

## Course 424

## Group Representations III

## Dr Timothy Murphy

## Arts Block A2039 Friday, 20 January 1989 15.45-17.45

Answer as many questions as you can; all carry the same number of marks.
Unless otherwise stated, all Lie algebras are over $\mathbb{R}$, and all representations are finite-dimensional over $\mathbb{C}$.

1. Define the exponential $e^{X}$ of a square matrix $X$.

Determine $e^{X}$ in each of the following cases:

$$
X=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad X=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad X=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad X=\left(\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Which of these 4 matrices $X$ are themselves expressible in the form $X=e^{Y}$, with (a) $Y$ real, (b) $Y$ complex? (Justify your answers in all cases.)
2. Define a linear group, and a Lie algebra; and define the Lie algebra $\mathscr{L} G$ of a linear group $G$, showing that it is indeed a Lie algebra.
Determine the Lie algebras of $\mathbf{S O}(3)$ and $\mathbf{S L}(2, \mathbb{R})$, and show that they are not isomomorphic.
3. Define a representation of a Lie algebra; and show how each representation $\alpha$ of a linear group $G$ gives rise to a representation $\mathscr{L} \alpha$ of $\mathscr{L} G$.
Determine the Lie algebra of $\mathbf{S U}(2)$; and show that this Lie algebra $\mathbf{s u}(2)$ has just 1 simple representation of each dimension $1,2,3, \ldots$.
4. Show that every connected abelian linear group $A$ is isomorphic to

$$
\mathbb{T}^{m} \times \mathbb{R}^{n}
$$

for some $m$ and $n$, where $\mathbb{T}$ denotes the torus $\mathbb{R} / \mathbb{Z}$

