

Course 424

Group Representations I

Dr Timothy Murphy

Joly Theatre Friday, 19 January 2001 16:00-18:00

Attempt 6 questions. (If you attempt more, only the best 6 will be counted.) All questions carry the same number of marks. Unless otherwise stated, all groups are finite, and all representations are of finite degree over \mathbb{C}.

1. Define a group representation. What is meant by saying that 2 representations α, β are equivalent?
Determine all 2-dimensional representations of D_{4} up to equivalence, from first principles.
2. What is meant by saying that the representation α is simple?

Determine all simple representations of S_{3}, from first principles.
3. What is meant by saying that the representation α is semisimple?

Prove that every finite-dimensional representation α of a finite group over \mathbb{C} is semisimple.
Show that the natural representation of S_{n} in \mathbb{C}^{n} (by permutation of coordinates) splits into 2 simple parts, for any $n>1$.
4. Define the character χ_{α} of a representation α.

Define the intertwining number $I(\alpha, \beta)$ of 2 representations α, β. State and prove a formula expressing $I(\alpha, \beta)$ in terms of $\chi_{\alpha}, \chi_{\beta}$.
Show that the simple parts of a semisimple representation are unique up to order.
5. Draw up the character table of S_{4}, explaining your reasoning throughout.

Determine also the representation ring of S_{4}, ie express each product of simple representations of S_{4} as a sum of simple representations.
6. Explain how a representation β of a subgroup $H \subset G$ induces a representation β^{G} of G.
State (without proof) a formula for the character of β^{G} in terms of that of β.
Determine the characters of S_{4} induced by the simple characters of the Viergruppe V_{4}, expressing each induced character as a sum of simple parts.
7. Define the representation $\alpha \times \beta$ of the product-group $G \times H$, where α is a representation of G, and β of H.

Show that $\alpha \times \beta$ is simple if and only if both α and β are simple; and show that every simple representation of $G \times H$ is of this form.

Show that D_{6} (the symmetry group of a regular hexagon) is expressible as a product group

$$
D_{6}=C_{2} \times S_{3} .
$$

Let γ denote the 3 -dimensional representation of D_{6} defined by its action on the 3 diagonals of the hexagon. Express γ in the form

$$
\gamma=\alpha_{1} \times \beta_{1}+\cdots+\alpha_{r} \times \beta_{r},
$$

where $\alpha_{1}, \ldots, \alpha_{r}$ are simple representations of C_{2}, and $\beta_{1}, \ldots, \beta_{r}$ are simple representations of S_{3}.
8. Show that a finite group G has only a finite number of simple representations (up to equivalence), say $\sigma_{1}, \ldots, \sigma_{r}$; and show that

$$
\left(\operatorname{deg} \sigma_{1}\right)^{2}+\cdots+\left(\operatorname{deg} \sigma_{r}\right)^{2}=\|G\| .
$$

Show that the number of simple representations of S_{n} of degree d is even if d is odd. Hence or otherwise determine the dimensions of the simple representations of S_{5}.

