

Course 424

Group Representations I

Dr Timothy Murphy

Synge Theatre Monday, 22 January 1999 16:00-18:00

Attempt 6 questions. (If you attempt more, only the best 6 will be counted.) All questions carry the same number of marks.
Unless otherwise stated, all groups are finite, and all representations are of finite degree over \mathbb{C}.

1. Define a group representation. What is meant by saying that 2 representations α, β of G are equivalent? Determine all representations of S_{3} of degree 2 (up to equivalence), from first principles.
Show that if α, β are equivalent representations of G then α, β have the same eigenvalues for each $g \in G$. Is the converse true, ie if $\alpha(g), \beta(g)$ have the same eigenvalues for each g, does it follow that α, β are equivalent?
2. What is meant by saying that the representation α is simple? Determine all simple representations of D_{4} from first principles.
Show that a simple representation of G necessarily has degree $\leq\|G\|$.
3. What is meant by saying that the representation α is semisimple?

Prove that every representation α of a finite group G (of finite degree over \mathbb{C}) is semisimple.
4. Define the intertwining number $I(\alpha, \beta)$ of 2 representations α, β.

Show that if α, β are simple then

$$
I(\alpha, \beta)= \begin{cases}1 & \text { if } \alpha=\beta \\ 0 & \text { if } \alpha \neq \beta\end{cases}
$$

Hence or otherwise show that the simple parts of a semisimple representation are unique up to order.
5. Define the character χ_{α} of a representation α. Outline the proof that

$$
I(\alpha, \beta)=\frac{1}{\|G\|} \sum_{g \in G} \overline{\chi_{\alpha}(g)} \chi_{\beta}(g)
$$

Show that two representations α, β of G are equivalent if and only if they have the same character.
6. Show that a simple representation of an abelian group is necessarily of degree 1.
Prove conversely that if every simple representation of G is of degree 1 then G must be abelian.
7. Draw up the character table of S_{4}.

Determine also the representation ring of S_{4}, ie express each product of simple representations of S_{4} as a sum of simple representations.
8. Show that a finite group G has only a finite number of simple representations (up to equivalence), say $\sigma_{1}, \ldots, \sigma_{r}$; and show that

$$
\left(\operatorname{deg} \sigma_{1}\right)^{2}+\cdots+\left(\operatorname{deg} \sigma_{r}\right)^{2}=\|G\| .
$$

Show that the number of simple representations of S_{n} of degree d is even if d is odd. Hence or otherwise determine the dimensions of the simple representations of S_{5}.

