

Course 424

Group Representations III

Dr Timothy Murphy

Sam Beckett Theatre Wednesday, 10 June 1991 14:00-16:00

> Answer as many questions as you can; all carry the same number of marks.
> Unless otherwise stated, all Lie algebras are over \mathbb{R}, and all representations are finite-dimensional over \mathbb{C}.

1. Define the exponential e^{X} of a square matrix X.

Determine e^{X} in each of the following cases:

$$
X=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right), \quad X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad X=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad X=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad X=\left(\begin{array}{l}
1 \\
0
\end{array}\right.
$$

Which of these 5 matrices X are themselves expressible in the form $X=e^{Y}$, with (a) Y real, (b) Y complex? (Justify your answers in all cases.)
2. Define a linear group, and a Lie algebra; and define the Lie algebra $\mathscr{L} G$ of a linear group G, showing that it is indeed a Lie algebra.
Determine the Lie algebras of $\mathbf{S U}(2)$ and $\mathbf{S O}(3)$, and show that they are isomomorphic.
3. Define a representation of a Lie algebra; and show how each representation α of a linear group G gives rise to a representation $\mathscr{L} \alpha$ of $\mathscr{L} G$.
Determine the Lie algebra of $\mathbf{S L}(2, \mathbb{R})$; and show that this Lie algebra $\mathbf{s l}(2, \mathbb{R})$ has just 1 simple representation of each dimension $1,2,3, \ldots$.
4. What is meant by saying that a connected linear group G is simplyconnected? Show that $\mathbf{S U}(2)$ is simply-connected.
Sketch the proof that if the linear group G is connected and simplyconnected then every representation of $\mathscr{L} G$ lifts to a representation of G.

Show that if 2 real Lie algebras have the same complexification then their representations (over \mathbb{C}) correspond. Hence or otherwise show that all the representations of $\mathbf{s l}(2, \mathbb{R})$ are semisimple.
5. Show that every connected abelian linear group A is isomorphic to

$$
\mathbb{T}^{m} \times \mathbb{R}^{n}
$$

for some m and n, where \mathbb{T} denotes the torus \mathbb{R} / \mathbb{Z}
Express the multiplicative group \mathbb{C}^{\times}in this form.

