

Course 424 Group Representations I

Dr Timothy Murphy

Joly Theatre Friday, 19 January 2001 16:00–18:00

Attempt 6 questions. (If you attempt more, only the best 6 will be counted.) All questions carry the same number of marks. Unless otherwise stated, all groups are finite, and all representations are of finite degree over \mathbb{C} .

- 1. Define a group representation. What is meant by saying that 2 representations α, β are equivalent?
 - Determine all 2-dimensional representations of D_4 up to equivalence, from first principles.
- 2. What is meant by saying that the representation α is *simple*? Determine all simple representations of S_3 , from first principles.
- 3. What is meant by saying that the representation α is *semisimple*? Prove that every finite-dimensional representation α of a finite group over \mathbb{C} is semisimple.
 - Show that the natural representation of S_n in \mathbb{C}^n (by permutation of coordinates) splits into 2 simple parts, for any n > 1.
- 4. Define the *character* χ_{α} of a representation α .
 - Define the *intertwining number* $I(\alpha, \beta)$ of 2 representations α, β . State and prove a formula expressing $I(\alpha, \beta)$ in terms of $\chi_{\alpha}, \chi_{\beta}$.
 - Show that the simple parts of a semisimple representation are unique up to order.

5. Draw up the character table of S_4 , explaining your reasoning throughout.

Determine also the representation ring of S_4 , ie express each product of simple representations of S_4 as a sum of simple representations.

6. Explain how a representation β of a subgroup $H \subset G$ induces a representation β^G of G.

State (without proof) a formula for the character of β^G in terms of that of β .

Determine the characters of S_4 induced by the simple characters of the Viergruppe V_4 , expressing each induced character as a sum of simple parts.

7. Define the representation $\alpha \times \beta$ of the product-group $G \times H$, where α is a representation of G, and β of H.

Show that $\alpha \times \beta$ is simple if and only if both α and β are simple; and show that every simple representation of $G \times H$ is of this form.

Show that D_6 (the symmetry group of a regular hexagon) is expressible as a product group

$$D_6 = C_2 \times S_3.$$

Let γ denote the 3-dimensional representation of D_6 defined by its action on the 3 diagonals of the hexagon. Express γ in the form

$$\gamma = \alpha_1 \times \beta_1 + \dots + \alpha_r \times \beta_r,$$

where $\alpha_1, \ldots, \alpha_r$ are simple representations of C_2 , and β_1, \ldots, β_r are simple representations of S_3 .

8. Show that a finite group G has only a finite number of simple representations (up to equivalence), say $\sigma_1, \ldots, \sigma_r$; and show that

$$(\deg \sigma_1)^2 + \dots + (\deg \sigma_r)^2 = ||G||.$$

Show that the number of simple representations of S_n of degree d is even if d is odd. Hence or otherwise determine the dimensions of the simple representations of S_5 .