

Course 424 Group Representations I

Dr Timothy Murphy

Arts Block A2039 Friday, 20 January 1989 15.45–17.45

Answer as many questions as you can; all carry the same number of marks.

Unless otherwise stated, all groups are finite, and all representations are finite-dimensional over \mathbb{C} .

1. Define a group representation. What is meant by saying that 2 representations α, β are equivalent?

Determine all 2-dimensional representations of S_3 up to equivalence, from first principles.

2. What is meant by saying that the representation α is *simple*?

Determine all simple representations of D_4 , from first principles.

3. What is meant by saying that the representation α is *semisimple*?

Prove that every finite-dimensional representation α of a finite group over $\mathbb C$ is semisimple.

Show from first principles that the natural representation of S_n in \mathbb{C}^n (by permutation of coordinates) splits into 2 simple parts, for any n > 1.

4. Define the *character* χ_{α} of a representation α .

Define the *intertwining number* $I(\alpha, \beta)$ of 2 representations α, β . State and prove a formula expressing $I(\alpha, \beta)$ in terms of $\chi_{\alpha}, \chi_{\beta}$.

Show that the simple parts of a semisimple representation are unique up to order.

5. Prove that every simple representation of an abelian group is 1-dimensional.

Is the converse true, is if every simple representation of a finite group G is 1-dimensional, is G necessarily abelian? (Justify your answer.)

6. Draw up the character table of S_4 , explaining your reasoning throughout.

Determine also the *representation ring* of S_4 , is express each product of simple representations of S_4 as a sum of simple representations.

7. Explain how a representation β of a subgroup $H \subset G$ induces a representation β^G of G.

State (without proof) a formula for the character of β^G in terms of that of β .

Determine the characters of S_4 induced by the simple characters of the Viergruppe V_4 , expressing each induced character as a sum of simple parts.

8. Show that the number of simple representations of a finite group G is equal to the number of conjugacy classes in G.