Course 424

Group Representations II

Dr Timothy Murphy

EELT3 Tuesday, 13 April 1999 16:00-17:30

Answer as many questions as you can; all carry the same number of marks.
All representations are finite-dimensional over \mathbb{C}.

1. What is meant by a measure on a compact space X ? What is meant by saying that a measure on a compact group G is invariant? Sketch the proof that every compact group G carries such a measure. To what extent is this measure unique?
Answer: A measure μ on X is a continuous linear functional

$$
\mu: C(X) \rightarrow \mathbb{C}
$$

where $C(X)=C(X, \mathbb{R})$ is the space of real-valued continuous functions on X with norm $\|f\|=\sup |f(x)|$.
The compact group G acts on $C(G)$ by

$$
(g f)(x)=f\left(g^{-1} x\right) .
$$

The measure μ is said to be invariant under G if

$$
\mu(g f) \mu(f)
$$

for all $g \in G, f \in C(G)$.
By an average F of $f \in C(G)$ we mean a function of the form

$$
F=\lambda_{1} g_{1} f+\lambda_{2} g_{2} f+\cdots+\lambda_{r} g_{r} f,
$$

where $0 \leq \lambda_{i} \leq 1, \sum \lambda_{i}=1$ and $g_{1}, g_{2}, \ldots, g_{r} \in G$.
If F is an average of f then
(a) $\inf f \leq \inf F \leq \sup F \leq \operatorname{supf}$;
(b) If μ is an invariant measure then $\mu(F)=\mu(f)$;
(c) An average of F is an average of f.

If we set

$$
\operatorname{var}(f)=\sup f-\inf f
$$

then

$$
\operatorname{var}(F) \leq \operatorname{var}(f)
$$

for any average F of f. We shall establish a sequence of averages $F_{0}=$ f, F_{1}, F_{2}, \ldots (each an average of its predecessor) such that $\operatorname{var}\left(F_{i}\right) \rightarrow 0$. It follows that

$$
F_{i} \rightarrow c \in \mathbb{R}
$$

ie $F_{i}(g) \rightarrow c$ for each $g \in G$.
Suppose $f \in C(G)$. It is not hard to find an average F of f with $\operatorname{var}(F)<\operatorname{var}(f)$. Let

$$
V=\left\{g \in G: f(g)<\frac{1}{2}(\sup f+\inf f)\right.
$$

ie V is the set of points where f is 'below average'. Since G is compact, we can find g_{1}, \ldots, g_{r} such that

$$
G=g_{1} V \cup \cdots \cup g_{r} V
$$

Consider the average

$$
F=\frac{1}{r}\left(g_{1} f+\cdots+g_{r} f\right) .
$$

Suppose $x \in G$. Then $x \in g_{i} V$ for some i, ie

$$
g_{i}^{-1} x \in V
$$

Hence

$$
\left(g_{i} f\right)(x)<\frac{1}{2}(\sup f+\inf f)
$$

and so

$$
\begin{aligned}
F(x) & <\frac{r-1}{r} \sup f+\frac{1}{2 r}(\sup f+\inf f) \\
& =\sup f-\frac{1}{2 r} \sup f-\inf f
\end{aligned}
$$

Hence $\sup F<\operatorname{supf}$ and so

$$
\operatorname{var}(F)<\operatorname{var}(f)
$$

This allows us to construct a sequence of averages $F_{0}=f, F_{1}, F_{2}, \ldots$ such that

$$
\operatorname{var}(f)=\operatorname{var}(F)_{0}>\operatorname{var}(F)_{1}>\operatorname{var}(F)_{2}>\cdots
$$

But that is not sufficient to show that $\operatorname{var}(F)_{i} \rightarrow 0$. For that we must use the fact that any $f \in C(G)$ is uniformly continuous.
[I would accept this last remark as sufficient in the exam, and would not insist on the detailed argument that follows.]
In other words, given $\epsilon>0$ we can find an open set $U \ni$ e such that

$$
x^{-1} y \in U \Longrightarrow|f(x)-f(y)|<\epsilon .
$$

Since

$$
\left(g^{-1} x\right)^{-1}\left(g^{-1} y\right)=x^{-1} y,
$$

the same result also holds for the function $g f$. Hence the result holds for any average F of f.
Let V be an open neighbourhood of e such that

$$
V V \subset U, \quad V^{-1}=V .
$$

(If V satisfies the first condition, then $V \cap V^{-1}$ satisfies both conditions.) Then

$$
x V \cup y V \neq \emptyset \Longrightarrow|f(x)-f(y)|<\epsilon .
$$

For if $x v=y v^{\prime}$ then

$$
x^{-1} y=v v^{\prime-1} \in U .
$$

Since G is compact we can find g_{1}, \ldots, g_{r} such that

$$
G=g_{1} V \cup \cdots \cup g_{r} V .
$$

Suppose f attains its minimum $\inf f$ at $x_{0} \in g_{i} V$; and suppose $x \in g_{j} V$.
Then

$$
g_{i}^{-1} x_{0}, g_{j}^{-1} x \in V
$$

Hence

$$
\left(g_{j}^{-1} x\right)^{-1}\left(g_{i}^{-1} x_{0}\right)=\left(g_{i} g_{j}^{-1} x\right)^{-1} x_{0} \in U,
$$

and so

$$
\left|f\left(g_{i} g_{j}^{-1} x\right)-f\left(x_{0}\right)\right|<\epsilon .
$$

In particular,

$$
\left(g_{j} g_{i}^{-1} f\right)(x)<\inf f+\epsilon
$$

Let F be the average

$$
F=\frac{1}{r^{2}} \sum_{i, j} g_{j} g_{i}^{-1} f
$$

Then

$$
\sup F<\frac{r^{2}-1}{r^{2}} \sup f+\frac{1}{r^{2}}(\inf f+\epsilon),
$$

and so

$$
\begin{aligned}
\operatorname{var}(F) & <\frac{r^{2}-1}{r^{2}} \operatorname{var}(f)+\frac{1}{r^{2}} \epsilon \\
& <\frac{r^{2}-1 / 2}{r^{2}} \operatorname{var}(f),
\end{aligned}
$$

if $\epsilon<\operatorname{var}(f) / 2$.
Moreover this result also holds for any average of f in place of f. It follows that a succession of averages of this kind

$$
F_{0}=f, F_{1}, \ldots, F_{s}
$$

will bring us to

$$
\operatorname{var}(F)_{s}<\frac{1}{2} \operatorname{var}(f)
$$

Now repeating the same argument with F_{s}, and so on, we will obtain a sequence of successive averages $F_{0}=f, F_{1}, \ldots$ with

$$
\operatorname{var}(F)_{i} \downarrow 0
$$

It follows that

$$
F_{i} \rightarrow c
$$

(the constant function with value c).
It remains to show that this limit value c is unique. For this we introduce right averages

$$
H(x)=\sum_{j} \mu_{j} f\left(x h_{j}\right)
$$

where $0 \leq \mu_{j} \leq 1, \sum \mu_{j}=1$. (Note that a right average of f is in effect a left average of \tilde{f}, where $\tilde{f}(x)=f\left(x^{-1}\right)$. In particular the results we have established for left averages will hold equally well for right averages.)
Given a left average and a right average of f, say

$$
F(x)=\sum \lambda_{i} f\left(g_{i}^{-1} x\right), \quad H(x)=\sum \mu_{j} f\left(x h_{j}\right)
$$

we can form the joint average

$$
J(x)=\sum_{i, j} \lambda_{i} \mu_{j} f\left(g_{i}^{-1} x h_{j}\right) .
$$

It is easy to see that

$$
\begin{aligned}
& \inf F \leq \inf J \leq \sup J \leq \sup H \\
& \sup F \geq \sup J \geq \inf J \geq \inf H .
\end{aligned}
$$

But if now $H_{0}=f, H_{1}, \ldots$ is a succession of right averages with $H_{i} \rightarrow d$ then it follows that

$$
c=d .
$$

In particular, any two convergent sequences of successive left averages must tend to the same limit. We can therefore set

$$
\mu(f)=c
$$

Thus $\mu(f)$ is well-defined; and it is invariant since f and $g f$ have the same set of averages. Finally, if $f=1$ then $\operatorname{var}(f)=0$, and f, f, f, \ldots converges to 1 , so that

$$
\mu(1)=1 \text {. }
$$

The invariant measure on G is unique up to a scalar multiple. In other words, it is unique if we normalise the measure by specifying that

$$
\mu(1)=1
$$

(where 1 on the left denotes the constant function 1).
2. Prove that every simple representation of a compact abelian group is 1 -dimensional and unitary.
Determine the simple representations of $\mathbf{S O}(2)$.
Determine also the simple representations of $\mathbf{O}(2)$.
Answer: Suppose α is a simple representation of the compact abelian group G in V.
Suppose $g \in G$. Let λ be an eigenvalue of g, and let $E=E_{\lambda}$ be the corresponding eigenspace. We claim that E is stable under G. For suppose $h \in G$. Then

$$
e \in E \Longrightarrow g(h e)=h(g e)=\lambda h e \Longrightarrow h e \in E .
$$

Since α is simple, it follows that $E=V$, ie $g v=\lambda v$ for all v, or $g=\lambda I$.
Since this is true for all $g \in G$, it follows that every subspace of V is stable under G. Since α is simple, this implies that $\operatorname{dim} V=1$, ie α is of degree 1 .
Thus a simple representation of G is a homomorphism $\alpha: G \rightarrow \mathbb{C}^{*}$. We must show that

$$
|\alpha(g)|=1
$$

for all $g \in G$.
If $|\alpha(g)|>1$ then

$$
\left|\alpha\left(g^{n}\right)\right|=(|g|)^{n} \rightarrow \infty .
$$

This is a contradiction, since $\operatorname{im} \alpha \subset \mathbb{C}^{*}$ is compact and so bounded. On the other hand, if $|\alpha(g)|<1$ then $\left|\alpha\left(g^{-1}\right)\right|>1$. Hence $|\alpha(g)|=1$ for all g, ie α is unitary.
We can identify $\mathbf{S O}(2)$ with

$$
\mathbf{U}(1)=\{z \in \mathbb{C}:|z|=1\} .
$$

From above, a representation of $\mathbf{U}(1)$ is a homomorphism

$$
\alpha: \mathbf{U}(1) \rightarrow \mathbf{U}(1) .
$$

For each $n \in \mathbb{Z}$ the map

$$
E(n): z \rightarrow z^{n}
$$

defines such a homomorphism. We claim that every representation of $\mathbf{U}(1)$ is of this form.
3. Determine the conjugacy classes in $\mathbf{S U}(2)$; and prove that this group has just one simple representation of each dimension.
Find the character of the representation $D(j)$ of dimensions $2 j+1$ (where $j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$).
Determine the representation-ring of $\mathbf{S U}(2)$, ie express each product $D(i) D(j)$ as a sum of simple representations $D(k)$.

Answer: We know that
(a) if $U \in \mathbf{S U}(2)$ then U has eigenvalues

$$
e^{ \pm i \theta}(\theta \in \mathbb{R})
$$

(b) if $X, Y \in \mathbf{G L}(n, k)$ then

$$
X \sim Y \Longrightarrow X, Y \text { have the same eigenvalues. }
$$

A fortiori, if $U \sim V \in \mathbf{S U}(2)$ then U, V have the same eigenvalues.

We shall show that the converse of the last result is also true, that is: $U \sim V$ in $\mathbf{S U}(2)$ if and only if U, V have the same eigenvalues $e^{ \pm i \theta}$, This is equivalent to proving that

$$
U \sim U(\theta)=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right),
$$

ie we can find $V \in \mathbf{S U}(2)$ such that

$$
V^{-1} U V=U(\theta)
$$

To see this, let v be an $e^{i \theta}$-eigenvalue of U. Normalise v, so that $v^{*} v=$ 1 ; and let w be a unit vector orthogonal to v, ie $w^{*} w=1, v^{*} w=0$. Then the matrix

$$
V=(v w) \in \operatorname{Mat}(2, \mathbb{C})
$$

is unitary; and

$$
V^{-1} U V=\left(\begin{array}{cc}
e^{i \theta} & x \\
0 & e^{-i \theta}
\end{array}\right)
$$

But in a unitary matrix, the squares of the absolute values of each row and column sum to 1. It follows that

$$
\left|e^{i \theta}\right|^{2}+|x|^{2}=1 \Longrightarrow x=0
$$

ie

$$
V^{-1} U V=U(\theta) .
$$

We only know that $V \in \mathbf{U}(2)$, not that $V \in \mathbf{S U}(2)$. However

$$
V \in \mathbf{U}(2) \Longrightarrow|\operatorname{det} V|=1 \Longrightarrow \operatorname{det} V=e^{i \phi} .
$$

Thus

$$
V^{\prime}=e^{-i \phi / 2} V \in \mathbf{S U}(2)
$$

and still

$$
\left(V^{\prime}\right)^{-1} U V=U(\theta)
$$

To summarise: Since $U(-\theta) \sim U(\theta)$ (by interchange of coordinates), we have show that if

$$
C(\theta)=\left\{U \in \mathbf{S U}(2): U \text { has eigenvalues } e^{ \pm i \theta}\right\}
$$

then the conjugacy classes in $\mathbf{S U (2)}$ are

$$
C(\theta) \quad(0 \leq \theta \leq \pi) .
$$

Now suppose $m \in \mathbb{N}$, Let $V(m)$ denote the space of homogeneous polynomials $P(z, w)$ in z, w. Thus $V(m)$ is a vector space over \mathbb{C} of dimension $m+1$, with basis $z^{m}, z^{m-1} w, \ldots, w^{m}$.
Suppose $U \in \mathbf{S U (2)}$. Then U acts on z, w by

$$
\binom{z}{w} \mapsto\binom{z^{\prime}}{w^{\prime}}=U\binom{z}{w} .
$$

This action in turn defines an action of $\mathbf{S U}(2)$ on $V(m)$:

$$
P(z, w) \mapsto P\left(z^{\prime}, w^{\prime}\right)
$$

We claim that the corresponding representation of $\mathbf{S U}(2)$ - which we denote by $D_{m / 2}$ - is simple, and that these are the only simple (finitedimensional) representations of $\mathbf{S U (2)}$ over \mathbb{C}.
To prove this, let

$$
\mathbf{U}(1) \subset \mathbf{S U}(2)
$$

be the subgroup formed by the diagonal matrices $U(\theta)$. The action of $\mathbf{S U}(2)$ on z, w restricts to the action

$$
(z, w) \mapsto\left(e^{i \theta} z, e^{-i \theta} w\right)
$$

of $\mathbf{U}(1)$. Thus in the action of $\mathbf{U}(1)$ on $V(m)$,

$$
z^{m-r} w^{r} \mapsto e^{(m-2 r) i \theta} z^{m-r} w^{r}
$$

It follows that the restriction of $D_{m / 1}$ to $U(1)$ is the representation

$$
D_{m / 2} \mid \mathbf{U}(1)=E(m)+E(m-2)+\cdots+E(-m)
$$

where $E(m)$ is the representation

$$
e^{i \theta} \mapsto e^{m i \theta}
$$

of $\mathbf{U}(1)$.
In particular, the character of $D_{m / 2}$ is given by

$$
\chi_{m / 2}(U)=e^{m i \theta}+e^{(m-2} i \theta+\cdots+e^{-m i \theta}
$$

if U has eigenvalues $e^{ \pm i \theta}$.
Now suppose $D_{m / 2}$ is not simple, say

$$
D_{m / 2}=\alpha+\beta
$$

(We know that $D_{m / 2}$ is semisimple, since $\mathbf{~} \mathbf{U}(2)$ is compact.) Let a corresponding split of the representation space be

$$
V(m)=W_{1} \oplus W_{2} .
$$

Since the simple parts of $D_{m / 2} \mid \mathbf{U}(1)$ are distinct, the expression of $V(m)$ as a direct sum of $\mathbf{U}(1)$-spaces,

$$
V(m)=\left\langle z^{m}\right\rangle \oplus\left\langle z^{m-1} w\right\rangle \oplus \cdots \oplus\left\langle w^{m}\right\rangle
$$

is unique. It follows that W_{1} must be the direct sum of some of these spaces, and W_{2} the direct sum of the others. In particular $z^{m} \in W_{1}$ or $z^{n} \in W_{2}$, say $z^{m} \in W_{1}$. Let

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \in \mathbf{S U}(2) .
$$

Then

$$
\binom{z}{w} \mapsto \frac{1}{\sqrt{2}}\binom{z+w}{-z+w}
$$

under U. Hence

$$
z^{m} \mapsto 2^{-m / 2}(z+w)^{m}
$$

Since this contains non-zero components in each subspace $\left\langle z^{m-r} w^{r}\right\rangle$, it follows that

$$
W_{1}=V(m)
$$

ie the representation $D_{m / 2}$ of $\mathbf{S U (2)}$ in $V(m)$ is simple.
To see that every simple (finite-dimensional) representation of $\mathbf{S U}(2)$ is of this form, suppose α is such a representation. Consider its restriction to $\mathbf{U}(1)$. Suppose
$\alpha \mid \mathbf{U}(1)=e_{r} E(r)+e_{r-1} E(r-1)+\cdots+e_{-r} E(-r) \quad\left(e_{r}, e_{r-1}, \ldots, e_{-r} \in \mathbb{N}\right)$.
Then α has character

$$
\chi(U)=\chi(\theta)=e_{r} e^{r i \theta}+e_{r-1} e^{(r-1) i \theta}+\cdots+e_{-r} e^{-r i \theta}
$$

if U has eigenvalues $e^{ \pm i \theta}$.
Since $U(-\theta) \sim U(\theta)$ it follows that

$$
\chi(-\theta)=\chi(\theta)
$$

and so

$$
e_{-i}=e_{i},
$$

ie

$$
\chi(\theta)=e_{r}\left(e^{r i \theta}+e^{-r i \theta}\right)+e_{r-1}\left(e^{(r-1) i \theta}+e^{-(r-1) i \theta}\right)+\cdots .
$$

It is easy to see that this is expressible as a sum of the $\chi_{j}(\theta)$ with integer (possibly negative) coefficients:

$$
\chi(\theta)=a_{0} \chi_{0}(\theta)+a_{1 / 2} \chi_{1 / 2}(\theta)+\cdots+a_{s} \chi_{s}(\theta) \quad\left(a_{0}, a_{1 / 2}, \ldots, a_{s} \in \mathbb{Z}\right)
$$

Using the intertwining number,

$$
I(\alpha, \alpha)=a_{0}^{2}+a_{1 / 2}^{2}+\cdots+a_{s}^{2}
$$

(since $\left.I\left(D_{j}, D_{k}\right)=0\right)$. Since α is simple,

$$
I(\alpha, \alpha)=1
$$

It follows that one of the coefficients a_{j} is ± 1 and the rest are 0 , ie

$$
\chi(\theta)= \pm \chi_{j}(\theta)
$$

for some half-integer j. But

$$
\chi(\theta)=-\chi_{j}(\theta) \Longrightarrow I\left(\alpha, D_{j}\right)=-I\left(D_{j}, D_{j}\right)=-1,
$$

which is impossible. Hence

$$
\chi(\theta)=\chi_{j}(\theta),
$$

and so (since a representation is determined up to equivalence by its character)

$$
\alpha=D_{j} .
$$

Finally, we show that

$$
D_{j} D_{k}=D_{j+k}+D_{j+k-1}+\cdots+D_{|j-k|} .
$$

It is sufficient to prove the corresponding result for the characters

$$
\chi_{j}(\theta) \chi_{k}(\theta)=\chi_{j+k}(\theta)+\chi_{j+k-1}(\theta)+\cdots+\chi_{|j-k|}(\theta) .
$$

We may suppose that $j \geq k$. We prove the result by induction on k.
If $k=0$ the result is trivial, since $\chi_{0}(\theta)=1$. If $k=1 / 2$ then

$$
\begin{aligned}
\chi_{j}(\theta) \chi_{1 / 2}(\theta) & =\left(e^{2 j i \theta}+e^{2(j-1) i \theta}+e^{-2 j i \theta}\right)\left(e^{i \theta}+e^{-i \theta}\right) \\
& =\left(e^{(2 j+1) i \theta}+e^{-(2 j-1) i \theta}\right)+\left(e^{(2 j-1) i \theta}+e^{-(2 j+1) i \theta}\right) \\
& =\chi_{j+1 / 2}(\theta)+\chi_{j-1 / 2}(\theta),
\end{aligned}
$$

as required.
Suppose $k \geq 1$. Then

$$
\chi_{k}(\theta)=\chi_{k-1}(\theta)+\left(e^{k i \theta}+e^{-k i \theta}\right) .
$$

Thus applying our inductive hypothesis,

$$
\chi_{j}(\theta) \chi_{k}(\theta)=\chi_{j+k-1}(\theta)+\cdots+\chi_{j-k+1}+\chi_{j}(\theta)\left(e^{k i \theta}+e^{-k i \theta}\right) .
$$

But

$$
\begin{aligned}
\chi_{j}(\theta)\left(e^{k i \theta}+e^{-k i \theta}\right) & =\left(e^{2 j i \theta}+e^{2(j-1) i \theta}+e^{-2 j i \theta}\right)\left(e^{k i \theta}+e^{-k i \theta}\right) \\
& =\chi_{j+k}(\theta)+\chi j-k(\theta),
\end{aligned}
$$

giving the required result

$$
\begin{aligned}
\chi_{j}(\theta) \chi_{k}(\theta) & =\chi_{j+k-1}(\theta)+\cdots+\chi_{j-k+1}+\chi_{j+k}(\theta)+\chi j-k(\theta) \\
& =\chi_{j+k}(\theta)+\cdots+\chi_{j-k} .
\end{aligned}
$$

4. Show that there exists a surjective homomorphism

$$
\Theta: \mathbf{S U}(2) \rightarrow \mathbf{S O}(3)
$$

with finite kernel.
Hence or otherwise determine all simple representations of $\mathbf{S O}(3)$.
Determine also all simple representations of $\mathbf{O}(3)$.
Answer: The set of skew-hermitian 2×2 matrices

$$
S=\left(\begin{array}{cc}
i a & -b+i c \\
b+i c & i d
\end{array}\right) \quad(a, b, c, d \in \mathbb{R})
$$

forms a 4-dimensional real vector space U. The group $\mathbf{S U (2) ~ a c t s ~ o n ~}$ this space by

$$
(U, S) \mapsto U^{-1} S U=U^{*} S U,
$$

since

$$
\left(U^{*} S U\right)^{*}=U^{*} S^{*} U=-U^{*} S U
$$

The 3-dimensional subspace $W \subset U$ formed by trace-free skew-hermitian matrices

$$
T=\left(\begin{array}{cc}
i x & -y+i z \\
y+i z & -i x
\end{array}\right) \quad(x, y, z \in \mathbb{R})
$$

is stable under $\mathbf{S U}(2)$ since

$$
\operatorname{tr}\left(U^{*} T U\right)=\operatorname{tr}\left(U^{-1} T U\right)=\operatorname{tr} T=0
$$

Thus W carries a representation of $\mathbf{S U}(2)$ of degree 3, corresponding to a homomorphism

$$
\Theta: \mathbf{S U}(2) \rightarrow \mathbf{G L}(3, \mathbb{R})
$$

Moreover, this homomorphism preserves the positive-definite quadratic form

$$
\operatorname{det} T=x^{2}+y^{2}+z^{2}
$$

on W since

$$
\operatorname{det}\left(U^{*} T U\right)=\operatorname{det}\left(U^{-1} T U\right)=\operatorname{det} T
$$

Hence

$$
\operatorname{im} \Theta \subset \mathbf{O}(3) .
$$

Finally, $\mathbf{S U}(2) \cong S^{3}$ is connected; and so therefore is its image. But $\mathbf{S O}(3)$ is an open subgroup of $\mathbf{O}(3)$. Hence

$$
\operatorname{im} \Theta \subset \mathbf{S O}(3)
$$

Thus our homomorphism takes the form

$$
\Theta: \mathbf{S U}(2) \rightarrow \mathbf{S O}(3)
$$

It remains to show that Θ has a finite kernel, and is surjective.
If

$$
U \in \operatorname{ker} \Theta
$$

then

$$
U^{-1} T U=T
$$

for all $T \in W$. Each $S \in U$ can be expressed in the form

$$
S=T+\rho I,
$$

where $T \in W$ and $\rho=\operatorname{tr} S / 2$. It follows that

$$
U^{-1} S U=S
$$

for all skew-hermitian $S \in U$.
Hence

$$
U^{-1} H U=H
$$

for all hermitian H, since H is hermitian if and only if $S=i H$ is skew-hermitian.
It follows from this that

$$
U^{-1} X U=X
$$

for all $X \in \operatorname{Mat}(2, \mathbb{C})$, since every X is expressible in the form

$$
X=H+S
$$

with $H=\left(X+X^{*}\right) / 2$ hermitian and $S=\left(X-X^{*}\right) / 2$ skew-hermitian. But it is a simple matter to see that the only such U are $U= \pm I$. Thus

$$
\operatorname{ker} \Theta=\{ \pm I\}
$$

To see that Θ is surjective, we note that if

$$
U(\theta)=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)
$$

then

$$
U(\theta)^{-1}\left(\begin{array}{cc}
i x & -y+i z \\
y+i z & -i x
\end{array}\right) U(\theta)=\left(\begin{array}{cc}
i x & e^{-2 i \theta}(-y+i z) \\
e^{2 i \theta}(y+i z) & -i x
\end{array}\right)
$$

ie

$$
\Theta U(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos 2 \theta & -\sin 2 \theta \\
0 & \sin 2 \theta & \cos 2 \theta
\end{array}\right)=R(O x, 2 \theta)
$$

rotation about $O x$ through angle 2θ. In particular, $\operatorname{im} \Theta$ contains all rotations about $O x$.

Now let

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

Then $U \in \mathbf{S U}(2)$ and

$$
U^{-1}\left(\begin{array}{cc}
i x & -y+i z \\
y+i z & -i x
\end{array}\right) U=\left(\begin{array}{cc}
i z & -y-i x \\
y-i x & -i z
\end{array}\right)
$$

Thus

$$
\alpha(U)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right)=R(O y, \pi / 2)
$$

Writing $P=R(O y, \pi / 2)$,

$$
P^{-1} R(O x, \theta) P=R(O z, \theta)
$$

Thus $\operatorname{im} \Theta$ contains all rotations about $O z$ as well as $O x$. But is is easy to see that every rotation $R \in \mathbf{S O}(3)$ is expressible as a product of rotations about $O x$ and $O z$. Hence

$$
\operatorname{im} \Theta=\mathbf{S O}(3)
$$

ie Θ is surjective.
Thus

$$
\mathbf{S O}(3)=\mathbf{S U}(2) /\{ \pm i\}
$$

It follows that the representations of $\mathbf{S O}(3)$ are just the representations α of $\mathbf{S O}(2)$ such that

$$
\alpha(-I)=I
$$

In particular, the simple representations of $\mathbf{S O}(3)$ are those simple representations D_{j} of $\mathbf{S U}(2)$ such that $D_{j}(-I)=I$. But D_{j} is defined by the action of $\mathbf{S U}(2)$ on the polynomials

$$
P(z, w)=c_{0} z^{2 j}+c_{1} z^{2 j-1} w+\cdots+c_{2 j} w^{2 j}
$$

It is clear that

$$
P(-z,-w)=P(z, w)
$$

for all P of degree $2 j$ if and only if $2 j$ is even, ie j is an integer.

Thus the simple representations of $\mathbf{S O}(3)$ are $D_{0}, D_{1}, D_{2}, \ldots$ of degrees $1,3,5, \ldots$.
Since

$$
\mathbf{O}(3)=\mathbf{S O}(3) \times C_{2},
$$

where $C_{2}=\{ \pm I\}$, the simple representations of $\mathbf{O}(3)$ are of the form $\alpha \times \beta$, where α is a simple representation of $\mathbf{S O}(3)$, and β is a simple representation of C_{2}. Thus the simple representations of $\mathbf{O}(3)$ are $D_{j} \times$ 1 and $D_{j} \times \epsilon$, where $j \in \mathbb{N}$ and ϵ is the representation $-I \rightarrow-1$ of C_{2}.
5. Explain the division of simple representations of a finite or compact group G over \mathbb{C} into real, essentially complex and quaternionic. Give an example of each (justifying your answers).
Show that if α is a simple representation with character χ then the value of

$$
\int_{G} \chi\left(g^{2}\right) d g
$$

determines which of these three types α falls into.
Answer: Suppose α is a simple representation of G over \mathbb{C}. Then α is said to be real if

$$
\alpha=\beta_{\mathbb{C}}
$$

for some representation of G over \mathbb{R}. If this is so then the character

$$
\chi_{\alpha}(g)=\chi_{\beta}(g)
$$

is real. We say that α is quaternionic if its character is real, but it is not real. Finally, we say that α is essentially complex if its character is not real.
The trivial character 1 of any group is real, since it is the complexification of the trivial character over \mathbb{R}.
The 1-dimensional character θ of the cyclic group $C_{3}=\langle g\rangle$ given by

$$
\theta: g \mapsto \omega=e^{2 \pi / 3}
$$

is essentially complex, since its character θ is not real.
Consider the quaternion group

$$
Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\} .
$$

We can regard the quaternions \mathbb{H} as a 2-dimensional vector space over $\mathbb{C}=\langle 1, i\rangle$. The action of Q_{8} on \mathbb{H} by multiplication on the left defines a 2-dimensional representation α of D_{8}. We assert that this is a simple quaternionic representation.

It is certainly simple, since otherwise \mathbb{H} would have a 1-dimensional subspace $\langle q\rangle$ stable under D_{8}, and therefore under \mathbb{H}, since D_{8} spans \mathbb{H}. But that is impossible since

$$
x=\left(x q^{-1}\right) q
$$

for any $x \in \mathbb{H}$. The simple representations of D_{4} must have dimensions $1,1,1,1,2$ (since $\sum \operatorname{dim}_{i}^{2}=8$). It follows that

$$
\alpha^{*}=\alpha
$$

since there is only 1 2-dimensional simple representation. Hence χ_{α} is real.

It remains to show that α is not real. Consider the 4-dimensional representation β of D_{8} over \mathbb{R}, defined by the same action of D_{4} on \mathbb{H}. This is easily seen to be simple, by the argument above. It follows that $\beta_{\mathbb{C}}$ is either simple, or splits into 2 simple representations over \mathbb{C} of dimension 2. The only possibility is that

$$
\beta_{\mathbb{C}}=2 \alpha .
$$

Now if a were real, say

$$
\alpha=\gamma_{\mathbb{C}}
$$

we would deduce that $\beta=2 \gamma$ which is impossible, since β is simple.
Now suppose α is a simple representation of G in V. Then $\left(\alpha^{*}\right)^{2}$ is the representation arising from the action of G on the space of bilinear forms on V.
But

$$
\alpha^{*}=\alpha \Longleftrightarrow \chi_{\alpha} \text { is real. }
$$

Thus

$$
I\left(1,\left(\alpha^{*}\right)^{2}\right)=I\left(\alpha, \alpha^{*}\right)=\left\{\begin{array}{ll}
1 & \text { if } \alpha \text { is real or quaternionic } \\
0 & \text { if } \alpha \text { is essentially complex }
\end{array} .\right.
$$

In other words, there is just 1 invariant bilinear form (up to a scalar multiple) if α is real or quaternionic, and no such form if α is essentially complex.
Now the space of bilinear forms splits into the direct sum of symmetric (or quadratic) and skew-symmetric forms, since each bilinear form $B(u, v)$ can be expressed as

$$
B(u, v)=\frac{1}{2}(B(u, v)+B(v, u))+\frac{1}{2}(B(u, v)-B(v, u)),
$$

where the first form is symmetric and the second skew-symmetric.

It follows that

$$
\left(\alpha^{*}\right)^{2}=\phi+\psi,
$$

where ϕ is the representation of G in the space of symmetric forms, and ψ the representation in the space of skew-symmetric forms.

If α is essentially complex, there is no invariant symmetric or skewsymmetric form. But if α is real or quaternionic, there must be just 1 invariant form, either symmetric or skew-symmetric. We shall see that in fact there is an invariant symmetric form if and only if α is real.
Certainly if α is real, say $\alpha=\beta_{\mathbb{C}}$, where β is a representation in the real vector space U, then we know that there is an invariant positivedefinite form on U, and this will give an invariant quadratic form on $V=U_{\mathbb{C}}$.

Conversely, suppose α is a quaternionic simple representation on V. Then $\beta=\alpha_{\mathbb{R}}$ is simple. For

$$
\left(\alpha_{\mathbb{R}}\right)_{\mathbb{C}}=\alpha+\alpha^{*}
$$

for any representation α over \mathbb{C}. Thus if $\beta=\gamma+\gamma^{\prime}$ then (with α quaternionic)

$$
2 \alpha=\gamma_{\mathbb{C}}+\gamma_{\mathbb{C}}^{\prime}
$$

and it will follow that

$$
\alpha=\gamma_{\mathbb{C}}=\gamma_{\mathbb{C}}^{\prime},
$$

so that α is real.
Since β is simple, there is a unique invariant quadratic form P on $V_{\mathbb{R}}$, and this form is positive-definite. But if there were an invariant quadratic form Q on V this would give an invariant quadratic form on $V_{\mathbb{R}}$, which would not be positive-definite, since we would have

$$
Q(i u, i u)=-Q(u) .
$$

Thus if α is quaternionic, then there is no invariant quadratic form on V, and therefore there is an invariant skew-symmetric form.
It follows that we can determine which class α falls into by computing

$$
I(1, \phi) \text { and } I(1, \psi) .
$$

To this end we compute the characters of ϕ and ψ.
Suppose $g \in G$. Then we can diagonalise g, ie we can find a basis e_{1}, \ldots, e_{n} of V consisting of eivenvectors, say

$$
g e_{i}=\lambda_{i} e_{i} .
$$

The space of quadratic forms is spanned by the $n(n+1) / 2$ forms

$$
x_{i} x_{j} \quad(i \leq j),
$$

where x_{1}, \ldots, x_{n} are the coordinates with respect to the basis e_{1}, \ldots, e_{n}. It follows that

$$
\chi_{\phi}(g)=\sum \lambda_{i}^{2}+\sum_{i<j} \lambda_{i} \lambda_{j} .
$$

Now

$$
\chi_{\alpha}(g)=\sum \lambda_{i}, \chi_{\alpha}\left(g^{2}\right)=\sum \lambda_{i}^{2} .
$$

It follows that

$$
\chi_{p} h i(g)=\frac{1}{2}\left(\chi_{\alpha}(g)^{2}+\chi_{a} l p h a\left(g^{2}\right)\right) .
$$

We deduce from this that

$$
I(1, \phi)=\frac{1}{2\|G\|} \sum_{g \in G}\left(\chi_{\alpha}(g)^{2}+\chi_{\alpha}\left(g^{2}\right)\right) .
$$

Since

$$
\begin{aligned}
I(1, \phi)+I(1, \psi) & =I\left(1,\left(\alpha^{*}\right)^{2}\right) \\
& =\frac{1}{\|G\|} \sum_{g} \chi_{\alpha}\left(g^{-1}\right)^{2} \\
& =\frac{1}{\|G\|} \sum_{g} \chi_{\alpha}(g)^{2},
\end{aligned}
$$

it follows that

$$
I(1, \psi)=\frac{1}{2\|G\|} \sum_{g \in G}\left(\chi_{\alpha}(g)^{2}-\chi_{\alpha}\left(g^{2}\right)\right) .
$$

Putting all this together, we conclude that

$$
\begin{aligned}
\frac{1}{\|G\|} \sum_{g \in G} \chi_{\alpha}\left(g^{2}\right) & =I(1, \phi)-I(1, \psi) \\
& = \begin{cases}1 & \text { if } \alpha \text { is real, } \\
-1 & \text { if } \alpha \text { is quaternionic, } \\
0 & \text { if } \alpha \text { is essentially complex. }\end{cases}
\end{aligned}
$$

