

Course 424

Group Representations Ia

Dr Timothy Murphy

Seminar Room Thursday, 17 June 1999 16:30–18:30

Attempt 6 questions. (If you attempt more, only the best 6 will be counted.) All questions carry the same number of marks. Unless otherwise stated, all groups are finite, and all representations are of finite degree over \mathbb{C} .

1. Define a group representation. What is meant by saying that 2 representations α , β are equivalent? What is meant by saying that the representation α is simple?

Determine all simple representations of S_3 up to equivalence, from first principles.

- 2. What is meant by saying that the representation α is *semisimple*? Prove that every representation α of a finite group G (of finite degree over \mathbb{C}) is semisimple.
- 3. Define the intertwining number $I(\alpha, \beta)$ of 2 representations α, β . Show that if α, β are simple then

$$I(\alpha, \beta) = \begin{cases} 1 & \text{if } \alpha = \beta \\ 0 & \text{if } \alpha \neq \beta. \end{cases}$$

Hence or otherwise show that the simple parts of a semisimple representation are unique up to order.

4. Define the character χ_{α} of a representation α .

State without proof a formula expressing the intertwining number $I(\alpha, \beta)$ in terms of the characters $\chi_{\alpha}, \chi_{\beta}$.

Show that two representations α, β of G are equivalent if and only if they have the same character.

- 5. Draw up the character table of S_4 .
- 6. Draw up the character table of D_5 (the symmetry group of a regular pentagon).

Determine also the representation ring of D_5 , ie express each product of simple representations of D_5 as a sum of simple representations.

- 7. Show that the number of simple representations of a finite group G is equal to the number s of conjugacy classes in G.
- 8. Show that if the simple representations of the finite group G are $\sigma_1, \ldots, \sigma_s$ then

$$(\deg \sigma_1)^2 + \dots + (\deg \sigma_s)^2 = ||G||.$$

Show that the number of simple representations of S_n of degree d is even if d is odd. Hence or otherwise determine the dimensions of the simple representations of S_5 .