Course 424

Group Representations III

Dr Timothy Murphy

School of Mathematics Thursday, 8 May 1997 14:00-16:00

Answer as many questions as you can; all carry the same number of marks.
Unless otherwise stated, all representations are finite-dimensional over \mathbb{C}.

1. Define the exponential e^{X} of a square matrix X.

Determine e^{X} in each of the following cases:

$$
\begin{array}{llll}
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), & X=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), & X=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \\
X=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), & X=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right), & X=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
\end{array}
$$

Which of these 6 matrices X are themselves expressible in the form $X=e^{Y}$, where Y is a real matrix? (Justify your answers in all cases.)
2. Define a linear group, and a Lie algebra; and define the Lie algebra $\mathscr{L} G$ of a linear group G, showing that it is indeed a Lie algebra.

Determine the Lie algebras of $\mathbf{S O}(3)$ and $\mathbf{S U}(2)$, and show that they are isomomorphic.

Are the groups themselves isomorphic?
3. Define the dimension of a linear group; and determine the dimensions of each of the following groups:

$$
\mathbf{O}(n), \mathbf{S O}(n), \mathbf{U}(n), \mathbf{S U}(n), \mathbf{G L}(n, \mathbb{R}), \mathbf{S L}(n, \mathbb{R}), \mathbf{G L}(n, \mathbb{C}), \mathbf{S L}(n, \mathbb{C}) ?
$$

4. Define a representation of a Lie algebra; and show how each representation α of a linear group G gives rise to a representation $\mathscr{L} \alpha$ of $\mathscr{L} G$.
Determine the Lie algebra of $\mathbf{S L}(2, \mathbb{R})$; and show that this Lie algebra $\mathbf{s l}(2, \mathbb{R})$ has just 1 simple representation of each dimension $1,2,3, \ldots$.
5. Show that the only compact connected abelian linear groups are the tori \mathbb{T}^{n}.
