

Course 424

Group Representations II

Dr Timothy Murphy

Arts Block A2039 Friday, 20 January 1989 15.45–17.45

Answer as many questions as you can; all carry the same number of marks.

Unless otherwise stated, all representations are finite-dimensional over \mathbb{C} .

1. Explain carefully and fully what is meant by the statement that there exists a unique left-invariant measure μ on every compact group G; and sketch the proof of this statement.

Determine the measure in $\mathbf{SU}(2)$ of the set of all matrices having eigenvalues $e^{\pm i\theta}$, where $0 \le \theta \le \pi/4$.

2. Prove that every simple representation of a compact abelian group A is 1-dimensional.

Determine the simple representations of U(1).

3. Determine the conjugacy classes in $\mathbf{SU}(2)$.

Prove that SU(2) has just one simple representation of each dimension $1, 2, \ldots$; and determine the character of this representation.

4. Determine the conjugacy classes in SO(3).

Show that there exists a covering Θ : $\mathbf{SU}(2) \to \mathbf{SO}(3)$, ie a surjective homomorphism with finite kernel.

Hence or otherwise determine the simple characters of SO(3).

Show that all the representations of SO(3) are real.