

Course 424

Group Representations III

Dr Timothy Murphy

Arts Block 3051 Thursday, 17 June 1993 14:00-16:00

Answer as many questions as you can ${ }^{1}$; all carry the same number of marks.
Unless otherwise stated, all Lie algebras are over \mathbb{R}, and all representations are finite-dimensional over \mathbb{C}.

1. Define the exponential e^{X} of a square matrix X.

Determine e^{X} in each of the following cases:

$$
X=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad X=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad X=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right), \quad X=\left(\begin{array}{l}
1 \\
1
\end{array}\right.
$$

Show that if X has eigenvalues λ, μ then e^{X} has eigenvalues e^{λ}, e^{μ}.
Which of the above 5 matrices X are themselves expressible in the form $X=e^{Y}$ for some real matrix Y ? (Justify your answers in all cases.)
2. Define a linear group, and a Lie algebra; and define the Lie algebra $\mathscr{L} G$ of a linear group G, showing that it is indeed a Lie algebra.

[^0]Define the dimension of a linear group; and determine the dimensions of each of the following groups:

$$
\mathbf{O}(n), \mathbf{S O}(n), \mathbf{U}(n), \mathbf{S U}(n), \mathbf{G L}(n, \mathbb{R}), \mathbf{S L}(n, \mathbb{R}), \mathbf{G L}(n, \mathbb{C}), \mathbf{S L}(n, \mathbb{C}) ?
$$

3. Determine the Lie algebras of $\mathbf{S U}(2)$ and $\mathbf{S O}(3)$, and show that they are isomomorphic.
Show that the 2 groups themselves are not isomorphic.
4. Define a representation of a Lie algebra \mathscr{L}. What is meant by saying that such a representation is (a) simple, (b) semisimple?
Determine the Lie algebra of $\mathbf{S L}(2, \mathbb{R})$, and find all the simple representations of this algebra.
Show that every representation of the group $\mathbf{S L}(2, \mathbb{R})$ is semisimple, stating carefully but without proof any results you need.
5. Show that every connected abelian linear group A is isomorphic to

$$
\mathbb{T}^{m} \times \mathbb{R}^{n}
$$

for some m and n, where \mathbb{T} denotes the torus \mathbb{R} / \mathbb{Z}.
Show that the groups $\mathbb{T}^{m} \times \mathbb{R}^{n}$ and $\mathbb{T}^{m^{\prime}} \times \mathbb{R}^{n^{\prime}}$ are isomorphic if and only if $m=m^{\prime}$ and $n=n^{\prime}$.

[^0]: ${ }^{1} \mathrm{Nb}$: There is a question overleaf.

