

Course 424

Group Representations III

Dr Timothy Murphy

Joly Theatre Friday, 4 May 2001 14:00-15:30

Attempt 5 questions. (If you attempt more, only the best 5 will be counted.) All questions carry the same number of marks.
In this exam, 'Lie algebra' means Lie algebra over \mathbb{R}, and 'representation' means finite-dimensional representation over \mathbb{C}.

1. Define the exponential e^{X} of a square matrix X.

Determine e^{X} in each of the following cases:

$$
\begin{array}{lll}
X=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), & X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), & X=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \\
X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), & X=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), & X=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) .
\end{array}
$$

Which of these 6 matrices X are themselves expressible in the form $X=e^{Y}$, where Y is a real matrix? (Justify your answers in all cases.)
2. Define a linear group, and a Lie algebra; and define the Lie algebra $\mathscr{L} G$ of a linear group G, showing that it is indeed a Lie algebra.

Show that a homomorphims of linear groups $f: G \rightarrow H$ gives rise to a Lie algebra homomorphism $\mathscr{L} f: \mathscr{L} G \rightarrow \mathscr{L} H$
If f is surjective, does it necessarily follow that $\mathscr{L} f$ is surjective? If f is injective, does it necessarily follow that $\mathscr{L} f$ is injective? (Give reasons.)
3. Define the dimension of a linear group; and determine the dimensions of each of the following groups:

$$
\begin{gathered}
\mathrm{O}(n), \mathrm{SO}(n), \mathrm{U}(n), \mathrm{SU}(n), \operatorname{GL}(n, \mathbb{R}), \\
\mathrm{SL}(n, \mathbb{R}), \mathrm{GL}(n, \mathbb{C}), \mathrm{SL}(n, \mathbb{C}),\{\operatorname{Sp}(n), E(n) ?
\end{gathered}
$$

($E(n)$ is the isometry group of n-dimensional Euclidean space.)
4. Determine the Lie algebras of $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$, and show that they are isomomorphic.

Show that the 2 groups themselves are not isomorphic.
5. Determine the Lie algebra of $\operatorname{SL}(2, \mathbb{R})$, and find all the simple representations of this algebra.

Show that every representation of the group $\operatorname{SL}(2, \mathbb{R})$ is semisimple, stating carefully but without proof any results you need.
6. Show that every connected abelian linear group A is isomorphic to

$$
\mathbb{T}^{m} \times \mathbb{R}^{n}
$$

for some m and n, where \mathbb{T} denotes the torus \mathbb{R} / \mathbb{Z}.
Show that the groups $\mathbb{T}^{m} \times \mathbb{R}^{n}$ and $\mathbb{T}^{m^{\prime}} \times \mathbb{R}^{n^{\prime}}$ are isomorphic if and only if $m=m^{\prime}$ and $n=n^{\prime}$.

