

Course 424

Group Representations I

Dr Timothy Murphy

Seminar Room Friday, 9 February 2001 16:00-18:00

Attempt 6 questions. (If you attempt more, only the best 6 will be counted.) All questions carry the same number of marks. Unless otherwise stated, all groups are finite, and all representations are of finite degree over \mathbb{C}.

1. Define a group representation. What is meant by saying that 2 representations α, β are equivalent? Determine all representations of S_{3} of degree 2 (up to equivalence) from first principles.
What is meant by saying that the representation α is simple? Determine all simple representations of S_{3} from first principles.
2. What is meant by saying that the representation α is semisimple?

Prove that every representation α of a finite group G (of finite degree over \mathbb{C}) is semisimple.
Show that the natural n-dimensional representation of S_{n} in C^{n} (by permutation of coordinates) is the sum of 2 simple representations.
3. Define the character χ_{α} of a representation α.

Define the intertwining number $I(\alpha, \beta)$ of 2 representations α, β. State and prove a formula expressing $I(\alpha, \beta)$ in terms of $\chi_{\alpha}, \chi_{\beta}$.
Show that the simple parts of a semisimple representation are unique up to order.
4. Show that the number of simple representations of a finite group G is equal to the number of conjugacy classes in G.
5. Show that a finite group G has only a finite number of simple representations (up to equivalence), say $\sigma_{1}, \ldots, \sigma_{r}$; and show that

$$
\left(\operatorname{deg} \sigma_{1}\right)^{2}+\cdots+\left(\operatorname{deg} \sigma_{r}\right)^{2}=\|G\| .
$$

Show that the number of simple representations of S_{n} of degree d is even if d is odd. Hence or otherwise determine the dimensions of the simple representations of S_{5}.
6. Draw up the character table of S_{4}.

Determine also the representation ring of S_{4}, ie express each product of simple representations of S_{4} as a sum of simple representations.
7. Define the representation $\alpha \times \beta$ of the product-group $G \times H$, where α is a representation of G, and β of H.
Show that $\alpha \times \beta$ is simple if and only if both α and β are simple; and show that every simple representation of $G \times H$ is of this form.
Show that D_{6} (the symmetry group of a regular hexagon) is expressible as a product group

$$
D_{6}=C_{2} \times S_{3} .
$$

Let γ denote the 3 -dimensional representation of D_{6} defined by its action on the 3 diagonals of the hexagon. Express γ in the form

$$
\gamma=\alpha_{1} \times \beta_{1}+\cdots+\alpha_{r} \times \beta_{r},
$$

where $\alpha_{1}, \ldots, \alpha_{r}$ are simple representations of C_{2}, and $\beta_{1}, \ldots, \beta_{r}$ are simple representations of S_{3}.
8. Explain the division of simple representations (over \mathbb{C}) into real, essentially complex and quaternionic. Give an example of each (justifying your answers).
Show that if α is a simple representation with character χ then the value of

$$
\sum_{g \in G} \chi\left(g^{2}\right)
$$

determines which of these 3 types α falls into.

