

Course 424

Group Representations III

Dr Timothy Murphy

Sam Beckett Theatre Wednesday, 10 June 1991 14:00–16:00

Answer as many questions as you can; all carry the same number of marks.

Unless otherwise stated, all Lie algebras are over \mathbb{R} , and all representations are finite-dimensional over \mathbb{C} .

1. Define the exponential e^X of a square matrix X.

Determine e^X in each of the following cases:

$$X = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right), \quad X = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad X = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \quad X = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \quad X = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

Which of these 5 matrices X are themselves expressible in the form $X=e^Y$, with (a) Y real, (b) Y complex? (Justify your answers in all cases.)

2. Define a linear group, and a Lie algebra; and define the Lie algebra $\mathscr{L}G$ of a linear group G, showing that it is indeed a Lie algebra.

Determine the Lie algebras of SU(2) and SO(3), and show that they are isomomorphic.

3. Define a representation of a Lie algebra; and show how each representation α of a linear group G gives rise to a representation $\mathcal{L}\alpha$ of $\mathcal{L}G$.

Determine the Lie algebra of $SL(2,\mathbb{R})$; and show that this Lie algebra $sl(2,\mathbb{R})$ has just 1 simple representation of each dimension $1,2,3,\ldots$

4. What is meant by saying that a connected linear group G is simply-connected? Show that $\mathbf{SU}(2)$ is simply-connected.

Sketch the proof that if the linear group G is connected and simply-connected then every representation of $\mathscr{L}G$ lifts to a representation of G.

Show that if 2 real Lie algebras have the same complexification then their representations (over \mathbb{C}) correspond. Hence or otherwise show that all the representations of $\mathbf{sl}(2,\mathbb{R})$ are semisimple.

5. Show that every connected abelian linear group A is isomorphic to

$$\mathbb{T}^m \times \mathbb{R}^n$$

for some m and n, where \mathbb{T} denotes the torus \mathbb{R}/\mathbb{Z} Express the multiplicative group \mathbb{C}^{\times} in this form.