

Course 424

Group Representations I

Dr Timothy Murphy

Exam Hall Friday, 8 March 1991 15:00-17:00

Answer as many questions as you can; all carry the same number of marks.
Unless otherwise stated, all groups are finite, and all representations are finite-dimensional over \mathbb{C}.

1. Define a group representation. What is meant by saying that 2 representations α, β are equivalent? What is meant by saying that the representation α is simple?
Determine all simple representations of S_{3} up to equivalence, from first principles.
2. What is meant by saying that the representation α is semisimple?

Prove that every finite-dimensional representation α of a finite group over \mathbb{C} is semisimple.
Define the character χ_{α} of a representation α.
Define the intertwining number $I(\alpha, \beta)$ of 2 representations α, β. State and prove a formula expressing $I(\alpha, \beta)$ in terms of $\chi_{\alpha}, \chi_{\beta}$.
Show that the simple parts of a semisimple representation are unique up to order.
3. Explain how a representation β of a subgroup $H \subset G$ induces a representation β^{G} of G.
Show that

$$
\frac{\bar{g}}{|G|} \chi_{\beta^{G}}(\bar{g})=\sum_{\bar{h} \subset \bar{g}} \frac{\bar{h}}{|H|} \chi_{\beta}(\bar{h}) .
$$

Determine the characters of S_{4} induced by the simple characters of S_{3}, and so draw up the character table of S_{4}.
4. Show that the number of simple representations of a finite group G is equal to the number s of conjugacy classes in G.
Show also that if these representations are $\sigma_{1}, \ldots, \sigma_{s}$ then

$$
\operatorname{dim}^{2} \sigma_{1}+\cdots+\operatorname{dim}^{2} \sigma_{s}=|G| .
$$

Determine the dimensions of the simple representations of S_{5}, stating clearly any results you assume.
5. Draw up the character table of the alternating group A_{4} (the subgroup of S_{4} formed by even permutations).
Determine also the representation ring of A_{4}, ie express each product of simple representations of A_{4} as a sum of simple representations.
6. Explain the division of simple representations (over \mathbb{C}) into real, essentially complex and quaternionic. Give an example of each (justifying your answers).
Show that if α is a simple representation with character χ then the value of

$$
\sum_{g \in G} \chi\left(g^{2}\right)
$$

determines which of these 3 types α falls into.

