates, in which case the
same is true of eλ, eµ; or else λ, µ are both real, in which case
eλ, eµ > 0. In neither case can we get ±1. Hence X 6= eY .

(c) By the isomorphism between the complex numbers z = x+ iy and
the matrices

C(z) =

(
x −y
y x

)
we see that

X = C(i).

Since
i = eπi/2,

while
C(ez) = eC(z),

it follows that X = eY with

Y =

(
0 −π/2
π/2 0

)
.

(d) X has eigenvalues ±1. Thus by the argument in case (b) above,
X 6= eY .



(e) We have

X =

(
1 −1
1 1

)
= C(1 + i).

But
1 + i =

√
2eπi/4 = elog 2/2+πi/4.

Thus X = eY with

Y = X =

(
log 2/2 −π/4
π/4 log 2/2

)
.

(f) X has eigenvalues −1,−1. Thus if X = eY (with Y real) then
Y must have eigenvalues ±(2n + 1)πi for some integer n. In
particular, Y has distinct eigenvalues, and so is semisimple (di-
agonalisable over C).

But in that case X = eY would also be semisimple. That is im-
possible, since a diagonalisable matrix with eigenvalues −1,−1 is
necessarily −I. Hence X 6= eY .

2. Define a linear group, and a Lie algebra; and define the Lie algebra LG
of a linear group G, showing that it is indeed a Lie algebra.

Define the dimension of a linear group; and determine the dimensions
of each of the following groups:

O(n),SO(n),U(n),SU(n),GL(n,R),SL(n,R),GL(n,C),SL(n,C)?

Answer: A linear group is a closed subgroup G ⊂ GL(n,R) for some
n.

A Lie algebra is defined by giving

(a) a vector space L;

(b) a binary operation on L, ie a map

L× L→ L : (X,Y ) 7→ [X, Y ]

satisfying the conditions

(a) The product [X, Y ] is bilinear in X, Y ;

(b) The product is skew-symmetric:

[Y,X] = −[X,Y ];



(c) Jacobi’s identity is satisfied:

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

for all X, Y, Z ∈ L.

Suppose G ⊂ GL(n,R) is a linear group. Then its Lie algebra L = LG
is defined to be

L = {X ∈Mat(n,R) : etX ∈ G∀t ∈ R}.

It follows at once from this definition that

X ∈ L, λ ∈ R =⇒ λX ∈ L.

Thus to see that L is a vector subspace of Mat(n,R) we must show
that

X,Y ∈ L =⇒ X + Y ∈ L.

Now (
eX/neY/n

)n 7→ eX+Y

as n 7→ ∞. (This can be seen by taking the logarithms of each side.) It
follows that

X, Y ∈ L =⇒ eX+Y ∈ G.
On replacing X, Y by tX, tY we see that

X, Y ∈ L =⇒ et(X+Y ) ∈ G
=⇒ X + Y ∈ L.

Similarly (
eX/neY/ne−X/ne−Y/n

)n2

7→ e[X,Y ],

as may be seen again on taking logarithms. It follows that

X,Y ∈ L =⇒ e[X,Y ] ∈ G.

Taking tX in place of X, this implies that

X, Y ∈ L =⇒ et[X,Y ] ∈ G
=⇒ [X, Y ] ∈ L.

Thus L is a Lie algebra.

The dimension of a linear group G is the dimension of the real vector
space LG:

dimG = dimRLG.



(a) We have

o(n) = {X ∈Mat(n,R) : X ′ +X = 0}

A skew symmetric matrix X is determined by giving the entries
above the diagonal. This determines the entries below the diago-
nal; while those on the diagonal are 0. Thus

dimO(n) = dim o(n) =
n(n− 1)

2
.

(b) We have

so(n) = {X ∈Mat(n,R) : X ′ +X = 0, trX = 0} = o(n),

since X ′ +X = 0 =⇒ trX = 0. Thus

dimSO(n) = dimO(n) =
n(n− 1)

2
.

(c) We have

u(n) = {X ∈Mat(n,C) : X∗ +X = 0}

Again, the elements above the diagonal determine those below the
diagonal; while those on the diagonal are purely imaginary. Thus

dim U(n) = 2
n(n− 1)

2
+ n

= n2.

(d) We have

su(n) = {X ∈Mat(n,C) : X∗ +X = 0, trX = 0}

This gives one linear condition on the (purely imaginary) diagonal
elements. Thus

dim SU(n) = dim U(n)− 1 = n2 − 1.

(e) We have
gl(n,R) = Mat(n,R).

Thus
dim GL(n,R) = n2.



(f) We have

sl(n,R) = {X ∈Mat(n,R) : trX = 0}.

This imposes one linear condition on X. Thus

dim SL(n,R) = dim GL(n,R)− 1 = n2 − 1.

(g) We have
gl(n,C) = Mat(n,C).

Each of the n2 complex entries takes 2 real values. Thus

dim GL(n,C) = 2n2.

(h) We have

sl(n,C) = {X ∈Mat(n,C) : trX = 0}.

This imposes one complex linear condition on X, or 2 real linear
conditions. Thus

dim SL(n,C) = dim GL(n,C)− 1 = 2n2 − 2.

3. Determine the Lie algebras of SU(2) and SO(3), and show that they
are isomomorphic.

Show that the 2 groups themselves are not isomorphic.

Answer: We have

u(2) = {X ∈Mat(2,C) : etX ∈ U(2)∀t ∈ R}
= {X : (etX)∗etX = I∀t}
= {X : etX

∗
= e−tX = I∀t}

= {X : X∗ = −X}
= {X : X∗ +X = 0}.

Also

sl(2,C) = {X ∈Mat(2,C) : etX ∈ SL(2,C)∀t ∈ R}
= {X : det etX = 1∀t}
= {X : et trX = 1∀t}
= {X : trX = 0}.



Since
SU(2) = U(2) ∩ SL(2,C)

it follows that

su(2) = u(2) ∩ sl(2,C)

= {X : X∗ +X = 0, trX = 0}.

The 3 matrices

e =

(
i 0
0 −i

)
, f =

(
0 −1
1 0

)
, g =

(
0 i
i 0

)
form a basis for the vector space su(2).

We have

[e, f ] = ef − fe = −2g,

[e, g] = eg − ge = 2f,

[f, g] = fg − gf = −2e

Thus

su(2) = 〈e, f, g : [e, f ] = −2g, [e, g] = 2f, [f, g] = −2e〉.

We have

o(3) = {X ∈Mat(3,R) : etX ∈ O(3)∀t ∈ R}
= {X : (etX)′etX = I∀t}
= {X : etX

′
= e−tX = I∀t}

= {X : X ′ = −X}
= {X : X ′ +X = 0}.

Also

sl(3,R) = {X ∈Mat(3,R) : etX ∈ SL(3,R)∀t ∈ R}
= {X : det etX = 1∀t}
= {X : et trX = 1∀t}
= {X : trX = 0}.

Since
SO(3) = O(3) ∩ SL(3,R)



it follows that

so(3) = o(3) ∩ sl(3,R)

= {X : X ′ +X = 0, trX = 0}
= {X : X ′ +X = 0}

since a skew-symmetric matrix necessarily has trace 0.

The 3 matrices

U =

0 0 0
0 0 −1
0 1 0

 , V =

 0 0 1
0 0 0
−1 0 0

 , W =

0 −1 0
1 0 0
0 0 0


form a basis for the vector space so(3).

We have
[V,W ] = U ;

and so by cyclic permutation of indices (or coordinates)

[W,U ] = V, [U, V ] = W.

Thus

so(3) = 〈U, V,W : [U, V ] = W, [U,W ] = −V, [V,W ] = U〉.

Finally, su(2) and so(3) are isomorphic under the correspondence

e↔ −2U, f ↔ −2V, g ↔ −2W.

However, the groups SU(2),SO(3) are not isomorphic, since

ZSU(2) = {±I} while ZSO(3) = {I}.

4. Define a representation of a Lie algebra; and show how each repre-
sentation α of a linear group G gives rise to a representation L α of
LG.

Determine the Lie algebra of SL(2,R); and show that this Lie algebra
sl(2,R) has just 1 simple representation of each dimension 1, 2, 3, . . . .

Answer: Suppose L is a real Lie algebra. A representation of L in the
complex vector space V is defined by giving a map

L× V → V : (X, v) 7→ Xv



which is bilinear over R and which satisfies the condition

[X, Y ]v = X(Y v)− Y (Xv)

for all X, Y ∈ L, v ∈ V .

A representation of L in V is thus the same as a representation of the
complexification LC of L in V .

Suppose α is a representation of the linear group G, ie a homomorphism

α : G→ GL(n,C).

Under the Lie correspondence this gives rise to a Lie algebra homomor-
phism

A = L α : L = LG→ gl(n,C).

But now L acts on V = Cn by

Xv = A(X)v.

This defines a representation of L in V since

[X, Y ]v = A([X, Y ])v

= [AX,AY ]v

= ((AX)(AY )− (AY )(AX))v

= X(Y v)− Y (Xv).

We have

sl(2,R) = {X ∈Mat(2,R) : etX ∈ SL(2,R)∀t ∈ R}
= {X : det etX = 1∀t}
= {X : et trX = 1∀t}
= {X : trX = 0}.

The 3 matrices

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
form a basis for the vector space sl(2,R).

We have
[H,E] = 2E, [H,F ] = −2F, [E,F ] = H.



Thus

sl(2,R) = 〈H,E, F : [H,E] = 2E, [H,F ] = −2F, [V,W ] = H〉.

Now suppose we have a simple representation of sl(2,R) on V . Suppose
v is an eigenvector of H with eigenvalue λ:

Hv = λv.

Now
[H,E]v = 2Ev,

that is,
HEv − EHv = 2Ev.

In other words, since Hv = λv,

H(Ev) = (λ+ 2)Ev,

ie Ev is an eigenvector of H with eigenvalue λ+ 2.

By the same argument E2v, E3v, . . . are all eigenvectors of H with
eigenvalues λ+ 4, λ+ 6, . . . , at least until they vanish.

This must happen at some point, since V is finite-dimensional; say

Er+1v = 0, Erv 6= 0.

Similarly we find that
Fv, F 2v, . . .

are also eigenvectors of H (until they vanish) with eigenvalues λ−2, λ−
4, . . . . Again we must have

F s+1v = 0, F sv 6= 0

for some s.

Now let us write e0 for F sv, so that

Fe0 = 0;

and let us set
ei = Eie0.



Then the ei are all eigenvectors of H. Let us set ei = 0 for i outside the
range [0, n − 1]. Suppose e0 is a µ-eigenvector. Then ei is a (µ + 2i)-
egenvector. Let us suppose that there are n eigenvectors in the sequence,
ie

en−1 6= 0, Een−1 = 0.

Now we show by induction that

Fei = ρiei−1

for each i. The result holds for i = 0 with ρ0 = 0. Suppose it holds for
i = 1, 2, . . . ,m. Then

Fem+1 = FEem

= (EF − [E,F ])em

= ρmEem−1 −Hem
= (ρm − µ− 2m)em.

This proves the result, and also shows that

ρi+1 = ρi − µ− 2i

for each i. It follows that

ρi = −iµ− i(i− 1).

We must have ρn = 0. Hence

µ = n− 1.

We conclude that the subspace

〈e0, . . . , en−1〉

is stable under sl(2,R), and so must be the whole of V .

Thus we have shown that there is at most 1 simple representation of
each dimension n, and we have determined this explicitly, if it exists.
In fact it is a straightforward matter to verify that the above actions of
H,E, F on 〈e0, . . . , en−1〉 do indeed define a representation of sl(2,R);
so that this Lie algebra has exactly 1 simple representation of each
dimension.



5. Show that a compact connected abelian linear group of dimension n is
necessarily isomorphic to the torus Tn.

Answer: If G is a abelian linear group then LG is trivial, ie [X, Y ] =
0 for all X, Y ∈ LG. For etX , etY ∈ G commute for all t. If t is
sufficiently small we can take logs, and deduce that tX = log(etX), tY =
log(etY ) commute. Hence X, Y commute.

The map
Θ : LG→ G

under which
X 7→ eX

is a homomorphism, since

X + Y 7→ eX+Y = eXeY .

For any linear group G, there exist open subsets U 3 0 in LG, V 3 I
in G such that X 7→ eX defines a homeomorphism U → V .

It follows that im Θ ⊂ LG is an open subgroup of G. Since G is
connected, im Θ = G. Thus

G ∼= LG/ ker Θ.

Moreover, ker Θ is discrete, since U ∩ ker Θ = {0}. Thus

G ∼= R
n/K,

where K is a discrete subgroup, and n = dimG.

Lemma: A discrete subgroup K ⊂ R
n is necessarily ∼= Z

d for some
d ≤ n, ie we can find a Z-basis k1, . . . , kd for K such that

K = {n1k1 + · · ·+ ndkd : n1, . . . , nd ∈ Z}.

Proof: Let k1 be one of the closest points to 0 in K \ {0}. Then let k2

be one of the closest points to the subspace 〈k1〉 in K \ 〈k1〉, let k3 be
one of the closest points to the subspace 〈k1, k2〉 in K \ 〈k1, k2〉, and so
on.

Then k1, k2, . . . are linearly independent. So the process must end after
d ≤ n steps:

K = 〈k1, . . . , kd〉.



Now suppose k ∈ K, say

k = λ1k1 + · · ·+ λdkd.

We show that λ1, . . . , λd ∈ Z. Let

λd = r + ε,

where r ∈ Z and |ε| ≤ 1/2. Then

k − rkd = λ1k1 + · · ·+ λd−1kd−1 + εkd

is closer to 〈k1, . . . , kd−1〉 than is kd. Hence ε = 0, ie λd ∈ Z.

Applying the same argument to

k − λdkd = λ1k1 + · · ·+ λd−1kd−1,

we deduce that λd−1 ∈ Z; and so successively λd−2, . . . , λ1 ∈ Z
Thus k1, . . . , kd is a Z-basis for K. Extend k1, . . . , kd to a basis k1, . . . , kd, e1, . . . , en−d
of Rn. Then

G ∼= R
n/K ∼= R/Z⊕ · · · ⊕ R/Z

∼= T
d ⊕ Rn−d.

Since G is compact, n− d = 0, ie

G ∼= T
n.


