

Course 424
 Group Representations Ia

Dr Timothy Murphy

Seminar Room Friday, 24 January 2003 15:00-17:00

Attempt 6 questions. (If you attempt more, only the best 6 will be counted.) All questions carry the same number of marks.
Unless otherwise stated, all groups are finite, and all representations are of finite degree over \mathbb{C}.

1. Define a group representation. What is meant by saying that the representation α is simple?
Show that every simple representation of G is of degree $\leq|G|$.
Determine all simple representations of the quaternion group $Q_{8}=$ $\{ \pm 1, \pm i, \pm j, \pm k\}$ (up to equivalence) from first principles.
2. What is meant by saying that the representation α is semisimple?

Prove that every representation α of a finite group G (of finite degree over \mathbb{C}) is semisimple.

Define the intertwining number $I(\alpha, \beta)$ of 2 representations α, β.
Show that the simple parts of a semisimple representation are unique up to order.
3. Define the character $\chi_{\alpha}(g)$ of a representation α.

Explain how an action of a group G on a finite set X gives rise to a (permutation) representation α of G.

Show that

$$
\chi_{\alpha}(g)=|\{x \in X: g x=x\}| .
$$

Determine the characters of S_{4} defined by its actions on the set $X=$ $\{a, b, c, d\}$ and the set Y consisting of the 6 subsets of X containing 2 elements.
Hence or otherwise draw up the character table of S_{4}.
4. Show that if the simple representations of G are $\sigma_{1}, \ldots, \sigma_{s}$ then

$$
\operatorname{dim}^{2} \sigma_{1}+\cdots+\operatorname{dim}^{2} \sigma_{s}=|G| .
$$

Determine the degrees of the simple representations of S_{5}.
5. Show that a simple representation of an abelian group is necessarily of degree 1.

Prove conversely that if every simple representation of G is of degree 1 then G must be abelian.

Show that the simple representations of an abelian group G themselves form a group (under multiplication) isomorphic to G.
6. Draw up the character table of D_{5} (the symmetry group of a regular pentagon).
Determine also the representation ring of D_{5}, ie express each product of simple representations of D_{5} as a sum of simple representations.
7. Draw up the character table of the alternating group A_{4}.
8. By considering the eigenvalues of 5 -cycles, or otherwise, show that S_{n} has no simple representations of degree 2 or 3 if $n \geq 5$.

