

Course 424

Group Representations Ia

Dr Timothy Murphy

Seminar Room Wednesday, 29 January 1997 15:00–17:00

Attempt 6 questions. (If you attempt more, only the best 6 will be counted.) All questions carry the same number of marks. Unless otherwise stated, all groups are finite, and all representations are of finite degree over \mathbb{C} .

1. Define a group representation. What is meant by saying that the representation α is simple?

Show that every simple representation of G is of degree $\leq |G|$.

Determine all simple representations of the quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ (up to equivalence) from first principles.

2. What is meant by saying that the representation α is *semisimple*?

Prove that every representation α of a finite group G (of finite degree over \mathbb{C}) is semisimple.

Define the *intertwining number* $I(\alpha, \beta)$ of 2 representations α, β .

Show that the simple parts of a semisimple representation are unique up to order.

3. Define the character $\chi_{\alpha}(g)$ of a representation α .

Explain how an action of a group G on a finite set X gives rise to a (permutation) representation α of G.

Show that

$$\chi_{\alpha}(g) = |\{x \in X : gx = x\}|.$$

Determine the characters of S_4 defined by its actions on the set $X = \{a, b, c, d\}$ and the set Y consisting of the 6 subsets of X containing 2 elements.

Hence or otherwise draw up the character table of S_4 .

4. Show that if the simple representations of G are $\sigma_1, \ldots, \sigma_s$ then

$$\dim^2 \sigma_1 + \dots + \dim^2 \sigma_s = |G|.$$

Determine the degrees of the simple representations of S_5 .

5. Show that a simple representation of an abelian group is necessarily of degree 1.

Prove conversely that if every simple representation of G is of degree 1 then G must be abelian.

Show that the simple representations of an abelian group G themselves form a group (under multiplication) isomorphic to G.

6. Draw up the character table of the alternating group A_4 .

Determine also the *representation ring* of A_4 , is express each product of simple representations of A_4 as a sum of simple representations.

7. What is meant by saying that a simple representation α (over \mathbb{C}) is (a) real, (b) quaternionic?

Show that if χ_{α} is real then α is real or quaternionic according as

$$\frac{1}{|G|} \sum_{g \in G} \chi_{\alpha}(g^2) = \pm 1.$$

8. By considering the eigenvalues of 5-cycles, or otherwise, show that S_n has no simple representations of degree 2 or 3 if $n \ge 5$.